mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 b5334d14f7
			
		
	
	
		b5334d14f7
		
			
		
	
	
	
	
		
			
			Happy new year to the wonderful Godot community!
2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.
We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)
Here's to a great year 2021 for all Godot users 🎆
		
	
			
		
			
				
	
	
		
			1801 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1801 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  tween.cpp                                                            */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #include "tween.h"
 | |
| 
 | |
| void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5, const Variant &p_arg6, const Variant &p_arg7, const Variant &p_arg8, const Variant &p_arg9, const Variant &p_arg10) {
 | |
| 	// Add a new pending command and reference it
 | |
| 	pending_commands.push_back(PendingCommand());
 | |
| 	PendingCommand &cmd = pending_commands.back()->get();
 | |
| 
 | |
| 	// Update the command with the target key
 | |
| 	cmd.key = p_key;
 | |
| 
 | |
| 	// Determine command argument count
 | |
| 	int &count = cmd.args;
 | |
| 	if (p_arg10.get_type() != Variant::NIL) {
 | |
| 		count = 10;
 | |
| 	} else if (p_arg9.get_type() != Variant::NIL) {
 | |
| 		count = 9;
 | |
| 	} else if (p_arg8.get_type() != Variant::NIL) {
 | |
| 		count = 8;
 | |
| 	} else if (p_arg7.get_type() != Variant::NIL) {
 | |
| 		count = 7;
 | |
| 	} else if (p_arg6.get_type() != Variant::NIL) {
 | |
| 		count = 6;
 | |
| 	} else if (p_arg5.get_type() != Variant::NIL) {
 | |
| 		count = 5;
 | |
| 	} else if (p_arg4.get_type() != Variant::NIL) {
 | |
| 		count = 4;
 | |
| 	} else if (p_arg3.get_type() != Variant::NIL) {
 | |
| 		count = 3;
 | |
| 	} else if (p_arg2.get_type() != Variant::NIL) {
 | |
| 		count = 2;
 | |
| 	} else if (p_arg1.get_type() != Variant::NIL) {
 | |
| 		count = 1;
 | |
| 	} else {
 | |
| 		count = 0;
 | |
| 	}
 | |
| 
 | |
| 	// Add the specified arguments to the command
 | |
| 	if (count > 0) {
 | |
| 		cmd.arg[0] = p_arg1;
 | |
| 	}
 | |
| 	if (count > 1) {
 | |
| 		cmd.arg[1] = p_arg2;
 | |
| 	}
 | |
| 	if (count > 2) {
 | |
| 		cmd.arg[2] = p_arg3;
 | |
| 	}
 | |
| 	if (count > 3) {
 | |
| 		cmd.arg[3] = p_arg4;
 | |
| 	}
 | |
| 	if (count > 4) {
 | |
| 		cmd.arg[4] = p_arg5;
 | |
| 	}
 | |
| 	if (count > 5) {
 | |
| 		cmd.arg[5] = p_arg6;
 | |
| 	}
 | |
| 	if (count > 6) {
 | |
| 		cmd.arg[6] = p_arg7;
 | |
| 	}
 | |
| 	if (count > 7) {
 | |
| 		cmd.arg[7] = p_arg8;
 | |
| 	}
 | |
| 	if (count > 8) {
 | |
| 		cmd.arg[8] = p_arg9;
 | |
| 	}
 | |
| 	if (count > 9) {
 | |
| 		cmd.arg[9] = p_arg10;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Tween::_process_pending_commands() {
 | |
| 	// For each pending command...
 | |
| 	for (List<PendingCommand>::Element *E = pending_commands.front(); E; E = E->next()) {
 | |
| 		// Get the command
 | |
| 		PendingCommand &cmd = E->get();
 | |
| 		Callable::CallError err;
 | |
| 
 | |
| 		// Grab all of the arguments for the command
 | |
| 		Variant *arg[10] = {
 | |
| 			&cmd.arg[0],
 | |
| 			&cmd.arg[1],
 | |
| 			&cmd.arg[2],
 | |
| 			&cmd.arg[3],
 | |
| 			&cmd.arg[4],
 | |
| 			&cmd.arg[5],
 | |
| 			&cmd.arg[6],
 | |
| 			&cmd.arg[7],
 | |
| 			&cmd.arg[8],
 | |
| 			&cmd.arg[9],
 | |
| 		};
 | |
| 
 | |
| 		// Execute the command (and retrieve any errors)
 | |
| 		this->call(cmd.key, (const Variant **)arg, cmd.args, err);
 | |
| 	}
 | |
| 
 | |
| 	// Clear the pending commands
 | |
| 	pending_commands.clear();
 | |
| }
 | |
| 
 | |
| bool Tween::_set(const StringName &p_name, const Variant &p_value) {
 | |
| 	// Set the correct attribute based on the given name
 | |
| 	String name = p_name;
 | |
| 	if (name == "playback/speed" || name == "speed") { // Backwards compatibility
 | |
| 		set_speed_scale(p_value);
 | |
| 		return true;
 | |
| 
 | |
| 	} else if (name == "playback/active") {
 | |
| 		set_active(p_value);
 | |
| 		return true;
 | |
| 
 | |
| 	} else if (name == "playback/repeat") {
 | |
| 		set_repeat(p_value);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool Tween::_get(const StringName &p_name, Variant &r_ret) const {
 | |
| 	// Get the correct attribute based on the given name
 | |
| 	String name = p_name;
 | |
| 	if (name == "playback/speed") { // Backwards compatibility
 | |
| 		r_ret = speed_scale;
 | |
| 		return true;
 | |
| 
 | |
| 	} else if (name == "playback/active") {
 | |
| 		r_ret = is_active();
 | |
| 		return true;
 | |
| 
 | |
| 	} else if (name == "playback/repeat") {
 | |
| 		r_ret = is_repeat();
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void Tween::_get_property_list(List<PropertyInfo> *p_list) const {
 | |
| 	// Add the property info for the Tween object
 | |
| 	p_list->push_back(PropertyInfo(Variant::BOOL, "playback/active", PROPERTY_HINT_NONE, ""));
 | |
| 	p_list->push_back(PropertyInfo(Variant::BOOL, "playback/repeat", PROPERTY_HINT_NONE, ""));
 | |
| 	p_list->push_back(PropertyInfo(Variant::FLOAT, "playback/speed", PROPERTY_HINT_RANGE, "-64,64,0.01"));
 | |
| }
 | |
| 
 | |
| void Tween::_notification(int p_what) {
 | |
| 	// What notification did we receive?
 | |
| 	switch (p_what) {
 | |
| 		case NOTIFICATION_ENTER_TREE: {
 | |
| 			// Are we not already active?
 | |
| 			if (!is_active()) {
 | |
| 				// Make sure that a previous process state was not saved
 | |
| 				// Only process if "processing" is set
 | |
| 				set_physics_process_internal(false);
 | |
| 				set_process_internal(false);
 | |
| 			}
 | |
| 		} break;
 | |
| 
 | |
| 		case NOTIFICATION_READY: {
 | |
| 			// Do nothing
 | |
| 		} break;
 | |
| 
 | |
| 		case NOTIFICATION_INTERNAL_PROCESS: {
 | |
| 			// Are we processing during physics time?
 | |
| 			if (tween_process_mode == TWEEN_PROCESS_PHYSICS) {
 | |
| 				// Do nothing since we aren't aligned with physics when we should be
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			// Should we update?
 | |
| 			if (is_active()) {
 | |
| 				// Update the tweens
 | |
| 				_tween_process(get_process_delta_time());
 | |
| 			}
 | |
| 		} break;
 | |
| 
 | |
| 		case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
 | |
| 			// Are we processing during 'regular' time?
 | |
| 			if (tween_process_mode == TWEEN_PROCESS_IDLE) {
 | |
| 				// Do nothing since we would only process during idle time
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			// Should we update?
