mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 b5334d14f7
			
		
	
	
		b5334d14f7
		
			
		
	
	
	
	
		
			
			Happy new year to the wonderful Godot community!
2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.
We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)
Here's to a great year 2021 for all Godot users 🎆
		
	
			
		
			
				
	
	
		
			274 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			274 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  transform_2d.cpp                                                     */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #include "transform_2d.h"
 | |
| 
 | |
| void Transform2D::invert() {
 | |
| 	// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
 | |
| 	// Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
 | |
| 	SWAP(elements[0][1], elements[1][0]);
 | |
| 	elements[2] = basis_xform(-elements[2]);
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::inverse() const {
 | |
| 	Transform2D inv = *this;
 | |
| 	inv.invert();
 | |
| 	return inv;
 | |
| }
 | |
| 
 | |
| void Transform2D::affine_invert() {
 | |
| 	real_t det = basis_determinant();
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND(det == 0);
 | |
| #endif
 | |
| 	real_t idet = 1.0 / det;
 | |
| 
 | |
| 	SWAP(elements[0][0], elements[1][1]);
 | |
| 	elements[0] *= Vector2(idet, -idet);
 | |
| 	elements[1] *= Vector2(-idet, idet);
 | |
| 
 | |
| 	elements[2] = basis_xform(-elements[2]);
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::affine_inverse() const {
 | |
| 	Transform2D inv = *this;
 | |
| 	inv.affine_invert();
 | |
| 	return inv;
 | |
| }
 | |
| 
 | |
| void Transform2D::rotate(real_t p_phi) {
 | |
| 	*this = Transform2D(p_phi, Vector2()) * (*this);
 | |
| }
 | |
| 
 | |
| real_t Transform2D::get_skew() const {
 | |
| 	real_t det = basis_determinant();
 | |
| 	return Math::acos(elements[0].normalized().dot(SGN(det) * elements[1].normalized())) - Math_PI * 0.5;
 | |
| }
 | |
| 
 | |
| void Transform2D::set_skew(float p_angle) {
 | |
| 	real_t det = basis_determinant();
 | |
| 	elements[1] = SGN(det) * elements[0].rotated((Math_PI * 0.5 + p_angle)).normalized() * elements[1].length();
 | |
| }
 | |
| 
 | |
| real_t Transform2D::get_rotation() const {
 | |
| 	return Math::atan2(elements[0].y, elements[0].x);
 | |
| }
 | |
| 
 | |
| void Transform2D::set_rotation(real_t p_rot) {
 | |
| 	Size2 scale = get_scale();
 | |
| 	real_t cr = Math::cos(p_rot);
 | |
| 	real_t sr = Math::sin(p_rot);
 | |
| 	elements[0][0] = cr;
 | |
| 	elements[0][1] = sr;
 | |
| 	elements[1][0] = -sr;
 | |
| 	elements[1][1] = cr;
 | |
| 	set_scale(scale);
 | |
| }
 | |
| 
 | |
| Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) {
 | |
| 	real_t cr = Math::cos(p_rot);
 | |
| 	real_t sr = Math::sin(p_rot);
 | |
| 	elements[0][0] = cr;
 | |
| 	elements[0][1] = sr;
 | |
| 	elements[1][0] = -sr;
 | |
| 	elements[1][1] = cr;
 | |
| 	elements[2] = p_pos;
 | |
| }
 | |
| 
 | |
| Size2 Transform2D::get_scale() const {
 | |
| 	real_t det_sign = SGN(basis_determinant());
 | |
| 	return Size2(elements[0].length(), det_sign * elements[1].length());
 | |
| }
 | |
| 
 | |
| void Transform2D::set_scale(const Size2 &p_scale) {
 | |
| 	elements[0].normalize();
 | |
| 	elements[1].normalize();
 | |
| 	elements[0] *= p_scale.x;
 | |
| 	elements[1] *= p_scale.y;
 | |
| }
 | |
| 
 | |
| void Transform2D::scale(const Size2 &p_scale) {
 | |
| 	scale_basis(p_scale);
 | |
| 	elements[2] *= p_scale;
 | |
| }
 | |
| 
 | |
| void Transform2D::scale_basis(const Size2 &p_scale) {
 | |
| 	elements[0][0] *= p_scale.x;
 | |
| 	elements[0][1] *= p_scale.y;
 | |
| 	elements[1][0] *= p_scale.x;
 | |
| 	elements[1][1] *= p_scale.y;
 | |
| }
 | |
| 
 | |
| void Transform2D::translate(real_t p_tx, real_t p_ty) {
 | |
| 	translate(Vector2(p_tx, p_ty));
 | |
| }
 | |
| 
 | |
| void Transform2D::translate(const Vector2 &p_translation) {
 | |
| 	elements[2] += basis_xform(p_translation);
 | |
| }
 | |
| 
 | |
