mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1776 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1776 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  shape_sw.cpp                                                         */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md)    */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| #include "shape_sw.h"
 | |
| #include "geometry.h"
 | |
| #include "quick_hull.h"
 | |
| #include "sort.h"
 | |
| #define _POINT_SNAP 0.001953125
 | |
| #define _EDGE_IS_VALID_SUPPORT_THRESHOLD 0.0002
 | |
| #define _FACE_IS_VALID_SUPPORT_THRESHOLD 0.9998
 | |
| 
 | |
| void ShapeSW::configure(const Rect3 &p_aabb) {
 | |
| 	aabb = p_aabb;
 | |
| 	configured = true;
 | |
| 	for (Map<ShapeOwnerSW *, int>::Element *E = owners.front(); E; E = E->next()) {
 | |
| 		ShapeOwnerSW *co = (ShapeOwnerSW *)E->key();
 | |
| 		co->_shape_changed();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector3 ShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	Vector3 res;
 | |
| 	int amnt;
 | |
| 	get_supports(p_normal, 1, &res, amnt);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| void ShapeSW::add_owner(ShapeOwnerSW *p_owner) {
 | |
| 
 | |
| 	Map<ShapeOwnerSW *, int>::Element *E = owners.find(p_owner);
 | |
| 	if (E) {
 | |
| 		E->get()++;
 | |
| 	} else {
 | |
| 		owners[p_owner] = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ShapeSW::remove_owner(ShapeOwnerSW *p_owner) {
 | |
| 
 | |
| 	Map<ShapeOwnerSW *, int>::Element *E = owners.find(p_owner);
 | |
| 	ERR_FAIL_COND(!E);
 | |
| 	E->get()--;
 | |
| 	if (E->get() == 0) {
 | |
| 		owners.erase(E);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool ShapeSW::is_owner(ShapeOwnerSW *p_owner) const {
 | |
| 
 | |
| 	return owners.has(p_owner);
 | |
| }
 | |
| 
 | |
| const Map<ShapeOwnerSW *, int> &ShapeSW::get_owners() const {
 | |
| 	return owners;
 | |
| }
 | |
| 
 | |
| ShapeSW::ShapeSW() {
 | |
| 
 | |
| 	custom_bias = 0;
 | |
| 	configured = false;
 | |
| }
 | |
| 
 | |
| ShapeSW::~ShapeSW() {
 | |
| 
 | |
| 	ERR_FAIL_COND(owners.size());
 | |
| }
 | |
| 
 | |
| Plane PlaneShapeSW::get_plane() const {
 | |
| 
 | |
| 	return plane;
 | |
| }
 | |
| 
 | |
| void PlaneShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	// gibberish, a plane is infinity
 | |
| 	r_min = -1e7;
 | |
| 	r_max = 1e7;
 | |
| }
 | |
| 
 | |
| Vector3 PlaneShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	return p_normal * 1e15;
 | |
| }
 | |
| 
 | |
| bool PlaneShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
 | |
| 
 | |
| 	bool inters = plane.intersects_segment(p_begin, p_end, &r_result);
 | |
| 	if (inters)
 | |
| 		r_normal = plane.normal;
 | |
| 	return inters;
 | |
| }
 | |
| 
 | |
| bool PlaneShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return plane.distance_to(p_point) < 0;
 | |
| }
 | |
| 
 | |
| Vector3 PlaneShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	if (plane.is_point_over(p_point)) {
 | |
| 		return plane.project(p_point);
 | |
| 	} else {
 | |
| 		return p_point;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector3 PlaneShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	return Vector3(); //wtf
 | |
| }
 | |
| 
 | |
| void PlaneShapeSW::_setup(const Plane &p_plane) {
 | |
| 
 | |
| 	plane = p_plane;
 | |
| 	configure(Rect3(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2)));
 | |
| }
 | |
| 
 | |
| void PlaneShapeSW::set_data(const Variant &p_data) {
 | |
| 
 | |
| 	_setup(p_data);
 | |
| }
 | |
| 
 | |
| Variant PlaneShapeSW::get_data() const {
 | |
| 
 | |
| 	return plane;
 | |
| }
 | |
| 
 | |
| PlaneShapeSW::PlaneShapeSW() {
 | |
| }
 | |
| 
 | |
| //
 | |
| 
 | |
| real_t RayShapeSW::get_length() const {
 | |
| 
 | |
| 	return length;
 | |
| }
 | |
| 
 | |
| void RayShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	// don't think this will be even used
 | |
| 	r_min = 0;
 | |
| 	r_max = 1;
 | |
| }
 | |
| 
 | |
| Vector3 RayShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	if (p_normal.z > 0)
 | |
| 		return Vector3(0, 0, length);
 | |
| 	else
 | |
| 		return Vector3(0, 0, 0);
 | |
| }
 | |
| 
 | |
| void RayShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
 | |
| 
 | |
| 	if (Math::abs(p_normal.z) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
 | |
| 
 | |
| 		r_amount = 2;
 | |
| 		r_supports[0] = Vector3(0, 0, 0);
 | |
| 		r_supports[1] = Vector3(0, 0, length);
 | |
| 	} else if (p_normal.z > 0) {
 | |
| 		r_amount = 1;
 | |
| 		*r_supports = Vector3(0, 0, length);
 | |
| 	} else {
 | |
| 		r_amount = 1;
 | |
| 		*r_supports = Vector3(0, 0, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool RayShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
 | |
| 
 | |
| 	return false; //simply not possible
 | |
| }
 | |
| 