 | |
| 			if (is_active()) {
 | |
| 				// Update the tweens
 | |
| 				_tween_process(get_physics_process_delta_time());
 | |
| 			}
 | |
| 		} break;
 | |
| 
 | |
| 		case NOTIFICATION_EXIT_TREE: {
 | |
| 			// We've left the tree. Stop all tweens
 | |
| 			stop_all();
 | |
| 		} break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Tween::_bind_methods() {
 | |
| 	// Bind getters and setters
 | |
| 	ClassDB::bind_method(D_METHOD("is_active"), &Tween::is_active);
 | |
| 	ClassDB::bind_method(D_METHOD("set_active", "active"), &Tween::set_active);
 | |
| 
 | |
| 	ClassDB::bind_method(D_METHOD("is_repeat"), &Tween::is_repeat);
 | |
| 	ClassDB::bind_method(D_METHOD("set_repeat", "repeat"), &Tween::set_repeat);
 | |
| 
 | |
| 	ClassDB::bind_method(D_METHOD("set_speed_scale", "speed"), &Tween::set_speed_scale);
 | |
| 	ClassDB::bind_method(D_METHOD("get_speed_scale"), &Tween::get_speed_scale);
 | |
| 
 | |
| 	ClassDB::bind_method(D_METHOD("set_tween_process_mode", "mode"), &Tween::set_tween_process_mode);
 | |
| 	ClassDB::bind_method(D_METHOD("get_tween_process_mode"), &Tween::get_tween_process_mode);
 | |
| 
 | |
| 	// Bind the various Tween control methods
 | |
| 	ClassDB::bind_method(D_METHOD("start"), &Tween::start);
 | |
| 	ClassDB::bind_method(D_METHOD("reset", "object", "key"), &Tween::reset, DEFVAL(""));
 | |
| 	ClassDB::bind_method(D_METHOD("reset_all"), &Tween::reset_all);
 | |
| 	ClassDB::bind_method(D_METHOD("stop", "object", "key"), &Tween::stop, DEFVAL(""));
 | |
| 	ClassDB::bind_method(D_METHOD("stop_all"), &Tween::stop_all);
 | |
| 	ClassDB::bind_method(D_METHOD("resume", "object", "key"), &Tween::resume, DEFVAL(""));
 | |
| 	ClassDB::bind_method(D_METHOD("resume_all"), &Tween::resume_all);
 | |
| 	ClassDB::bind_method(D_METHOD("remove", "object", "key"), &Tween::remove, DEFVAL(""));
 | |
| 	ClassDB::bind_method(D_METHOD("_remove_by_uid", "uid"), &Tween::_remove_by_uid);
 | |
| 	ClassDB::bind_method(D_METHOD("remove_all"), &Tween::remove_all);
 | |
| 	ClassDB::bind_method(D_METHOD("seek", "time"), &Tween::seek);
 | |
| 	ClassDB::bind_method(D_METHOD("tell"), &Tween::tell);
 | |
| 	ClassDB::bind_method(D_METHOD("get_runtime"), &Tween::get_runtime);
 | |
| 
 | |
| 	// Bind interpolation and follow methods
 | |
| 	ClassDB::bind_method(D_METHOD("interpolate_property", "object", "property", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
 | |
| 	ClassDB::bind_method(D_METHOD("interpolate_method", "object", "method", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
 | |
| 	ClassDB::bind_method(D_METHOD("interpolate_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
 | |
| 	ClassDB::bind_method(D_METHOD("interpolate_deferred_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_deferred_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
 | |
| 	ClassDB::bind_method(D_METHOD("follow_property", "object", "property", "initial_val", "target", "target_property", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
 | |
| 	ClassDB::bind_method(D_METHOD("follow_method", "object", "method", "initial_val", "target", "target_method", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
 | |
| 	ClassDB::bind_method(D_METHOD("targeting_property", "object", "property", "initial", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
 | |
| 	ClassDB::bind_method(D_METHOD("targeting_method", "object", "method", "initial", "initial_method", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
 | |
| 
 | |
| 	// Add the Tween signals
 | |
| 	ADD_SIGNAL(MethodInfo("tween_started", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key")));
 | |
| 	ADD_SIGNAL(MethodInfo("tween_step", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key"), PropertyInfo(Variant::FLOAT, "elapsed"), PropertyInfo(Variant::OBJECT, "value")));
 | |
| 	ADD_SIGNAL(MethodInfo("tween_completed", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key")));
 | |
| 	ADD_SIGNAL(MethodInfo("tween_all_completed"));
 | |
| 
 | |
| 	// Add the properties and tie them to the getters and setters
 | |
| 	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "repeat"), "set_repeat", "is_repeat");
 | |
| 	ADD_PROPERTY(PropertyInfo(Variant::INT, "playback_process_mode", PROPERTY_HINT_ENUM, "Physics,Idle"), "set_tween_process_mode", "get_tween_process_mode");
 | |
| 	ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "playback_speed", PROPERTY_HINT_RANGE, "-64,64,0.01"), "set_speed_scale", "get_speed_scale");
 | |
| 
 | |
| 	// Bind Idle vs Physics process
 | |
| 	BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS);
 | |
| 	BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE);
 | |
| 
 | |
| 	// Bind the Transition type constants
 | |
| 	BIND_ENUM_CONSTANT(TRANS_LINEAR);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_SINE);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_QUINT);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_QUART);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_QUAD);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_EXPO);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_ELASTIC);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_CUBIC);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_CIRC);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_BOUNCE);
 | |
| 	BIND_ENUM_CONSTANT(TRANS_BACK);
 | |
| 
 | |
| 	// Bind the easing constants
 | |
| 	BIND_ENUM_CONSTANT(EASE_IN);
 | |
| 	BIND_ENUM_CONSTANT(EASE_OUT);
 | |
| 	BIND_ENUM_CONSTANT(EASE_IN_OUT);
 | |
| 	BIND_ENUM_CONSTANT(EASE_OUT_IN);
 | |
| }
 | |
| 
 | |
| Variant Tween::_get_initial_val(const InterpolateData &p_data) const {
 | |
| 	// What type of data are we interpolating?
 | |
| 	switch (p_data.type) {
 | |
| 		case INTER_PROPERTY:
 | |
| 		case INTER_METHOD:
 | |
| 		case FOLLOW_PROPERTY:
 | |
| 		case FOLLOW_METHOD:
 | |
| 			// Simply use the given initial value
 | |
| 			return p_data.initial_val;
 | |
| 
 | |
| 		case TARGETING_PROPERTY:
 | |
| 		case TARGETING_METHOD: {
 | |
| 			// Get the object that is being targeted
 | |
| 			Object *object = ObjectDB::get_instance(p_data.target_id);
 | |
| 			ERR_FAIL_COND_V(object == nullptr, p_data.initial_val);
 | |
| 
 | |
| 			// Are we targeting a property or a method?
 | |
| 			Variant initial_val;
 | |
| 			if (p_data.type == TARGETING_PROPERTY) {
 | |
| 				// Get the property from the target object
 | |
| 				bool valid = false;
 | |
| 				initial_val = object->get_indexed(p_data.target_key, &valid);
 | |
| 				ERR_FAIL_COND_V(!valid, p_data.initial_val);
 | |
| 			} else {
 | |
| 				// Call the method and get the initial value from it
 | |
| 				Callable::CallError error;
 | |
| 				initial_val = object->call(p_data.target_key[0], nullptr, 0, error);
 | |
| 				ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
 | |
| 			}
 | |
| 			return initial_val;
 | |
| 		}
 | |
| 
 | |
| 		case INTER_CALLBACK:
 | |
| 			// Callback does not have a special initial value
 | |
| 			break;
 | |
| 	}
 | |
| 	// If we've made it here, just return the delta value as the initial value
 | |
| 	return p_data.delta_val;
 | |
| }
 | |
| 
 | |
| Variant Tween::_get_final_val(const InterpolateData &p_data) const {
 | |
| 	switch (p_data.type) {
 | |
| 		case FOLLOW_PROPERTY:
 | |
| 		case FOLLOW_METHOD: {
 | |
| 			// Get the object that is being followed
 | |
| 			Object *target = ObjectDB::get_instance(p_data.target_id);
 | |
| 			ERR_FAIL_COND_V(target == nullptr, p_data.initial_val);
 | |
| 
 | |
| 			// We want to figure out the final value
 | |
| 			Variant final_val;
 | |
| 			if (p_data.type == FOLLOW_PROPERTY) {
 | |
| 				// Read the property as-is
 | |
| 				bool valid = false;
 | |
| 				final_val = target->get_indexed(p_data.target_key, &valid);
 | |
| 				ERR_FAIL_COND_V(!valid, p_data.initial_val);
 | |
| 			} else {
 | |
| 				// We're looking at a method. Call the method on the target object
 | |
| 				Callable::CallError error;
 | |
| 				final_val = target->call(p_data.target_key[0], nullptr, 0, error);
 | |
| 				ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
 | |
| 			}
 | |
| 
 | |
| 			// If we're looking at an INT value, instead convert it to a FLOAT
 | |
| 			// This is better for interpolation
 | |
| 			if (final_val.get_type() == Variant::INT) {
 | |
| 				final_val = final_val.operator real_t();
 | |
| 			}
 | |
| 
 | |
| 			return final_val;
 | |
| 		}
 | |
| 		default: {
 | |
| 			// If we're not following a final value/method, use the final value from the data
 | |
| 			return p_data.final_val;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Variant &Tween::_get_delta_val(InterpolateData &p_data) {
 | |
| 	// What kind of data are we interpolating?
 | |
| 	switch (p_data.type) {
 | |
| 		case INTER_PROPERTY:
 | |
| 		case INTER_METHOD:
 | |
| 			// Simply return the given delta value
 | |
| 			return p_data.delta_val;
 | |
| 
 | |
| 		case FOLLOW_PROPERTY:
 | |
| 		case FOLLOW_METHOD: {
 | |
| 			// We're following an object, so grab that instance
 | |
| 			Object *target = ObjectDB::get_instance(p_data.target_id);
 | |
| 			ERR_FAIL_COND_V(target == nullptr, p_data.initial_val);
 | |
| 
 | |
| 			// We want to figure out the final value
 | |
| 			Variant final_val;
 | |
| 			if (p_data.type == FOLLOW_PROPERTY) {
 | |
| 				// Read the property as-is
 | |
| 				bool valid = false;
 | |
| 				final_val = target->get_indexed(p_data.target_key, &valid);
 | |
| 				ERR_FAIL_COND_V(!valid, p_data.initial_val);
 | |
| 			} else {
 | |
| 				// We're looking at a method. Call the method on the target object
 | |
| 				Callable::CallError error;
 | |
| 				final_val = target->call(p_data.target_key[0], nullptr, 0, error);
 | |
| 				ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
 | |
| 			}
 | |
| 
 | |
| 			// If we're looking at an INT value, instead convert it to a FLOAT
 | |
| 			// This is better for interpolation
 | |
| 			if (final_val.get_type() == Variant::INT) {
 | |
| 				final_val = final_val.operator real_t();
 | |
| 			}
 | |
| 
 | |
| 			// Calculate the delta based on the initial value and the final value
 | |
| 			_calc_delta_val(p_data.initial_val, final_val, p_data.delta_val);
 | |
| 			return p_data.delta_val;
 | |
| 		}
 | |
| 
 | |
| 		case TARGETING_PROPERTY:
 | |
| 		case TARGETING_METHOD: {
 | |
| 			// Grab the initial value from the data to calculate delta
 | |
| 			Variant initial_val = _get_initial_val(p_data);
 | |
| 
 | |
| 			// If we're looking at an INT value, instead convert it to a FLOAT
 | |
| 			// This is better for interpolation
 | |
| 			if (initial_val.get_type() == Variant::INT) {
 | |
| 				initial_val = initial_val.operator real_t();
 | |
| 			}
 | |
| 
 | |
| 			// Calculate the delta based on the initial value and the final value
 | |
| 			_calc_delta_val(initial_val, p_data.final_val, p_data.delta_val);
 | |
| 			return p_data.delta_val;
 | |
| 		}
 | |
| 
 | |
| 		case INTER_CALLBACK:
 | |
| 			// Callbacks have no special delta
 | |
| 			break;
 | |
| 	}
 | |
| 	// If we've made it here, use the initial value as the delta
 | |
| 	return p_data.initial_val;
 | |
| }
 | |
| 
 | |
| Variant Tween::_run_equation(InterpolateData &p_data) {
 | |
| 	// Get the initial and delta values from the data
 | |
| 	Variant initial_val = _get_initial_val(p_data);
 | |
| 	Variant &delta_val = _get_delta_val(p_data);
 | |
| 	Variant result;
 | |
| 
 | |
| #define APPLY_EQUATION(element) \
 | |
| 	r.element = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, i.element, d.element, p_data.duration);
 | |
| 
 | |
| 	// What type of data are we interpolating?