| void Transform2D::orthonormalize() {
 | |
| 	// Gram-Schmidt Process
 | |
| 
 | |
| 	Vector2 x = elements[0];
 | |
| 	Vector2 y = elements[1];
 | |
| 
 | |
| 	x.normalize();
 | |
| 	y = (y - x * (x.dot(y)));
 | |
| 	y.normalize();
 | |
| 
 | |
| 	elements[0] = x;
 | |
| 	elements[1] = y;
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::orthonormalized() const {
 | |
| 	Transform2D on = *this;
 | |
| 	on.orthonormalize();
 | |
| 	return on;
 | |
| }
 | |
| 
 | |
| bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
 | |
| 	return elements[0].is_equal_approx(p_transform.elements[0]) && elements[1].is_equal_approx(p_transform.elements[1]) && elements[2].is_equal_approx(p_transform.elements[2]);
 | |
| }
 | |
| 
 | |
| bool Transform2D::operator==(const Transform2D &p_transform) const {
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		if (elements[i] != p_transform.elements[i]) {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool Transform2D::operator!=(const Transform2D &p_transform) const {
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		if (elements[i] != p_transform.elements[i]) {
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void Transform2D::operator*=(const Transform2D &p_transform) {
 | |
| 	elements[2] = xform(p_transform.elements[2]);
 | |
| 
 | |
| 	real_t x0, x1, y0, y1;
 | |
| 
 | |
| 	x0 = tdotx(p_transform.elements[0]);
 | |
| 	x1 = tdoty(p_transform.elements[0]);
 | |
| 	y0 = tdotx(p_transform.elements[1]);
 | |
| 	y1 = tdoty(p_transform.elements[1]);
 | |
| 
 | |
| 	elements[0][0] = x0;
 | |
| 	elements[0][1] = x1;
 | |
| 	elements[1][0] = y0;
 | |
| 	elements[1][1] = y1;
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
 | |
| 	Transform2D t = *this;
 | |
| 	t *= p_transform;
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::scaled(const Size2 &p_scale) const {
 | |
| 	Transform2D copy = *this;
 | |
| 	copy.scale(p_scale);
 | |
| 	return copy;
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
 | |
| 	Transform2D copy = *this;
 | |
| 	copy.scale_basis(p_scale);
 | |
| 	return copy;
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::untranslated() const {
 | |
| 	Transform2D copy = *this;
 | |
| 	copy.elements[2] = Vector2();
 | |
| 	return copy;
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::translated(const Vector2 &p_offset) const {
 | |
| 	Transform2D copy = *this;
 | |
| 	copy.translate(p_offset);
 | |
| 	return copy;
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::rotated(real_t p_phi) const {
 | |
| 	Transform2D copy = *this;
 | |
| 	copy.rotate(p_phi);
 | |
| 	return copy;
 | |
| }
 | |
| 
 | |
| real_t Transform2D::basis_determinant() const {
 | |
| 	return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
 | |
| }
 | |
| 
 | |
| Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const {
 | |
| 	//extract parameters
 | |
| 	Vector2 p1 = get_origin();
 | |
| 	Vector2 p2 = p_transform.get_origin();
 | |
| 
 | |
| 	real_t r1 = get_rotation();
 | |
| 	real_t r2 = p_transform.get_rotation();
 | |
| 
 | |
| 	Size2 s1 = get_scale();
 | |
| 	Size2 s2 = p_transform.get_scale();
 | |
| 
 | |
| 	//slerp rotation
 | |
| 	Vector2 v1(Math::cos(r1), Math::sin(r1));
 | |
| 	Vector2 v2(Math::cos(r2), Math::sin(r2));
 | |
| 
 | |
| 	real_t dot = v1.dot(v2);
 | |
| 
 | |
| 	dot = CLAMP(dot, -1.0, 1.0);
 | |
| 
 | |
| 	Vector2 v;
 | |
| 
 | |
| 	if (dot > 0.9995) {
 | |
| 		v = v1.lerp(v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
 | |
| 	} else {
 | |
| 		real_t angle = p_c * Math::acos(dot);
 | |
| 		Vector2 v3 = (v2 - v1 * dot).normalized();
 | |
| 		v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
 | |
| 	}
 | |
| 
 | |
| 	//construct matrix
 | |
| 	Transform2D res(Math::atan2(v.y, v.x), p1.lerp(p2, p_c));
 | |
| 	res.scale_basis(s1.lerp(s2, p_c));
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Transform2D::operator String() const {
 | |
| 	return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
 | |
| }
 |