 | |
| bool RayShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return false; //simply not possible
 | |
| }
 | |
| 
 | |
| Vector3 RayShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	Vector3 s[2] = {
 | |
| 		Vector3(0, 0, 0),
 | |
| 		Vector3(0, 0, length)
 | |
| 	};
 | |
| 
 | |
| 	return Geometry::get_closest_point_to_segment(p_point, s);
 | |
| }
 | |
| 
 | |
| Vector3 RayShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	return Vector3();
 | |
| }
 | |
| 
 | |
| void RayShapeSW::_setup(real_t p_length) {
 | |
| 
 | |
| 	length = p_length;
 | |
| 	configure(Rect3(Vector3(0, 0, 0), Vector3(0.1, 0.1, length)));
 | |
| }
 | |
| 
 | |
| void RayShapeSW::set_data(const Variant &p_data) {
 | |
| 
 | |
| 	_setup(p_data);
 | |
| }
 | |
| 
 | |
| Variant RayShapeSW::get_data() const {
 | |
| 
 | |
| 	return length;
 | |
| }
 | |
| 
 | |
| RayShapeSW::RayShapeSW() {
 | |
| 
 | |
| 	length = 1;
 | |
| }
 | |
| 
 | |
| /********** SPHERE *************/
 | |
| 
 | |
| real_t SphereShapeSW::get_radius() const {
 | |
| 
 | |
| 	return radius;
 | |
| }
 | |
| 
 | |
| void SphereShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	real_t d = p_normal.dot(p_transform.origin);
 | |
| 
 | |
| 	// figure out scale at point
 | |
| 	Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
 | |
| 	real_t scale = local_normal.length();
 | |
| 
 | |
| 	r_min = d - (radius)*scale;
 | |
| 	r_max = d + (radius)*scale;
 | |
| }
 | |
| 
 | |
| Vector3 SphereShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	return p_normal * radius;
 | |
| }
 | |
| 
 | |
| void SphereShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
 | |
| 
 | |
| 	*r_supports = p_normal * radius;
 | |
| 	r_amount = 1;
 | |
| }
 | |
| 
 | |
| bool SphereShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
 | |
| 
 | |
| 	return Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal);
 | |
| }
 | |
| 
 | |
| bool SphereShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return p_point.length() < radius;
 | |
| }
 | |
| 
 | |
| Vector3 SphereShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	Vector3 p = p_point;
 | |
| 	float l = p.length();
 | |
| 	if (l < radius)
 | |
| 		return p_point;
 | |
| 	return (p / l) * radius;
 | |
| }
 | |
| 
 | |
| Vector3 SphereShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	real_t s = 0.4 * p_mass * radius * radius;
 | |
| 	return Vector3(s, s, s);
 | |
| }
 | |
| 
 | |
| void SphereShapeSW::_setup(real_t p_radius) {
 | |
| 
 | |
| 	radius = p_radius;
 | |
| 	configure(Rect3(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0)));
 | |
| }
 | |
| 
 | |
| void SphereShapeSW::set_data(const Variant &p_data) {
 | |
| 
 | |
| 	_setup(p_data);
 | |
| }
 | |
| 
 | |
| Variant SphereShapeSW::get_data() const {
 | |
| 
 | |
| 	return radius;
 | |
| }
 | |
| 
 | |
| SphereShapeSW::SphereShapeSW() {
 | |
| 
 | |
| 	radius = 0;
 | |
| }
 | |
| 
 | |
| /********** BOX *************/
 | |
| 
 | |
| void BoxShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	// no matter the angle, the box is mirrored anyway
 | |
| 	Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
 | |
| 
 | |
| 	real_t length = local_normal.abs().dot(half_extents);
 | |
| 	real_t distance = p_normal.dot(p_transform.origin);
 | |
| 
 | |
| 	r_min = distance - length;
 | |
| 	r_max = distance + length;
 | |
| }
 | |
| 
 | |
| Vector3 BoxShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	Vector3 point(
 | |
| 			(p_normal.x < 0) ? -half_extents.x : half_extents.x,
 | |
| 			(p_normal.y < 0) ? -half_extents.y : half_extents.y,
 | |
| 			(p_normal.z < 0) ? -half_extents.z : half_extents.z);
 | |
| 
 | |
| 	return point;
 | |
| }
 | |
| 
 | |
| void BoxShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
 | |
| 
 | |
| 	static const int next[3] = { 1, 2, 0 };
 | |
| 	static const int next2[3] = { 2, 0, 1 };
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		Vector3 axis;
 | |
| 		axis[i] = 1.0;
 | |
| 		real_t dot = p_normal.dot(axis);
 | |
| 		if (Math::abs(dot) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
 | |
| 
 | |
| 			//Vector3 axis_b;
 | |
| 
 | |
| 			bool neg = dot < 0;
 | |
| 			r_amount = 4;
 | |
| 
 | |
| 			Vector3 point;
 | |
| 			point[i] = half_extents[i];
 | |
| 
 | |
| 			int i_n = next[i];
 | |
| 			int i_n2 = next2[i];
 | |
| 
 | |
| 			static const real_t sign[4][2] = {
 | |
| 
 | |
| 				{ -1.0, 1.0 },
 | |
| 				{ 1.0, 1.0 },
 | |
| 				{ 1.0, -1.0 },
 | |
| 				{ -1.0, -1.0 },
 | |
| 			};
 | |
| 
 | |
| 			for (int j = 0; j < 4; j++) {
 | |
| 
 | |
| 				point[i_n] = sign[j][0] * half_extents[i_n];
 | |
| 				point[i_n2] = sign[j][1] * half_extents[i_n2];
 | |
| 				r_supports[j] = neg ? -point : point;
 | |
| 			}
 | |
| 
 | |
| 			if (neg) {
 | |
| 				SWAP(r_supports[1], r_supports[2]);