 | |
| 	switch (initial_val.get_type()) {
 | |
| 		case Variant::BOOL:
 | |
| 			// Run the boolean specific equation (checking if it is at least 0.5)
 | |
| 			result = (_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, initial_val, delta_val, p_data.duration)) >= 0.5;
 | |
| 			break;
 | |
| 
 | |
| 		case Variant::INT:
 | |
| 			// Run the integer specific equation
 | |
| 			result = (int)_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (int)initial_val, (int)delta_val, p_data.duration);
 | |
| 			break;
 | |
| 
 | |
| 		case Variant::FLOAT:
 | |
| 			// Run the FLOAT specific equation
 | |
| 			result = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (real_t)initial_val, (real_t)delta_val, p_data.duration);
 | |
| 			break;
 | |
| 
 | |
| 		case Variant::VECTOR2: {
 | |
| 			// Get vectors for initial and delta values
 | |
| 			Vector2 i = initial_val;
 | |
| 			Vector2 d = delta_val;
 | |
| 			Vector2 r;
 | |
| 
 | |
| 			// Execute the equation and mutate the r vector
 | |
| 			// This uses the custom APPLY_EQUATION macro defined above
 | |
| 			APPLY_EQUATION(x);
 | |
| 			APPLY_EQUATION(y);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::RECT2: {
 | |
| 			// Get the Rect2 for initial and delta value
 | |
| 			Rect2 i = initial_val;
 | |
| 			Rect2 d = delta_val;
 | |
| 			Rect2 r;
 | |
| 
 | |
| 			// Execute the equation for the position and size of Rect2
 | |
| 			APPLY_EQUATION(position.x);
 | |
| 			APPLY_EQUATION(position.y);
 | |
| 			APPLY_EQUATION(size.x);
 | |
| 			APPLY_EQUATION(size.y);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::VECTOR3: {
 | |
| 			// Get vectors for initial and delta values
 | |
| 			Vector3 i = initial_val;
 | |
| 			Vector3 d = delta_val;
 | |
| 			Vector3 r;
 | |
| 
 | |
| 			// Execute the equation and mutate the r vector
 | |
| 			// This uses the custom APPLY_EQUATION macro defined above
 | |
| 			APPLY_EQUATION(x);
 | |
| 			APPLY_EQUATION(y);
 | |
| 			APPLY_EQUATION(z);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::TRANSFORM2D: {
 | |
| 			// Get the transforms for initial and delta values
 | |
| 			Transform2D i = initial_val;
 | |
| 			Transform2D d = delta_val;
 | |
| 			Transform2D r;
 | |
| 
 | |
| 			// Execute the equation on the transforms and mutate the r transform
 | |
| 			// This uses the custom APPLY_EQUATION macro defined above
 | |
| 			APPLY_EQUATION(elements[0][0]);
 | |
| 			APPLY_EQUATION(elements[0][1]);
 | |
| 			APPLY_EQUATION(elements[1][0]);
 | |
| 			APPLY_EQUATION(elements[1][1]);
 | |
| 			APPLY_EQUATION(elements[2][0]);
 | |
| 			APPLY_EQUATION(elements[2][1]);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::QUAT: {
 | |
| 			// Get the quaternian for the initial and delta values
 | |
| 			Quat i = initial_val;
 | |
| 			Quat d = delta_val;
 | |
| 			Quat r;
 | |
| 
 | |
| 			// Execute the equation on the quaternian values and mutate the r quaternian
 | |
| 			// This uses the custom APPLY_EQUATION macro defined above
 | |
| 			APPLY_EQUATION(x);
 | |
| 			APPLY_EQUATION(y);
 | |
| 			APPLY_EQUATION(z);
 | |
| 			APPLY_EQUATION(w);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::AABB: {
 | |
| 			// Get the AABB's for the initial and delta values
 | |
| 			AABB i = initial_val;
 | |
| 			AABB d = delta_val;
 | |
| 			AABB r;
 | |
| 
 | |
| 			// Execute the equation for the position and size of the AABB's and mutate the r AABB
 | |
| 			// This uses the custom APPLY_EQUATION macro defined above
 | |
| 			APPLY_EQUATION(position.x);
 | |
| 			APPLY_EQUATION(position.y);
 | |
| 			APPLY_EQUATION(position.z);
 | |
| 			APPLY_EQUATION(size.x);
 | |
| 			APPLY_EQUATION(size.y);
 | |
| 			APPLY_EQUATION(size.z);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::BASIS: {
 | |
| 			// Get the basis for initial and delta values
 | |
| 			Basis i = initial_val;
 | |
| 			Basis d = delta_val;
 | |
| 			Basis r;
 | |
| 
 | |
| 			// Execute the equation on all the basis and mutate the r basis
 | |
| 			// This uses the custom APPLY_EQUATION macro defined above
 | |
| 			APPLY_EQUATION(elements[0][0]);
 | |
| 			APPLY_EQUATION(elements[0][1]);
 | |
| 			APPLY_EQUATION(elements[0][2]);
 | |
| 			APPLY_EQUATION(elements[1][0]);
 | |
| 			APPLY_EQUATION(elements[1][1]);
 | |
| 			APPLY_EQUATION(elements[1][2]);
 | |
| 			APPLY_EQUATION(elements[2][0]);
 | |
| 			APPLY_EQUATION(elements[2][1]);
 | |
| 			APPLY_EQUATION(elements[2][2]);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::TRANSFORM: {
 | |
| 			// Get the transforms for the initial and delta values
 | |
| 			Transform i = initial_val;
 | |
| 			Transform d = delta_val;
 | |
| 			Transform r;
 | |
| 
 | |
| 			// Execute the equation for each of the transforms and their origin and mutate the r transform
 | |
| 			// This uses the custom APPLY_EQUATION macro defined above
 | |
| 			APPLY_EQUATION(basis.elements[0][0]);
 | |
| 			APPLY_EQUATION(basis.elements[0][1]);
 | |
| 			APPLY_EQUATION(basis.elements[0][2]);
 | |
| 			APPLY_EQUATION(basis.elements[1][0]);
 | |
| 			APPLY_EQUATION(basis.elements[1][1]);
 | |
| 			APPLY_EQUATION(basis.elements[1][2]);
 | |
| 			APPLY_EQUATION(basis.elements[2][0]);
 | |
| 			APPLY_EQUATION(basis.elements[2][1]);
 | |
| 			APPLY_EQUATION(basis.elements[2][2]);
 | |
| 			APPLY_EQUATION(origin.x);
 | |
| 			APPLY_EQUATION(origin.y);
 | |
| 			APPLY_EQUATION(origin.z);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::COLOR: {
 | |
| 			// Get the Color for initial and delta value
 | |
| 			Color i = initial_val;
 | |
| 			Color d = delta_val;
 | |
| 			Color r;
 | |
| 
 | |
| 			// Apply the equation on the Color RGBA, and mutate the r color
 | |
| 			// This uses the custom APPLY_EQUATION macro defined above
 | |
| 			APPLY_EQUATION(r);
 | |
| 			APPLY_EQUATION(g);
 | |
| 			APPLY_EQUATION(b);
 | |
| 			APPLY_EQUATION(a);
 | |
| 			result = r;
 | |
| 		} break;
 | |
| 
 | |
| 		default: {
 | |
| 			// If unknown, just return the initial value
 | |
| 			result = initial_val;
 | |
| 		} break;
 | |
| 	};
 | |
| #undef APPLY_EQUATION
 | |
| 	// Return the result that was computed
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| bool Tween::_apply_tween_value(InterpolateData &p_data, Variant &value) {
 | |
| 	// Get the object we want to apply the new value to
 | |
| 	Object *object = ObjectDB::get_instance(p_data.id);
 | |
| 	ERR_FAIL_COND_V(object == nullptr, false);
 | |
| 
 | |
| 	// What kind of data are we mutating?
 | |
| 	switch (p_data.type) {
 | |
| 		case INTER_PROPERTY:
 | |
| 		case FOLLOW_PROPERTY:
 | |
| 		case TARGETING_PROPERTY: {
 | |
| 			// Simply set the property on the object
 | |
| 			bool valid = false;
 | |
| 			object->set_indexed(p_data.key, value, &valid);
 | |
| 			return valid;
 | |
| 		}
 | |
| 
 | |
| 		case INTER_METHOD:
 | |
| 		case FOLLOW_METHOD:
 | |
| 		case TARGETING_METHOD: {
 | |
| 			// We want to call the method on the target object
 | |
| 			Callable::CallError error;
 | |
| 
 | |
| 			// Do we have a non-nil value passed in?
 | |
| 			if (value.get_type() != Variant::NIL) {
 | |
| 				// Pass it as an argument to the function call
 | |
| 				Variant *arg[1] = { &value };
 | |
| 				object->call(p_data.key[0], (const Variant **)arg, 1, error);
 | |
| 			} else {
 | |
| 				// Don't pass any argument
 | |
| 				object->call(p_data.key[0], nullptr, 0, error);
 | |
| 			}
 | |
| 
 | |
| 			// Did we get an error from the function call?
 | |
| 			return error.error == Callable::CallError::CALL_OK;
 | |
| 		}
 | |
| 
 | |
| 		case INTER_CALLBACK:
 | |
| 			// Nothing to apply for a callback
 | |
| 			break;
 | |
| 	};
 | |
| 	// No issues found!