 | |
| 				SWAP(r_supports[0], r_supports[3]);
 | |
| 			}
 | |
| 
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		r_amount = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		Vector3 axis;
 | |
| 		axis[i] = 1.0;
 | |
| 
 | |
| 		if (Math::abs(p_normal.dot(axis)) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
 | |
| 
 | |
| 			r_amount = 2;
 | |
| 
 | |
| 			int i_n = next[i];
 | |
| 			int i_n2 = next2[i];
 | |
| 
 | |
| 			Vector3 point = half_extents;
 | |
| 
 | |
| 			if (p_normal[i_n] < 0) {
 | |
| 				point[i_n] = -point[i_n];
 | |
| 			}
 | |
| 			if (p_normal[i_n2] < 0) {
 | |
| 				point[i_n2] = -point[i_n2];
 | |
| 			}
 | |
| 
 | |
| 			r_supports[0] = point;
 | |
| 			point[i] = -point[i];
 | |
| 			r_supports[1] = point;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	/* USE POINT */
 | |
| 
 | |
| 	Vector3 point(
 | |
| 			(p_normal.x < 0) ? -half_extents.x : half_extents.x,
 | |
| 			(p_normal.y < 0) ? -half_extents.y : half_extents.y,
 | |
| 			(p_normal.z < 0) ? -half_extents.z : half_extents.z);
 | |
| 
 | |
| 	r_amount = 1;
 | |
| 	r_supports[0] = point;
 | |
| }
 | |
| 
 | |
| bool BoxShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
 | |
| 
 | |
| 	Rect3 aabb(-half_extents, half_extents * 2.0);
 | |
| 
 | |
| 	return aabb.intersects_segment(p_begin, p_end, &r_result, &r_normal);
 | |
| }
 | |
| 
 | |
| bool BoxShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z);
 | |
| }
 | |
| 
 | |
| Vector3 BoxShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	int outside = 0;
 | |
| 	Vector3 min_point;
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		if (Math::abs(p_point[i]) > half_extents[i]) {
 | |
| 			outside++;
 | |
| 			if (outside == 1) {
 | |
| 				//use plane if only one side matches
 | |
| 				Vector3 n;
 | |
| 				n[i] = SGN(p_point[i]);
 | |
| 
 | |
| 				Plane p(n, half_extents[i]);
 | |
| 				min_point = p.project(p_point);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!outside)
 | |
| 		return p_point; //it's inside, don't do anything else
 | |
| 
 | |
| 	if (outside == 1) //if only above one plane, this plane clearly wins
 | |
| 		return min_point;
 | |
| 
 | |
| 	//check segments
 | |
| 	float min_distance = 1e20;
 | |
| 	Vector3 closest_vertex = half_extents * p_point.sign();
 | |
| 	Vector3 s[2] = {
 | |
| 		closest_vertex,
 | |
| 		closest_vertex
 | |
| 	};
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		s[1] = closest_vertex;
 | |
| 		s[1][i] = -s[1][i]; //edge
 | |
| 
 | |
| 		Vector3 closest_edge = Geometry::get_closest_point_to_segment(p_point, s);
 | |
| 
 | |
| 		float d = p_point.distance_to(closest_edge);
 | |
| 		if (d < min_distance) {
 | |
| 			min_point = closest_edge;
 | |
| 			min_distance = d;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return min_point;
 | |
| }
 | |
| 
 | |
| Vector3 BoxShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	real_t lx = half_extents.x;
 | |
| 	real_t ly = half_extents.y;
 | |
| 	real_t lz = half_extents.z;
 | |
| 
 | |
| 	return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly));
 | |
| }
 | |
| 
 | |
| void BoxShapeSW::_setup(const Vector3 &p_half_extents) {
 | |
| 
 | |
| 	half_extents = p_half_extents.abs();
 | |
| 
 | |
| 	configure(Rect3(-half_extents, half_extents * 2));
 | |
| }
 | |
| 
 | |
| void BoxShapeSW::set_data(const Variant &p_data) {
 | |
| 
 | |
| 	_setup(p_data);
 | |
| }
 | |
| 
 | |
| Variant BoxShapeSW::get_data() const {
 | |
| 
 | |
| 	return half_extents;
 | |
| }
 | |
| 
 | |
| BoxShapeSW::BoxShapeSW() {
 | |
| }
 | |
| 
 | |
| /********** CAPSULE *************/
 | |
| 
 | |
| void CapsuleShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	Vector3 n = p_transform.basis.xform_inv(p_normal).normalized();
 | |
| 	real_t h = (n.z > 0) ? height : -height;
 | |
| 
 | |
| 	n *= radius;
 | |
| 	n.z += h * 0.5;
 | |
| 
 | |
| 	r_max = p_normal.dot(p_transform.xform(n));
 | |
| 	r_min = p_normal.dot(p_transform.xform(-n));
 | |
| 	return;
 | |
| 
 | |
| 	n = p_transform.basis.xform(n);
 | |
| 
 | |
| 	real_t distance = p_normal.dot(p_transform.origin);
 | |
| 	real_t length = Math::abs(p_normal.dot(n));
 | |
| 	r_min = distance - length;
 | |
| 	r_max = distance + length;
 | |
| 
 | |
| 	ERR_FAIL_COND(r_max < r_min);
 | |
| }
 | |
| 
 | |
| Vector3 CapsuleShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	Vector3 n = p_normal;
 | |
| 
 | |
| 	real_t h = (n.z > 0) ? height : -height;
 | |
| 
 | |
| 	n *= radius;
 | |
| 	n.z += h * 0.5;
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| void CapsuleShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
 | |
| 
 | |
| 	Vector3 n = p_normal;
 | |
| 
 | |
| 	real_t d = n.z;
 | |
| 
 | |
| 	if (Math::abs(d) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
 | |
| 
 | |
| 		// make it flat
 | |
| 		n.z = 0.0;
 | |
| 		n.normalize();
 | |
| 		n *= radius;
 | |
| 
 | |
| 		r_amount = 2;
 | |
| 		r_supports[0] = n;
 | |
| 		r_supports[0].z += height * 0.5;
 | |
| 		r_supports[1] = n;
 | |
| 		r_supports[1].z -= height * 0.5;
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		real_t h = (d > 0) ? height : -height;
 | |
| 
 | |
| 		n *= radius;
 | |
| 		n.z += h * 0.5;
 | |
| 		r_amount = 1;
 | |
| 		*r_supports = n;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool CapsuleShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
 | |
| 
 | |
| 	Vector3 norm = (p_end - p_begin).normalized();
 | |
| 	real_t min_d = 1e20;
 | |
| 
 | |
| 	Vector3 res, n;
 | |
| 	bool collision = false;
 | |
| 
 | |
| 	Vector3 auxres, auxn;
 | |
| 	bool collided;
 | |
| 
 | |
| 	// test against cylinder and spheres :-|
 | |
| 
 | |
| 	collided = Geometry::segment_intersects_cylinder(p_begin, p_end, height, radius, &auxres, &auxn);
 | |
| 
 | |
| 	if (collided) {
 | |
| 		real_t d = norm.dot(auxres);
 | |
| 		if (d < min_d) {
 | |
| 			min_d = d;
 | |
| 			res = auxres;
 | |
| 			n = auxn;
 | |
| 			collision = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	collided = Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(0, 0, height * 0.5), radius, &auxres, &auxn);
 | |
| 
 | |
| 	if (collided) {
 | |
| 		real_t d = norm.dot(auxres);
 | |
| 		if (d < min_d) {
 | |
| 			min_d = d;
 | |
| 			res = auxres;
 | |
| 			n = auxn;
 | |
| 			collision = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	collided = Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(0, 0, height * -0.5), radius, &auxres, &auxn);
 | |
| 
 | |
| 	if (collided) {
 | |
| 		real_t d = norm.dot(auxres);
 | |
| 
 | |
| 		if (d < min_d) {
 | |
| 			min_d = d;
 | |
| 			res = auxres;
 | |
| 			n = auxn;
 | |
| 			collision = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (collision) {
 | |
| 
 | |
| 		r_result = res;
 | |
| 		r_normal = n;
 | |
| 	}
 | |
| 	return collision;
 | |
| }
 | |
| 
 | |
| bool CapsuleShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 
 | |
| 	if (Math::abs(p_point.z) < height * 0.5) {
 | |
| 		return Vector3(p_point.x, p_point.y, 0).length() < radius;
 | |
| 	} else {
 | |
| 		Vector3 p = p_point;
 | |
| 		p.z = Math::abs(p.z) - height * 0.5;
 | |
| 		return p.length() < radius;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector3 CapsuleShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	Vector3 s[2] = {
 | |
| 		Vector3(0, 0, -height * 0.5),
 | |
| 		Vector3(0, 0, height * 0.5),
 | |
| 	};
 | |
| 
 | |
| 	Vector3 p = Geometry::get_closest_point_to_segment(p_point, s);
 | |
| 
 | |
| 	if (p.distance_to(p_point) < radius)
 | |
| 		return p_point;
 | |
| 
 | |
| 	return p + (p_point - p).normalized() * radius;
 | |
| }
 | |
| 
 | |
| Vector3 CapsuleShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	// use crappy AABB approximation
 | |
| 	Vector3 extents = get_aabb().size * 0.5;
 | |
| 
 | |
| 	return Vector3(
 | |
| 			(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
 | |
| 			(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
 | |
| 			(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
 | |
| }
 | |
| 
 | |
| void CapsuleShapeSW::_setup(real_t p_height, real_t p_radius) {
 | |
| 
 | |
| 	height = p_height;
 | |
| 	radius = p_radius;
 | |
| 	configure(Rect3(Vector3(-radius, -radius, -height * 0.5 - radius), Vector3(radius * 2, radius * 2, height + radius * 2.0)));
 | |
| }
 | |
| 
 | |
| void CapsuleShapeSW::set_data(const Variant &p_data) {
 | |
| 
 | |
| 	Dictionary d = p_data;
 | |
| 	ERR_FAIL_COND(!d.has("radius"));
 | |
| 	ERR_FAIL_COND(!d.has("height"));
 | |
| 	_setup(d["height"], d["radius"]);
 | |
| }
 | |
| 
 | |
| Variant CapsuleShapeSW::get_data() const {
 | |
| 
 | |
| 	Dictionary d;
 | |
| 	d["radius"] = radius;
 | |
| 	d["height"] = height;
 | |
| 	return d;
 | |
| }
 | |
| 
 | |
| CapsuleShapeSW::CapsuleShapeSW() {
 | |
| 
 | |
| 	height = radius = 0;
 | |
| }
 | |
| 
 | |
| /********** CONVEX POLYGON *************/
 | |
| 
 | |
| void ConvexPolygonShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	int vertex_count = mesh.vertices.size();
 | |
| 	if (vertex_count == 0)
 | |
| 		return;
 | |
| 
 | |
| 	const Vector3 *vrts = &mesh.vertices[0];
 | |
| 
 | |
| 	for (int i = 0; i < vertex_count; i++) {
 | |
| 
 | |
| 		real_t d = p_normal.dot(p_transform.xform(vrts[i]));
 | |
| 
 | |
| 		if (i == 0 || d > r_max)
 | |
| 			r_max = d;
 | |
| 		if (i == 0 || d < r_min)
 | |
| 			r_min = d;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector3 ConvexPolygonShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	Vector3 n = p_normal;
 | |
| 
 | |
| 	int vert_support_idx = -1;
 | |
| 	real_t support_max;
 | |
| 
 | |
| 	int vertex_count = mesh.vertices.size();