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void Tween::_tween_process(float p_delta) {
 | |
| 	// Process all of the pending commands
 | |
| 	_process_pending_commands();
 | |
| 
 | |
| 	// If the scale is 0, make no progress on the tweens
 | |
| 	if (speed_scale == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Update the delta and whether we are pending an update
 | |
| 	p_delta *= speed_scale;
 | |
| 	pending_update++;
 | |
| 
 | |
| 	// Are we repeating the interpolations?
 | |
| 	if (repeat) {
 | |
| 		// For each interpolation...
 | |
| 		bool repeats_finished = true;
 | |
| 		for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 			// Get the data from it
 | |
| 			InterpolateData &data = E->get();
 | |
| 
 | |
| 			// Is not finished?
 | |
| 			if (!data.finish) {
 | |
| 				// We aren't finished yet, no need to check the rest
 | |
| 				repeats_finished = false;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// If we are all finished, we can reset all of the tweens
 | |
| 		if (repeats_finished) {
 | |
| 			reset_all();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Are all of the tweens complete?
 | |
| 	int any_unfinished = 0;
 | |
| 
 | |
| 	// For each tween we wish to interpolate...
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Get the data from it
 | |
| 		InterpolateData &data = E->get();
 | |
| 
 | |
| 		// Is the data not active or already finished? No need to go any further
 | |
| 		if (!data.active || data.finish) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// Track if we hit one that isn't finished yet
 | |
| 		any_unfinished++;
 | |
| 
 | |
| 		// Get the target object for this interpolation
 | |
| 		Object *object = ObjectDB::get_instance(data.id);
 | |
| 		if (object == nullptr) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// Are we still delaying this tween?
 | |
| 		bool prev_delaying = data.elapsed <= data.delay;
 | |
| 		data.elapsed += p_delta;
 | |
| 		if (data.elapsed < data.delay) {
 | |
| 			continue;
 | |
| 		} else if (prev_delaying) {
 | |
| 			// We can apply the tween's value to the data and emit that the tween has started
 | |
| 			_apply_tween_value(data, data.initial_val);
 | |
| 			emit_signal("tween_started", object, NodePath(Vector<StringName>(), data.key, false));
 | |
| 		}
 | |
| 
 | |
| 		// Are we at the end of the tween?
 | |
| 		if (data.elapsed > (data.delay + data.duration)) {
 | |
| 			// Set the elapsed time to the end and mark this one as finished
 | |
| 			data.elapsed = data.delay + data.duration;
 | |
| 			data.finish = true;
 | |
| 		}
 | |
| 
 | |
| 		// Are we interpolating a callback?
 | |
| 		if (data.type == INTER_CALLBACK) {
 | |
| 			// Is the tween completed?
 | |
| 			if (data.finish) {
 | |
| 				// Are we calling this callback deferred or immediately?
 | |
| 				if (data.call_deferred) {
 | |
| 					// Run the deferred function callback, applying the correct number of arguments
 | |
| 					switch (data.args) {
 | |
| 						case 0:
 | |
| 							object->call_deferred(data.key[0]);
 | |
| 							break;
 | |
| 						case 1:
 | |
| 							object->call_deferred(data.key[0], data.arg[0]);
 | |
| 							break;
 | |
| 						case 2:
 | |
| 							object->call_deferred(data.key[0], data.arg[0], data.arg[1]);
 | |
| 							break;
 | |
| 						case 3:
 | |
| 							object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2]);
 | |
| 							break;
 | |
| 						case 4:
 | |
| 							object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3]);
 | |
| 							break;
 | |
| 						case 5:
 | |
| 							object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3], data.arg[4]);
 | |
| 							break;
 | |
| 					}
 | |
| 				} else {
 | |
| 					// Call the function directly with the arguments
 | |
| 					Callable::CallError error;
 | |
| 					Variant *arg[5] = {
 | |
| 						&data.arg[0],
 | |
| 						&data.arg[1],
 | |
| 						&data.arg[2],
 | |
| 						&data.arg[3],
 | |
| 						&data.arg[4],
 | |
| 					};
 | |
| 					object->call(data.key[0], (const Variant **)arg, data.args, error);
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			// We can apply the value directly
 | |
| 			Variant result = _run_equation(data);
 | |
| 			_apply_tween_value(data, result);
 | |
| 
 | |
| 			// Emit that the tween has taken a step
 | |
| 			emit_signal("tween_step", object, NodePath(Vector<StringName>(), data.key, false), data.elapsed, result);
 | |
| 		}
 | |
| 
 | |
| 		// Is the tween now finished?
 | |
| 		if (data.finish) {
 | |
| 			// Set it to the final value directly
 | |
| 			Variant final_val = _get_final_val(data);
 | |
| 			_apply_tween_value(data, final_val);
 | |
| 
 | |
| 			// Mark the tween as completed and emit the signal
 | |
| 			data.elapsed = 0;
 | |
| 			emit_signal("tween_completed", object, NodePath(Vector<StringName>(), data.key, false));
 | |
| 
 | |
| 			// If we are not repeating the tween, remove it
 | |
| 			if (!repeat) {
 | |
| 				call_deferred("_remove_by_uid", data.uid);
 | |
| 				any_unfinished--;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	// One less update left to go
 | |
| 	pending_update--;
 | |
| 
 | |
| 	// If all tweens are completed, we no longer need to be active
 | |
| 	if (any_unfinished == 0) {
 | |
| 		set_active(false);
 | |
| 		emit_signal("tween_all_completed");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Tween::set_tween_process_mode(TweenProcessMode p_mode) {
 | |
| 	tween_process_mode = p_mode;
 | |
| }
 | |
| 
 | |
| Tween::TweenProcessMode Tween::get_tween_process_mode() const {
 | |
| 	return tween_process_mode;
 | |
| }
 | |
| 
 | |
| bool Tween::is_active() const {
 | |
| 	return is_processing_internal() || is_physics_processing_internal();
 | |
| }
 | |
| 
 | |
| void Tween::set_active(bool p_active) {
 | |
| 	// Do nothing if it's the same active mode that we currently are
 | |
| 	if (is_active() == p_active) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Depending on physics or idle, set processing
 | |
| 	switch (tween_process_mode) {
 | |
| 		case TWEEN_PROCESS_IDLE:
 | |
| 			set_process_internal(p_active);
 | |
| 			break;
 | |
| 		case TWEEN_PROCESS_PHYSICS:
 | |
| 			set_physics_process_internal(p_active);
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool Tween::is_repeat() const {
 | |
| 	return repeat;
 | |
| }
 | |
| 
 | |
| void Tween::set_repeat(bool p_repeat) {
 | |
| 	repeat = p_repeat;
 | |
| }
 | |
| 
 | |
| void Tween::set_speed_scale(float p_speed) {
 | |
| 	speed_scale = p_speed;
 | |
| }
 | |
| 
 | |
| float Tween::get_speed_scale() const {
 | |
| 	return speed_scale;
 | |
| }
 | |
| 
 | |
| void Tween::start() {
 | |
| 	ERR_FAIL_COND_MSG(!is_inside_tree(), "Tween was not added to the SceneTree!");
 | |
| 
 | |
| 	// Are there any pending updates?
 | |
| 	if (pending_update != 0) {
 | |
| 		// Start the tweens after deferring
 | |
| 		call_deferred("start");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// We want to be activated
 | |
| 	set_active(true);
 | |
| }
 | |
| 
 | |
| void Tween::reset(Object *p_object, StringName p_key) {
 | |
| 	// Find all interpolations that use the same object and target string
 | |
| 	pending_update++;
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Get the target object
 | |
| 		InterpolateData &data = E->get();
 | |
| 		Object *object = ObjectDB::get_instance(data.id);
 | |
| 		if (object == nullptr) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// Do we have the correct object and key?