 | |
| 	if (vertex_count == 0)
 | |
| 		return Vector3();
 | |
| 
 | |
| 	const Vector3 *vrts = &mesh.vertices[0];
 | |
| 
 | |
| 	for (int i = 0; i < vertex_count; i++) {
 | |
| 
 | |
| 		real_t d = n.dot(vrts[i]);
 | |
| 
 | |
| 		if (i == 0 || d > support_max) {
 | |
| 			support_max = d;
 | |
| 			vert_support_idx = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return vrts[vert_support_idx];
 | |
| }
 | |
| 
 | |
| void ConvexPolygonShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
 | |
| 
 | |
| 	const Geometry::MeshData::Face *faces = mesh.faces.ptr();
 | |
| 	int fc = mesh.faces.size();
 | |
| 
 | |
| 	const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
 | |
| 	int ec = mesh.edges.size();
 | |
| 
 | |
| 	const Vector3 *vertices = mesh.vertices.ptr();
 | |
| 	int vc = mesh.vertices.size();
 | |
| 
 | |
| 	//find vertex first
 | |
| 	real_t max;
 | |
| 	int vtx;
 | |
| 
 | |
| 	for (int i = 0; i < vc; i++) {
 | |
| 
 | |
| 		real_t d = p_normal.dot(vertices[i]);
 | |
| 
 | |
| 		if (i == 0 || d > max) {
 | |
| 			max = d;
 | |
| 			vtx = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < fc; i++) {
 | |
| 
 | |
| 		if (faces[i].plane.normal.dot(p_normal) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
 | |
| 
 | |
| 			int ic = faces[i].indices.size();
 | |
| 			const int *ind = faces[i].indices.ptr();
 | |
| 
 | |
| 			bool valid = false;
 | |
| 			for (int j = 0; j < ic; j++) {
 | |
| 				if (ind[j] == vtx) {
 | |
| 					valid = true;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (!valid)
 | |
| 				continue;
 | |
| 
 | |
| 			int m = MIN(p_max, ic);
 | |
| 			for (int j = 0; j < m; j++) {
 | |
| 
 | |
| 				r_supports[j] = vertices[ind[j]];
 | |
| 			}
 | |
| 			r_amount = m;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < ec; i++) {
 | |
| 
 | |
| 		real_t dot = (vertices[edges[i].a] - vertices[edges[i].b]).normalized().dot(p_normal);
 | |
| 		dot = ABS(dot);
 | |
| 		if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD && (edges[i].a == vtx || edges[i].b == vtx)) {
 | |
| 
 | |
| 			r_amount = 2;
 | |
| 			r_supports[0] = vertices[edges[i].a];
 | |
| 			r_supports[1] = vertices[edges[i].b];
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r_supports[0] = vertices[vtx];
 | |
| 	r_amount = 1;
 | |
| }
 | |
| 
 | |
| bool ConvexPolygonShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
 | |
| 
 | |
| 	const Geometry::MeshData::Face *faces = mesh.faces.ptr();
 | |
| 	int fc = mesh.faces.size();
 | |
| 
 | |
| 	const Vector3 *vertices = mesh.vertices.ptr();
 | |
| 
 | |
| 	Vector3 n = p_end - p_begin;
 | |
| 	real_t min = 1e20;
 | |
| 	bool col = false;
 | |
| 
 | |
| 	for (int i = 0; i < fc; i++) {
 | |
| 
 | |
| 		if (faces[i].plane.normal.dot(n) > 0)
 | |
| 			continue; //opposing face
 | |
| 
 | |
| 		int ic = faces[i].indices.size();
 | |
| 		const int *ind = faces[i].indices.ptr();
 | |
| 
 | |
| 		for (int j = 1; j < ic - 1; j++) {
 | |
| 
 | |
| 			Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]);
 | |
| 			Vector3 result;
 | |
| 			if (f.intersects_segment(p_begin, p_end, &result)) {
 | |
| 				real_t d = n.dot(result);
 | |
| 				if (d < min) {
 | |
| 					min = d;
 | |
| 					r_result = result;
 | |
| 					r_normal = faces[i].plane.normal;
 | |
| 					col = true;
 | |
| 				}
 | |
| 
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return col;
 | |
| }
 | |
| 
 | |
| bool ConvexPolygonShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 
 | |
| 	const Geometry::MeshData::Face *faces = mesh.faces.ptr();
 | |
| 	int fc = mesh.faces.size();
 | |
| 
 | |
| 	for (int i = 0; i < fc; i++) {
 | |
| 
 | |
| 		if (faces[i].plane.distance_to(p_point) >= 0)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| Vector3 ConvexPolygonShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	const Geometry::MeshData::Face *faces = mesh.faces.ptr();
 | |
| 	int fc = mesh.faces.size();
 | |
| 	const Vector3 *vertices = mesh.vertices.ptr();
 | |
| 
 | |
| 	bool all_inside = true;
 | |
| 	for (int i = 0; i < fc; i++) {
 | |
| 
 | |
| 		if (!faces[i].plane.is_point_over(p_point))
 | |
| 			continue;
 | |
| 
 | |
| 		all_inside = false;
 | |
| 		bool is_inside = true;
 | |
| 		int ic = faces[i].indices.size();
 | |
| 		const int *indices = faces[i].indices.ptr();
 | |
| 
 | |
| 		for (int j = 0; j < ic; j++) {
 | |
| 
 | |
| 			Vector3 a = vertices[indices[j]];
 | |
| 			Vector3 b = vertices[indices[(j + 1) % ic]];
 | |
| 			Vector3 n = (a - b).cross(faces[i].plane.normal).normalized();
 | |
| 			if (Plane(a, n).is_point_over(p_point)) {
 | |
| 				is_inside = false;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (is_inside) {
 | |
| 			return faces[i].plane.project(p_point);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (all_inside) {