 | |
| 		if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
 | |
| 			// Reset the tween to the initial state
 | |
| 			data.elapsed = 0;
 | |
| 			data.finish = false;
 | |
| 
 | |
| 			// Also apply the initial state if there isn't a delay
 | |
| 			if (data.delay == 0) {
 | |
| 				_apply_tween_value(data, data.initial_val);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	pending_update--;
 | |
| }
 | |
| 
 | |
| void Tween::reset_all() {
 | |
| 	// Go through all interpolations
 | |
| 	pending_update++;
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Get the target data and set it back to the initial state
 | |
| 		InterpolateData &data = E->get();
 | |
| 		data.elapsed = 0;
 | |
| 		data.finish = false;
 | |
| 
 | |
| 		// If there isn't a delay, apply the value to the object
 | |
| 		if (data.delay == 0) {
 | |
| 			_apply_tween_value(data, data.initial_val);
 | |
| 		}
 | |
| 	}
 | |
| 	pending_update--;
 | |
| }
 | |
| 
 | |
| void Tween::stop(Object *p_object, StringName p_key) {
 | |
| 	// Find the tween that has the given target object and string key
 | |
| 	pending_update++;
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Get the object the tween is targeting
 | |
| 		InterpolateData &data = E->get();
 | |
| 		Object *object = ObjectDB::get_instance(data.id);
 | |
| 		if (object == nullptr) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// Is this the correct object and does it have the given key?
 | |
| 		if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
 | |
| 			// Disable the tween
 | |
| 			data.active = false;
 | |
| 		}
 | |
| 	}
 | |
| 	pending_update--;
 | |
| }
 | |
| 
 | |
| void Tween::stop_all() {
 | |
| 	// We no longer need to be active since all tweens have been stopped
 | |
| 	set_active(false);
 | |
| 
 | |
| 	// For each interpolation...
 | |
| 	pending_update++;
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Simply set it inactive
 | |
| 		InterpolateData &data = E->get();
 | |
| 		data.active = false;
 | |
| 	}
 | |
| 	pending_update--;
 | |
| }
 | |
| 
 | |
| void Tween::resume(Object *p_object, StringName p_key) {
 | |
| 	// We need to be activated
 | |
| 	// TODO: What if no tween is found??
 | |
| 	set_active(true);
 | |
| 
 | |
| 	// Find the tween that uses the given target object and string key
 | |
| 	pending_update++;
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Grab the object
 | |
| 		InterpolateData &data = E->get();
 | |
| 		Object *object = ObjectDB::get_instance(data.id);
 | |
| 		if (object == nullptr) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// If the object and string key match, activate it
 | |
| 		if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
 | |
| 			data.active = true;
 | |
| 		}
 | |
| 	}
 | |
| 	pending_update--;
 | |
| }
 | |
| 
 | |
| void Tween::resume_all() {
 | |
| 	// Set ourselves active so we can process tweens
 | |
| 	// TODO: What if there are no tweens? We get set to active for no reason!
 | |
| 	set_active(true);
 | |
| 
 | |
| 	// For each interpolation...
 | |
| 	pending_update++;
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Simply grab it and set it to active
 | |
| 		InterpolateData &data = E->get();
 | |
| 		data.active = true;
 | |
| 	}
 | |
| 	pending_update--;
 | |
| }
 | |
| 
 | |
| void Tween::remove(Object *p_object, StringName p_key) {
 | |
| 	// If we are still updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		call_deferred("remove", p_object, p_key);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// For each interpolation...
 | |
| 	List<List<InterpolateData>::Element *> for_removal;
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Get the target object
 | |
| 		InterpolateData &data = E->get();
 | |
| 		Object *object = ObjectDB::get_instance(data.id);
 | |
| 		if (object == nullptr) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// If the target object and string key match, queue it for removal
 | |
| 		if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
 | |
| 			for_removal.push_back(E);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// For each interpolation we wish to remove...
 | |
| 	for (List<List<InterpolateData>::Element *>::Element *E = for_removal.front(); E; E = E->next()) {
 | |
| 		// Erase it
 | |
| 		interpolates.erase(E->get());
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Tween::_remove_by_uid(int uid) {
 | |
| 	// If we are still updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		call_deferred("_remove_by_uid", uid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Find the interpolation that matches the given UID
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		if (uid == E->get().uid) {
 | |
| 			// It matches, erase it and stop looking
 | |
| 			E->erase();
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Tween::_push_interpolate_data(InterpolateData &p_data) {
 | |
| 	pending_update++;
 | |
| 
 | |
| 	// Add the new interpolation
 | |
| 	p_data.uid = ++uid;
 | |
| 	interpolates.push_back(p_data);
 | |
| 
 | |
| 	pending_update--;
 | |
| }
 | |
| 
 | |
| void Tween::remove_all() {
 | |
| 	// If we are still updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		call_deferred("remove_all");
 | |
| 		return;
 | |
| 	}
 | |
| 	// We no longer need to be active
 | |
| 	set_active(false);
 | |
| 
 | |
| 	// Clear out all interpolations and reset the uid
 | |
| 	interpolates.clear();
 | |
| 	uid = 0;
 | |
| }
 | |
| 
 | |
| void Tween::seek(real_t p_time) {
 | |
| 	// Go through each interpolation...
 | |
| 	pending_update++;
 | |
| 	for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Get the target data
 | |
| 		InterpolateData &data = E->get();
 | |
| 
 | |
| 		// Update the elapsed data to be set to the target time
 | |
| 		data.elapsed = p_time;
 | |
| 
 | |
| 		// Are we at the end?
 | |
| 		if (data.elapsed < data.delay) {
 | |
| 			// There is still time left to go
 | |
| 			data.finish = false;
 | |
| 			continue;
 | |
| 		} else if (data.elapsed >= (data.delay + data.duration)) {
 | |
| 			// We are past the end of it, set the elapsed time to the end and mark as finished
 | |
| 			data.elapsed = (data.delay + data.duration);
 | |
| 			data.finish = true;
 | |
| 		} else {
 | |
| 			// We are not finished with this interpolation yet
 | |
| 			data.finish = false;
 | |
| 		}
 | |
| 
 | |
| 		// If we are a callback, do nothing special
 | |
| 		if (data.type == INTER_CALLBACK) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// Run the equation on the data and apply the value
 | |
| 		Variant result = _run_equation(data);
 | |
| 		_apply_tween_value(data, result);
 | |
| 	}
 | |
| 	pending_update--;
 | |
| }
 | |
| 
 | |
| real_t Tween::tell() const {
 | |
| 	// We want to grab the position of the furthest along tween
 | |
| 	pending_update++;
 | |
| 	real_t pos = 0;
 | |
| 
 | |
| 	// For each interpolation...
 | |
| 	for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Get the data and figure out if it's position is further along than the previous ones
 | |
| 		const InterpolateData &data = E->get();
 | |
| 		if (data.elapsed > pos) {
 | |
| 			// Save it if so
 | |
| 			pos = data.elapsed;
 | |
| 		}
 | |
| 	}
 | |
| 	pending_update--;
 | |
| 	return pos;
 | |
| }
 | |
| 
 | |
| real_t Tween::get_runtime() const {
 | |
| 	// If the tween isn't moving, it'll last forever
 | |
| 	if (speed_scale == 0) {
 | |
| 		return INFINITY;
 | |
| 	}
 | |
| 
 | |
| 	pending_update++;
 | |
| 
 | |
| 	// For each interpolation...
 | |
| 	real_t runtime = 0;
 | |
| 	for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
 | |
| 		// Get the tween data and see if it's runtime is greater than the previous tweens
 | |
| 		const InterpolateData &data = E->get();
 | |
| 		real_t t = data.delay + data.duration;
 | |
| 		if (t > runtime) {
 | |
| 			// This is the longest running tween
 | |
| 			runtime = t;
 | |
| 		}
 | |
| 	}
 | |
| 	pending_update--;
 | |
| 
 | |
| 	// Adjust the runtime for the current speed scale
 | |
| 	return runtime / speed_scale;
 | |
| }
 | |
| 
 | |
| bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final_val, Variant &p_delta_val) {
 | |
| 	// Get the initial, final, and delta values
 | |
| 	const Variant &initial_val = p_initial_val;
 | |
| 	const Variant &final_val = p_final_val;
 | |
| 	Variant &delta_val = p_delta_val;
 | |
| 
 | |
| 	// What kind of data are we interpolating?
 | |
| 	switch (initial_val.get_type()) {
 | |
| 		case Variant::BOOL:
 | |
| 			// We'll treat booleans just like integers
 | |
| 		case Variant::INT:
 | |
| 			// Compute the integer delta
 | |
| 			delta_val = (int)final_val - (int)initial_val;
 | |
| 			break;
 | |
| 
 | |
| 		case Variant::FLOAT:
 | |
| 			// Convert to FLOAT and find the delta
 | |
| 			delta_val = (real_t)final_val - (real_t)initial_val;
 | |
| 			break;
 | |
| 
 | |
| 		case Variant::VECTOR2:
 | |
| 			// Convert to Vectors and find the delta
 | |
| 			delta_val = final_val.operator Vector2() - initial_val.operator Vector2();
 | |
| 			break;
 | |
| 
 | |
| 		case Variant::RECT2: {
 | |
| 			// Build a new Rect2 and use the new position and sizes to make a delta
 | |
| 			Rect2 i = initial_val;
 | |
| 			Rect2 f = final_val;
 | |
| 			delta_val = Rect2(f.position - i.position, f.size - i.size);
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::VECTOR3:
 | |
| 			// Convert to Vectors and find the delta
 | |
| 			delta_val = final_val.operator Vector3() - initial_val.operator Vector3();
 | |
| 			break;
 | |
| 
 | |
| 		case Variant::TRANSFORM2D: {
 | |
| 			// Build a new transform which is the difference between the initial and final values
 | |
| 			Transform2D i = initial_val;
 | |
| 			Transform2D f = final_val;
 | |
| 			Transform2D d = Transform2D();
 | |
| 			d[0][0] = f.elements[0][0] - i.elements[0][0];
 | |
| 			d[0][1] = f.elements[0][1] - i.elements[0][1];
 | |
| 			d[1][0] = f.elements[1][0] - i.elements[1][0];
 | |
| 			d[1][1] = f.elements[1][1] - i.elements[1][1];
 | |
| 			d[2][0] = f.elements[2][0] - i.elements[2][0];
 | |
| 			d[2][1] = f.elements[2][1] - i.elements[2][1];
 | |
| 			delta_val = d;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::QUAT:
 | |
| 			// Convert to quaternianls and find the delta
 | |
| 			delta_val = final_val.operator Quat() - initial_val.operator Quat();
 | |
| 			break;
 | |
| 
 | |
| 		case Variant::AABB: {
 | |
| 			// Build a new AABB and use the new position and sizes to make a delta
 | |
| 			AABB i = initial_val;
 | |
| 			AABB f = final_val;
 | |
| 			delta_val = AABB(f.position - i.position, f.size - i.size);
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::BASIS: {
 | |
| 			// Build a new basis which is the delta between the initial and final values
 | |
| 			Basis i = initial_val;
 | |
| 			Basis f = final_val;
 | |
| 			delta_val = Basis(f.elements[0][0] - i.elements[0][0],
 | |
| 					f.elements[0][1] - i.elements[0][1],
 | |
| 					f.elements[0][2] - i.elements[0][2],
 | |
| 					f.elements[1][0] - i.elements[1][0],
 | |
| 					f.elements[1][1] - i.elements[1][1],
 | |
| 					f.elements[1][2] - i.elements[1][2],
 | |
| 					f.elements[2][0] - i.elements[2][0],
 | |
| 					f.elements[2][1] - i.elements[2][1],
 | |
| 					f.elements[2][2] - i.elements[2][2]);
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::TRANSFORM: {
 | |
| 			// Build a new transform which is the difference between the initial and final values
 | |
| 			Transform i = initial_val;
 | |
| 			Transform f = final_val;
 | |
| 			Transform d;
 | |
| 			d.set(f.basis.elements[0][0] - i.basis.elements[0][0],
 | |
| 					f.basis.elements[0][1] - i.basis.elements[0][1],
 | |
| 					f.basis.elements[0][2] - i.basis.elements[0][2],
 | |
| 					f.basis.elements[1][0] - i.basis.elements[1][0],
 | |
| 					f.basis.elements[1][1] - i.basis.elements[1][1],
 | |
| 					f.basis.elements[1][2] - i.basis.elements[1][2],
 | |
| 					f.basis.elements[2][0] - i.basis.elements[2][0],
 | |
| 					f.basis.elements[2][1] - i.basis.elements[2][1],
 | |
| 					f.basis.elements[2][2] - i.basis.elements[2][2],
 | |
| 					f.origin.x - i.origin.x,
 | |
| 					f.origin.y - i.origin.y,
 | |
| 					f.origin.z - i.origin.z);
 | |
| 
 | |
| 			delta_val = d;
 | |
| 		} break;
 | |
| 
 | |
| 		case Variant::COLOR: {
 | |
| 			// Make a new color which is the difference between each the color's RGBA attributes
 | |
| 			Color i = initial_val;
 | |
| 			Color f = final_val;
 | |
| 			delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a);
 | |
| 		} break;
 | |
| 
 | |
| 		default: {
 | |
| 			static Variant::Type supported_types[] = {
 | |
| 				Variant::BOOL,
 | |
| 				Variant::INT,
 | |
| 				Variant::FLOAT,
 | |
| 				Variant::VECTOR2,
 | |
| 				Variant::RECT2,
 | |
| 				Variant::VECTOR3,
 | |
| 				Variant::TRANSFORM2D,
 | |
| 				Variant::QUAT,
 | |
| 				Variant::AABB,
 | |
| 				Variant::BASIS,
 | |
| 				Variant::TRANSFORM,
 | |
| 				Variant::COLOR,
 | |
| 			};
 | |
| 
 | |
| 			int length = *(&supported_types + 1) - supported_types;
 | |
| 			String error_msg = "Invalid parameter type. Supported types are: ";
 | |
| 			for (int i = 0; i < length; i++) {
 | |
| 				if (i != 0) {
 | |
| 					error_msg += ", ";
 | |
| 				}
 | |
| 				error_msg += Variant::get_type_name(supported_types[i]);
 | |
| 			}
 | |
| 			error_msg += ".";
 | |
| 			ERR_PRINT(error_msg);
 | |
| 			return false;
 | |
| 		}
 | |
| 	};
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void Tween::_build_interpolation(InterpolateType p_interpolation_type, Object *p_object, NodePath *p_property, StringName *p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
 | |
| 	// TODO: Add initialization+implementation for remaining interpolation types
 | |
| 	// TODO: Fix this method's organization to take advantage of the type
 | |
| 
 | |
| 	// Make a new interpolation data
 | |
| 	InterpolateData data;
 | |
| 	data.active = true;
 | |
| 	data.type = p_interpolation_type;
 | |
| 	data.finish = false;
 | |
| 	data.elapsed = 0;
 | |
| 
 | |
| 	// Validate and apply interpolation data
 | |
| 
 | |
| 	// Give it the object
 | |
| 	ERR_FAIL_COND_MSG(p_object == nullptr, "Invalid object provided to Tween.");
 | |
| 	data.id = p_object->get_instance_id();
 | |
| 
 | |
| 	// Validate the initial and final values
 | |
| 	ERR_FAIL_COND_MSG(p_initial_val.get_type() != p_final_val.get_type(), "Initial value type '" + Variant::get_type_name(p_initial_val.get_type()) + "' does not match final value type '" + Variant::get_type_name(p_final_val.get_type()) + "'.");
 | |
| 	data.initial_val = p_initial_val;
 | |
| 	data.final_val = p_final_val;
 | |
| 
 | |
| 	// Check the Duration
 | |
| 	ERR_FAIL_COND_MSG(p_duration < 0, "Only non-negative duration values allowed in Tweens.");
 | |
| 	data.duration = p_duration;
 | |
| 
 | |
| 	// Tween Delay
 | |
| 	ERR_FAIL_COND_MSG(p_delay < 0, "Only non-negative delay values allowed in Tweens.");
 | |
| 	data.delay = p_delay;
 | |
| 
 | |
| 	// Transition type
 | |
| 	ERR_FAIL_COND_MSG(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, "Invalid transition type provided to Tween.");
 | |
| 	data.trans_type = p_trans_type;
 | |
| 
 | |
| 	// Easing type
 | |
| 	ERR_FAIL_COND_MSG(p_ease_type < 0 || p_ease_type >= EASE_COUNT, "Invalid easing type provided to Tween.");
 | |
| 	data.ease_type = p_ease_type;
 | |
| 
 | |
| 	// Is the property defined?
 | |
| 	if (p_property) {
 | |
| 		// Check that the object actually contains the given property
 | |
| 		bool prop_valid = false;
 | |
| 		p_object->get_indexed(p_property->get_subnames(), &prop_valid);
 | |
| 		ERR_FAIL_COND_MSG(!prop_valid, "Tween target object has no property named: " + p_property->get_concatenated_subnames() + ".");
 | |
| 
 | |
| 		data.key = p_property->get_subnames();
 | |
| 		data.concatenated_key = p_property->get_concatenated_subnames();
 | |
| 	}
 | |
| 
 | |
| 	// Is the method defined?
 | |
| 	if (p_method) {
 | |
| 		// Does the object even have the requested method?
 | |
| 		ERR_FAIL_COND_MSG(!p_object->has_method(*p_method), "Tween target object has no method named: " + *p_method + ".");
 | |
| 
 | |
| 		data.key.push_back(*p_method);
 | |
| 		data.concatenated_key = *p_method;
 | |
| 	}
 | |
| 
 | |
| 	// Is there not a valid delta?
 | |
| 	if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Add this interpolation to the total
 | |
| 	_push_interpolate_data(data);
 | |
| }
 | |
| 
 | |
| void Tween::interpolate_property(Object *p_object, NodePath p_property, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
 | |
| 	// If we are busy updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		_add_pending_command("interpolate_property", p_object, p_property, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Get the property from the node path
 | |
| 	p_property = p_property.get_as_property_path();
 | |
| 
 | |
| 	// If no initial value given, grab the initial value from the object
 | |
| 	// TODO: Is this documented? This is very useful and removes a lot of clutter from tweens!