 | |
| 		return p_point;
 | |
| 	}
 | |
| 
 | |
| 	float min_distance = 1e20;
 | |
| 	Vector3 min_point;
 | |
| 
 | |
| 	//check edges
 | |
| 	const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
 | |
| 	int ec = mesh.edges.size();
 | |
| 	for (int i = 0; i < ec; i++) {
 | |
| 
 | |
| 		Vector3 s[2] = {
 | |
| 			vertices[edges[i].a],
 | |
| 			vertices[edges[i].b]
 | |
| 		};
 | |
| 
 | |
| 		Vector3 closest = Geometry::get_closest_point_to_segment(p_point, s);
 | |
| 		float d = closest.distance_to(p_point);
 | |
| 		if (d < min_distance) {
 | |
| 			min_distance = d;
 | |
| 			min_point = closest;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return min_point;
 | |
| }
 | |
| 
 | |
| Vector3 ConvexPolygonShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	// use crappy AABB approximation
 | |
| 	Vector3 extents = get_aabb().size * 0.5;
 | |
| 
 | |
| 	return Vector3(
 | |
| 			(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
 | |
| 			(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
 | |
| 			(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
 | |
| }
 | |
| 
 | |
| void ConvexPolygonShapeSW::_setup(const Vector<Vector3> &p_vertices) {
 | |
| 
 | |
| 	Error err = QuickHull::build(p_vertices, mesh);
 | |
| 	Rect3 _aabb;
 | |
| 
 | |
| 	for (int i = 0; i < mesh.vertices.size(); i++) {
 | |
| 
 | |
| 		if (i == 0)
 | |
| 			_aabb.position = mesh.vertices[i];
 | |
| 		else
 | |
| 			_aabb.expand_to(mesh.vertices[i]);
 | |
| 	}
 | |
| 
 | |
| 	configure(_aabb);
 | |
| }
 | |
| 
 | |
| void ConvexPolygonShapeSW::set_data(const Variant &p_data) {
 | |
| 
 | |
| 	_setup(p_data);
 | |
| }
 | |
| 
 | |
| Variant ConvexPolygonShapeSW::get_data() const {
 | |
| 
 | |
| 	return mesh.vertices;
 | |
| }
 | |
| 
 | |
| ConvexPolygonShapeSW::ConvexPolygonShapeSW() {
 | |
| }
 | |
| 
 | |
| /********** FACE POLYGON *************/
 | |
| 
 | |
| void FaceShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		Vector3 v = p_transform.xform(vertex[i]);
 | |
| 		real_t d = p_normal.dot(v);
 | |
| 
 | |
| 		if (i == 0 || d > r_max)
 | |
| 			r_max = d;
 | |
| 
 | |
| 		if (i == 0 || d < r_min)
 | |
| 			r_min = d;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector3 FaceShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	int vert_support_idx = -1;
 | |
| 	real_t support_max;
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		real_t d = p_normal.dot(vertex[i]);
 | |
| 
 | |
| 		if (i == 0 || d > support_max) {
 | |
| 			support_max = d;
 | |
| 			vert_support_idx = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return vertex[vert_support_idx];
 | |
| }
 | |
| 
 | |
| void FaceShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const {
 | |
| 
 | |
| 	Vector3 n = p_normal;
 | |
| 
 | |
| 	/** TEST FACE AS SUPPORT **/
 | |
| 	if (normal.dot(n) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
 | |
| 
 | |
| 		r_amount = 3;
 | |
| 		for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 			r_supports[i] = vertex[i];
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/** FIND SUPPORT VERTEX **/
 | |
| 
 | |
| 	int vert_support_idx = -1;
 | |
| 	real_t support_max;
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		real_t d = n.dot(vertex[i]);
 | |
| 
 | |
| 		if (i == 0 || d > support_max) {
 | |
| 			support_max = d;
 | |
| 			vert_support_idx = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/** TEST EDGES AS SUPPORT **/
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		int nx = (i + 1) % 3;
 | |
| 		if (i != vert_support_idx && nx != vert_support_idx)
 | |
| 			continue;
 | |
| 
 | |
| 		// check if edge is valid as a support
 | |
| 		real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n);
 | |
| 		dot = ABS(dot);
 | |
| 		if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
 | |
| 
 | |
| 			r_amount = 2;
 | |
| 			r_supports[0] = vertex[i];
 | |
| 			r_supports[1] = vertex[nx];
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r_amount = 1;
 | |
| 	r_supports[0] = vertex[vert_support_idx];
 | |
| }
 | |
| 
 | |
| bool FaceShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
 | |
| 
 | |
| 	bool c = Geometry::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result);
 | |
| 	if (c) {
 | |
| 		r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal;
 | |
| 		if (r_normal.dot(p_end - p_begin) > 0) {
 | |
| 			r_normal = -r_normal;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| bool FaceShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return false; //face is flat
 | |
| }
 | |
| 
 | |
| Vector3 FaceShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point);
 | |
| }
 | |
| 
 | |
| Vector3 FaceShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	return Vector3(); // Sorry, but i don't think anyone cares, FaceShape!