 | |
| 	if (p_initial_val.get_type() == Variant::NIL) {
 | |
| 		p_initial_val = p_object->get_indexed(p_property.get_subnames());
 | |
| 	}
 | |
| 
 | |
| 	// Convert any integers into REALs as they are better for interpolation
 | |
| 	if (p_initial_val.get_type() == Variant::INT) {
 | |
| 		p_initial_val = p_initial_val.operator real_t();
 | |
| 	}
 | |
| 	if (p_final_val.get_type() == Variant::INT) {
 | |
| 		p_final_val = p_final_val.operator real_t();
 | |
| 	}
 | |
| 
 | |
| 	// Build the interpolation data
 | |
| 	_build_interpolation(INTER_PROPERTY, p_object, &p_property, nullptr, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
 | |
| }
 | |
| 
 | |
| void Tween::interpolate_method(Object *p_object, StringName p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
 | |
| 	// If we are busy updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		_add_pending_command("interpolate_method", p_object, p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Convert any integers into REALs as they are better for interpolation
 | |
| 	if (p_initial_val.get_type() == Variant::INT) {
 | |
| 		p_initial_val = p_initial_val.operator real_t();
 | |
| 	}
 | |
| 	if (p_final_val.get_type() == Variant::INT) {
 | |
| 		p_final_val = p_final_val.operator real_t();
 | |
| 	}
 | |
| 
 | |
| 	// Build the interpolation data
 | |
| 	_build_interpolation(INTER_METHOD, p_object, nullptr, &p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
 | |
| }
 | |
| 
 | |
| void Tween::interpolate_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
 | |
| 	// If we are already updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		_add_pending_command("interpolate_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Check that the target object is valid
 | |
| 	ERR_FAIL_COND(p_object == nullptr);
 | |
| 
 | |
| 	// Duration cannot be negative
 | |
| 	ERR_FAIL_COND(p_duration < 0);
 | |
| 
 | |
| 	// Check whether the object even has the callback
 | |
| 	ERR_FAIL_COND_MSG(!p_object->has_method(p_callback), "Object has no callback named: " + p_callback + ".");
 | |
| 
 | |
| 	// Build a new InterpolationData
 | |
| 	InterpolateData data;
 | |
| 	data.active = true;
 | |
| 	data.type = INTER_CALLBACK;
 | |
| 	data.finish = false;
 | |
| 	data.call_deferred = false;
 | |
| 	data.elapsed = 0;
 | |
| 
 | |
| 	// Give the data it's configuration
 | |
| 	data.id = p_object->get_instance_id();
 | |
| 	data.key.push_back(p_callback);
 | |
| 	data.concatenated_key = p_callback;
 | |
| 	data.duration = p_duration;
 | |
| 	data.delay = 0;
 | |
| 
 | |
| 	// Add arguments to the interpolation
 | |
| 	int args = 0;
 | |
| 	if (p_arg5.get_type() != Variant::NIL) {
 | |
| 		args = 5;
 | |
| 	} else if (p_arg4.get_type() != Variant::NIL) {
 | |
| 		args = 4;
 | |
| 	} else if (p_arg3.get_type() != Variant::NIL) {
 | |
| 		args = 3;
 | |
| 	} else if (p_arg2.get_type() != Variant::NIL) {
 | |
| 		args = 2;
 | |
| 	} else if (p_arg1.get_type() != Variant::NIL) {
 | |
| 		args = 1;
 | |
| 	} else {
 | |
| 		args = 0;
 | |
| 	}
 | |
| 
 | |
| 	data.args = args;
 | |
| 	data.arg[0] = p_arg1;
 | |
| 	data.arg[1] = p_arg2;
 | |
| 	data.arg[2] = p_arg3;
 | |
| 	data.arg[3] = p_arg4;
 | |
| 	data.arg[4] = p_arg5;
 | |
| 
 | |
| 	// Add the new interpolation
 | |
| 	_push_interpolate_data(data);
 | |
| }
 | |
| 
 | |
| void Tween::interpolate_deferred_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
 | |
| 	// If we are already updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		_add_pending_command("interpolate_deferred_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Check that the target object is valid
 | |
| 	ERR_FAIL_COND(p_object == nullptr);
 | |
| 
 | |
| 	// No negative durations allowed
 | |
| 	ERR_FAIL_COND(p_duration < 0);
 | |
| 
 | |
| 	// Confirm the callback exists on the object
 | |
| 	ERR_FAIL_COND_MSG(!p_object->has_method(p_callback), "Object has no callback named: " + p_callback + ".");
 | |
| 
 | |
| 	// Create a new InterpolateData for the callback
 | |
| 	InterpolateData data;
 | |
| 	data.active = true;
 | |
| 	data.type = INTER_CALLBACK;
 | |
| 	data.finish = false;
 | |
| 	data.call_deferred = true;
 | |
| 	data.elapsed = 0;
 | |
| 
 | |
| 	// Give the data it's configuration
 | |
| 	data.id = p_object->get_instance_id();
 | |
| 	data.key.push_back(p_callback);
 | |
| 	data.concatenated_key = p_callback;
 | |
| 	data.duration = p_duration;
 | |
| 	data.delay = 0;
 | |
| 
 | |
| 	// Collect arguments for the callback
 | |
| 	int args = 0;
 | |
| 	if (p_arg5.get_type() != Variant::NIL) {
 | |
| 		args = 5;
 | |
| 	} else if (p_arg4.get_type() != Variant::NIL) {
 | |
| 		args = 4;
 | |
| 	} else if (p_arg3.get_type() != Variant::NIL) {
 | |
| 		args = 3;
 | |
| 	} else if (p_arg2.get_type() != Variant::NIL) {
 | |
| 		args = 2;
 | |
| 	} else if (p_arg1.get_type() != Variant::NIL) {
 | |
| 		args = 1;
 | |
| 	} else {
 | |
| 		args = 0;
 | |
| 	}
 | |
| 
 | |
| 	data.args = args;
 | |
| 	data.arg[0] = p_arg1;
 | |
| 	data.arg[1] = p_arg2;
 | |
| 	data.arg[2] = p_arg3;
 | |
| 	data.arg[3] = p_arg4;
 | |
| 	data.arg[4] = p_arg5;
 | |
| 
 | |
| 	// Add the new interpolation
 | |
| 	_push_interpolate_data(data);
 | |
| }
 | |
| 
 | |
| void Tween::follow_property(Object *p_object, NodePath p_property, Variant p_initial_val, Object *p_target, NodePath p_target_property, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
 | |
| 	// If we are already updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		_add_pending_command("follow_property", p_object, p_property, p_initial_val, p_target, p_target_property, p_duration, p_trans_type, p_ease_type, p_delay);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Get the two properties from their paths
 | |
| 	p_property = p_property.get_as_property_path();
 | |
| 	p_target_property = p_target_property.get_as_property_path();
 | |
| 
 | |
| 	// If no initial value is given, grab it from the source object
 | |
| 	// TODO: Is this documented? It's really helpful for decluttering tweens
 | |
| 	if (p_initial_val.get_type() == Variant::NIL) {
 | |
| 		p_initial_val = p_object->get_indexed(p_property.get_subnames());
 | |
| 	}
 | |
| 
 | |
| 	// Convert initial INT values to FLOAT as they are better for interpolation
 | |
| 	if (p_initial_val.get_type() == Variant::INT) {
 | |
| 		p_initial_val = p_initial_val.operator real_t();
 | |
| 	}
 | |
| 
 | |
| 	// Confirm the source and target objects are valid
 | |
| 	ERR_FAIL_COND(p_object == nullptr);
 | |
| 	ERR_FAIL_COND(p_target == nullptr);
 | |
| 
 | |
| 	// No negative durations
 | |
| 	ERR_FAIL_COND(p_duration < 0);
 | |
| 
 | |
| 	// Ensure transition and easing types are valid
 | |
| 	ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
 | |
| 	ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
 | |
| 
 | |
| 	// No negative delays
 | |
| 	ERR_FAIL_COND(p_delay < 0);
 | |
| 
 | |
| 	// Confirm the source and target objects have the desired properties
 | |
| 	bool prop_valid = false;
 | |
| 	p_object->get_indexed(p_property.get_subnames(), &prop_valid);
 | |
| 	ERR_FAIL_COND(!prop_valid);
 | |
| 
 | |
| 	bool target_prop_valid = false;
 | |
| 	Variant target_val = p_target->get_indexed(p_target_property.get_subnames(), &target_prop_valid);
 | |
| 	ERR_FAIL_COND(!target_prop_valid);
 | |
| 
 | |
| 	// Convert target INT to FLOAT since it is better for interpolation
 | |
| 	if (target_val.get_type() == Variant::INT) {
 | |
| 		target_val = target_val.operator real_t();
 | |
| 	}
 | |
| 
 | |
| 	// Verify that the target value and initial value are the same type
 | |
| 	ERR_FAIL_COND(target_val.get_type() != p_initial_val.get_type());
 | |
| 
 | |
| 	// Create a new InterpolateData
 | |
| 	InterpolateData data;
 | |
| 	data.active = true;
 | |
| 	data.type = FOLLOW_PROPERTY;
 | |
| 	data.finish = false;
 | |
| 	data.elapsed = 0;
 | |
| 
 | |
| 	// Give the InterpolateData it's configuration
 | |
| 	data.id = p_object->get_instance_id();
 | |
| 	data.key = p_property.get_subnames();
 | |
| 	data.concatenated_key = p_property.get_concatenated_subnames();
 | |
| 	data.initial_val = p_initial_val;
 | |
| 	data.target_id = p_target->get_instance_id();
 | |
| 	data.target_key = p_target_property.get_subnames();
 | |
| 	data.duration = p_duration;
 | |
| 	data.trans_type = p_trans_type;
 | |
| 	data.ease_type = p_ease_type;
 | |
| 	data.delay = p_delay;
 | |
| 
 | |
| 	// Add the interpolation
 | |
| 	_push_interpolate_data(data);
 | |
| }
 | |
| 
 | |
| void Tween::follow_method(Object *p_object, StringName p_method, Variant p_initial_val, Object *p_target, StringName p_target_method, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