 | |
| }
 | |
| 
 | |
| FaceShapeSW::FaceShapeSW() {
 | |
| 
 | |
| 	configure(Rect3());
 | |
| }
 | |
| 
 | |
| PoolVector<Vector3> ConcavePolygonShapeSW::get_faces() const {
 | |
| 
 | |
| 	PoolVector<Vector3> rfaces;
 | |
| 	rfaces.resize(faces.size() * 3);
 | |
| 
 | |
| 	for (int i = 0; i < faces.size(); i++) {
 | |
| 
 | |
| 		Face f = faces.get(i);
 | |
| 
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 
 | |
| 			rfaces.set(i * 3 + j, vertices.get(f.indices[j]));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rfaces;
 | |
| }
 | |
| 
 | |
| void ConcavePolygonShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	int count = vertices.size();
 | |
| 	if (count == 0) {
 | |
| 		r_min = 0;
 | |
| 		r_max = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 	PoolVector<Vector3>::Read r = vertices.read();
 | |
| 	const Vector3 *vptr = r.ptr();
 | |
| 
 | |
| 	for (int i = 0; i < count; i++) {
 | |
| 
 | |
| 		real_t d = p_normal.dot(p_transform.xform(vptr[i]));
 | |
| 
 | |
| 		if (i == 0 || d > r_max)
 | |
| 			r_max = d;
 | |
| 		if (i == 0 || d < r_min)
 | |
| 			r_min = d;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector3 ConcavePolygonShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	int count = vertices.size();
 | |
| 	if (count == 0)
 | |
| 		return Vector3();
 | |
| 
 | |
| 	PoolVector<Vector3>::Read r = vertices.read();
 | |
| 	const Vector3 *vptr = r.ptr();
 | |
| 
 | |
| 	Vector3 n = p_normal;
 | |
| 
 | |
| 	int vert_support_idx = -1;
 | |
| 	real_t support_max;
 | |
| 
 | |
| 	for (int i = 0; i < count; i++) {
 | |
| 
 | |
| 		real_t d = n.dot(vptr[i]);
 | |
| 
 | |
| 		if (i == 0 || d > support_max) {
 | |
| 			support_max = d;
 | |
| 			vert_support_idx = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return vptr[vert_support_idx];
 | |
| }
 | |
| 
 | |
| void ConcavePolygonShapeSW::_cull_segment(int p_idx, _SegmentCullParams *p_params) const {
 | |
| 
 | |
| 	const BVH *bvh = &p_params->bvh[p_idx];
 | |
| 
 | |
| 	/*
 | |
| 	if (p_params->dir.dot(bvh->aabb.get_support(-p_params->dir))>p_params->min_d)
 | |
| 		return; //test against whole AABB, which isn't very costly
 | |
| 	*/
 | |
| 
 | |
| 	//printf("addr: %p\n",bvh);
 | |
| 	if (!bvh->aabb.intersects_segment(p_params->from, p_params->to)) {
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bvh->face_index >= 0) {
 | |
| 
 | |
| 		Vector3 res;
 | |
| 		Vector3 vertices[3] = {
 | |
| 			p_params->vertices[p_params->faces[bvh->face_index].indices[0]],
 | |
| 			p_params->vertices[p_params->faces[bvh->face_index].indices[1]],
 | |
| 			p_params->vertices[p_params->faces[bvh->face_index].indices[2]]
 | |
| 		};
 | |
| 
 | |
| 		if (Geometry::segment_intersects_triangle(
 | |
| 					p_params->from,
 | |
| 					p_params->to,
 | |
| 					vertices[0],
 | |
| 					vertices[1],
 | |
| 					vertices[2],
 | |
| 					&res)) {
 | |
| 
 | |
| 			real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from);
 | |
| 			//TODO, seems segmen/triangle intersection is broken :(
 | |
| 			if (d > 0 && d < p_params->min_d) {
 | |
| 
 | |
| 				p_params->min_d = d;
 | |
| 				p_params->result = res;
 | |
| 				p_params->normal = Plane(vertices[0], vertices[1], vertices[2]).normal;
 | |
| 				if (p_params->normal.dot(p_params->dir) > 0)
 | |
| 					p_params->normal = -p_params->normal;
 | |
| 				p_params->collisions++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		if (bvh->left >= 0)
 | |
| 			_cull_segment(bvh->left, p_params);
 | |
| 		if (bvh->right >= 0)
 | |
| 			_cull_segment(bvh->right, p_params);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool ConcavePolygonShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
 | |
| 
 | |
| 	if (faces.size() == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	// unlock data
 | |
| 	PoolVector<Face>::Read fr = faces.read();
 | |
| 	PoolVector<Vector3>::Read vr = vertices.read();
 | |