 | |
| 	// If we are currently updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		_add_pending_command("follow_method", p_object, p_method, p_initial_val, p_target, p_target_method, p_duration, p_trans_type, p_ease_type, p_delay);
 | |
| 		return;
 | |
| 	}
 | |
| 	// Convert initial INT values to FLOAT as they are better for interpolation
 | |
| 	if (p_initial_val.get_type() == Variant::INT) {
 | |
| 		p_initial_val = p_initial_val.operator real_t();
 | |
| 	}
 | |
| 
 | |
| 	// Verify the source and target objects are valid
 | |
| 	ERR_FAIL_COND(p_object == nullptr);
 | |
| 	ERR_FAIL_COND(p_target == nullptr);
 | |
| 
 | |
| 	// No negative durations
 | |
| 	ERR_FAIL_COND(p_duration < 0);
 | |
| 
 | |
| 	// Ensure that the transition and ease types are valid
 | |
| 	ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
 | |
| 	ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
 | |
| 
 | |
| 	// No negative delays
 | |
| 	ERR_FAIL_COND(p_delay < 0);
 | |
| 
 | |
| 	// Confirm both objects have the target methods
 | |
| 	ERR_FAIL_COND_MSG(!p_object->has_method(p_method), "Object has no method named: " + p_method + ".");
 | |
| 	ERR_FAIL_COND_MSG(!p_target->has_method(p_target_method), "Target has no method named: " + p_target_method + ".");
 | |
| 
 | |
| 	// Call the method to get the target value
 | |
| 	Callable::CallError error;
 | |
| 	Variant target_val = p_target->call(p_target_method, nullptr, 0, error);
 | |
| 	ERR_FAIL_COND(error.error != Callable::CallError::CALL_OK);
 | |
| 
 | |
| 	// Convert target INT values to FLOAT as they are better for interpolation
 | |
| 	if (target_val.get_type() == Variant::INT) {
 | |
| 		target_val = target_val.operator real_t();
 | |
| 	}
 | |
| 	ERR_FAIL_COND(target_val.get_type() != p_initial_val.get_type());
 | |
| 
 | |
| 	// Make the new InterpolateData for the method follow
 | |
| 	InterpolateData data;
 | |
| 	data.active = true;
 | |
| 	data.type = FOLLOW_METHOD;
 | |
| 	data.finish = false;
 | |
| 	data.elapsed = 0;
 | |
| 
 | |
| 	// Give the data it's configuration
 | |
| 	data.id = p_object->get_instance_id();
 | |
| 	data.key.push_back(p_method);
 | |
| 	data.concatenated_key = p_method;
 | |
| 	data.initial_val = p_initial_val;
 | |
| 	data.target_id = p_target->get_instance_id();
 | |
| 	data.target_key.push_back(p_target_method);
 | |
| 	data.duration = p_duration;
 | |
| 	data.trans_type = p_trans_type;
 | |
| 	data.ease_type = p_ease_type;
 | |
| 	data.delay = p_delay;
 | |
| 
 | |
| 	// Add the new interpolation
 | |
| 	_push_interpolate_data(data);
 | |
| }
 | |
| 
 | |
| void Tween::targeting_property(Object *p_object, NodePath p_property, Object *p_initial, NodePath p_initial_property, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
 | |
| 	// If we are currently updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		_add_pending_command("targeting_property", p_object, p_property, p_initial, p_initial_property, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
 | |
| 		return;
 | |
| 	}
 | |
| 	// Grab the target property and the target property
 | |
| 	p_property = p_property.get_as_property_path();
 | |
| 	p_initial_property = p_initial_property.get_as_property_path();
 | |
| 
 | |
| 	// Convert the initial INT values to FLOAT as they are better for Interpolation
 | |
| 	if (p_final_val.get_type() == Variant::INT) {
 | |
| 		p_final_val = p_final_val.operator real_t();
 | |
| 	}
 | |
| 
 | |
| 	// Verify both objects are valid
 | |
| 	ERR_FAIL_COND(p_object == nullptr);
 | |
| 	ERR_FAIL_COND(p_initial == nullptr);
 | |
| 
 | |
| 	// No negative durations
 | |
| 	ERR_FAIL_COND(p_duration < 0);
 | |
| 
 | |
| 	// Ensure transition and easing types are valid
 | |
| 	ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
 | |
| 	ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
 | |
| 
 | |
| 	// No negative delays
 | |
| 	ERR_FAIL_COND(p_delay < 0);
 | |
| 
 | |
| 	// Ensure the initial and target properties exist on their objects
 | |
| 	bool prop_valid = false;
 | |
| 	p_object->get_indexed(p_property.get_subnames(), &prop_valid);
 | |
| 	ERR_FAIL_COND(!prop_valid);
 | |
| 
 | |
| 	bool initial_prop_valid = false;
 | |
| 	Variant initial_val = p_initial->get_indexed(p_initial_property.get_subnames(), &initial_prop_valid);
 | |
| 	ERR_FAIL_COND(!initial_prop_valid);
 | |
| 
 | |
| 	// Convert the initial INT value to FLOAT as it is better for interpolation
 | |
| 	if (initial_val.get_type() == Variant::INT) {
 | |
| 		initial_val = initial_val.operator real_t();
 | |
| 	}
 | |
| 	ERR_FAIL_COND(initial_val.get_type() != p_final_val.get_type());
 | |
| 
 | |
| 	// Build the InterpolateData object
 | |
| 	InterpolateData data;
 | |
| 	data.active = true;
 | |
| 	data.type = TARGETING_PROPERTY;
 | |
| 	data.finish = false;
 | |
| 	data.elapsed = 0;
 | |
| 
 | |
| 	// Give the data it's configuration
 | |
| 	data.id = p_object->get_instance_id();
 | |
| 	data.key = p_property.get_subnames();
 | |
| 	data.concatenated_key = p_property.get_concatenated_subnames();
 | |
| 	data.target_id = p_initial->get_instance_id();
 | |
| 	data.target_key = p_initial_property.get_subnames();
 | |
| 	data.initial_val = initial_val;
 | |
| 	data.final_val = p_final_val;
 | |
| 	data.duration = p_duration;
 | |
| 	data.trans_type = p_trans_type;
 | |
| 	data.ease_type = p_ease_type;
 | |
| 	data.delay = p_delay;
 | |
| 
 | |
| 	// Ensure there is a valid delta
 | |
| 	if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Add the interpolation
 | |
| 	_push_interpolate_data(data);
 | |
| }
 | |
| 
 | |
| void Tween::targeting_method(Object *p_object, StringName p_method, Object *p_initial, StringName p_initial_method, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
 | |
| 	// If we are currently updating, call this function again later
 | |
| 	if (pending_update != 0) {
 | |
| 		_add_pending_command("targeting_method", p_object, p_method, p_initial, p_initial_method, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Convert final INT values to FLOAT as they are better for interpolation
 | |
| 	if (p_final_val.get_type() == Variant::INT) {
 | |
| 		p_final_val = p_final_val.operator real_t();
 | |
| 	}
 | |
| 
 | |
| 	// Make sure the given objects are valid
 | |
| 	ERR_FAIL_COND(p_object == nullptr);
 | |
| 	ERR_FAIL_COND(p_initial == nullptr);
 | |
| 
 | |
| 	// No negative durations
 | |
| 	ERR_FAIL_COND(p_duration < 0);
 | |
| 
 | |
| 	// Ensure transition and easing types are valid
 | |
| 	ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
 | |
| 	ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
 | |
| 
 | |
| 	// No negative delays
 | |
| 	ERR_FAIL_COND(p_delay < 0);
 | |
| 
 | |
| 	// Make sure both objects have the given method
 | |
| 	ERR_FAIL_COND_MSG(!p_object->has_method(p_method), "Object has no method named: " + p_method + ".");
 | |
| 	ERR_FAIL_COND_MSG(!p_initial->has_method(p_initial_method), "Initial Object has no method named: " + p_initial_method + ".");
 | |
| 
 | |
| 	// Call the method to get the initial value
 | |
| 	Callable::CallError error;
 | |
| 	Variant initial_val = p_initial->call(p_initial_method, nullptr, 0, error);
 | |
| 	ERR_FAIL_COND(error.error != Callable::CallError::CALL_OK);
 | |
| 
 | |
| 	// Convert initial INT values to FLOAT as they aer better for interpolation
 | |
| 	if (initial_val.get_type() == Variant::INT) {
 | |
| 		initial_val = initial_val.operator real_t();
 | |
| 	}
 | |
| 	ERR_FAIL_COND(initial_val.get_type() != p_final_val.get_type());
 | |
| 
 | |
| 	// Build the new InterpolateData object
 | |
| 	InterpolateData data;
 | |
| 	data.active = true;
 | |
| 	data.type = TARGETING_METHOD;
 | |
| 	data.finish = false;
 | |
| 	data.elapsed = 0;
 | |
| 
 | |
| 	// Configure the data
 | |
| 	data.id = p_object->get_instance_id();
 | |
| 	data.key.push_back(p_method);
 | |
| 	data.concatenated_key = p_method;
 | |
| 	data.target_id = p_initial->get_instance_id();
 | |
| 	data.target_key.push_back(p_initial_method);
 | |
| 	data.initial_val = initial_val;
 | |
| 	data.final_val = p_final_val;
 | |
| 	data.duration = p_duration;
 | |
| 	data.trans_type = p_trans_type;
 | |
| 	data.ease_type = p_ease_type;
 | |
| 	data.delay = p_delay;
 | |
| 
 | |
| 	// Ensure there is a valid delta
 | |
| 	if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Add the interpolation
 | |
| 	_push_interpolate_data(data);
 | |
| }
 | |
| 
 | |
| Tween::Tween() {
 | |
| 	// Initialize tween attributes
 | |
| 	tween_process_mode = TWEEN_PROCESS_IDLE;
 | |
| 	repeat = false;
 | |
| 	speed_scale = 1;
 | |
| 	pending_update = 0;
 | |
| 	uid = 0;
 | |
| }
 | |
| 
 | |
| Tween::~Tween() {
 | |
| }
 |