| 	PoolVector<BVH>::Read br = bvh.read();
 | |
| 
 | |
| 	_SegmentCullParams params;
 | |
| 	params.from = p_begin;
 | |
| 	params.to = p_end;
 | |
| 	params.collisions = 0;
 | |
| 	params.dir = (p_end - p_begin).normalized();
 | |
| 
 | |
| 	params.faces = fr.ptr();
 | |
| 	params.vertices = vr.ptr();
 | |
| 	params.bvh = br.ptr();
 | |
| 
 | |
| 	params.min_d = 1e20;
 | |
| 	// cull
 | |
| 	_cull_segment(0, ¶ms);
 | |
| 
 | |
| 	if (params.collisions > 0) {
 | |
| 
 | |
| 		r_result = params.result;
 | |
| 		r_normal = params.normal;
 | |
| 		return true;
 | |
| 	} else {
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool ConcavePolygonShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return false; //face is flat
 | |
| }
 | |
| 
 | |
| Vector3 ConcavePolygonShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return Vector3();
 | |
| }
 | |
| 
 | |
| void ConcavePolygonShapeSW::_cull(int p_idx, _CullParams *p_params) const {
 | |
| 
 | |
| 	const BVH *bvh = &p_params->bvh[p_idx];
 | |
| 
 | |
| 	if (!p_params->aabb.intersects(bvh->aabb))
 | |
| 		return;
 | |
| 
 | |
| 	if (bvh->face_index >= 0) {
 | |
| 
 | |
| 		const Face *f = &p_params->faces[bvh->face_index];
 | |
| 		FaceShapeSW *face = p_params->face;
 | |
| 		face->normal = f->normal;
 | |
| 		face->vertex[0] = p_params->vertices[f->indices[0]];
 | |
| 		face->vertex[1] = p_params->vertices[f->indices[1]];
 | |
| 		face->vertex[2] = p_params->vertices[f->indices[2]];
 | |
| 		p_params->callback(p_params->userdata, face);
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		if (bvh->left >= 0) {
 | |
| 
 | |
| 			_cull(bvh->left, p_params);
 | |
| 		}
 | |
| 
 | |
| 		if (bvh->right >= 0) {
 | |
| 
 | |
| 			_cull(bvh->right, p_params);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ConcavePolygonShapeSW::cull(const Rect3 &p_local_aabb, Callback p_callback, void *p_userdata) const {
 | |
| 
 | |
| 	// make matrix local to concave
 | |
| 	if (faces.size() == 0)
 | |
| 		return;
 | |
| 
 | |
| 	Rect3 local_aabb = p_local_aabb;
 | |
| 
 | |
| 	// unlock data
 | |
| 	PoolVector<Face>::Read fr = faces.read();
 | |
| 	PoolVector<Vector3>::Read vr = vertices.read();
 | |
| 	PoolVector<BVH>::Read br = bvh.read();
 | |
| 
 | |
| 	FaceShapeSW face; // use this to send in the callback
 | |
| 
 | |
| 	_CullParams params;
 | |
| 	params.aabb = local_aabb;
 | |
| 	params.face = &face;
 | |
| 	params.faces = fr.ptr();
 | |
| 	params.vertices = vr.ptr();
 | |
| 	params.bvh = br.ptr();
 | |
| 	params.callback = p_callback;
 | |
| 	params.userdata = p_userdata;
 | |
| 
 | |
| 	// cull
 | |
| 	_cull(0, ¶ms);
 | |
| }
 | |
| 
 | |
| Vector3 ConcavePolygonShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	// use crappy AABB approximation
 | |
| 	Vector3 extents = get_aabb().size * 0.5;
 | |
| 
 | |
| 	return Vector3(
 | |
| 			(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
 | |
| 			(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
 | |
| 			(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
 | |
| }
 | |
| 
 | |
| struct _VolumeSW_BVH_Element {
 | |
| 
 | |
| 	Rect3 aabb;
 | |
| 	Vector3 center;
 | |
| 	int face_index;
 | |
| };
 | |
| 
 | |
| struct _VolumeSW_BVH_CompareX {
 | |
| 
 | |
| 	_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
 | |
| 
 | |
| 		return a.center.x < b.center.x;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| struct _VolumeSW_BVH_CompareY {
 | |
| 
 | |
| 	_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
 | |
| 
 | |
| 		return a.center.y < b.center.y;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| struct _VolumeSW_BVH_CompareZ {
 | |
| 
 | |
| 	_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
 | |
| 
 | |
| 		return a.center.z < b.center.z;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| struct _VolumeSW_BVH {
 | |
| 
 | |
| 	Rect3 aabb;
 | |
| 	_VolumeSW_BVH *left;
 | |
| 	_VolumeSW_BVH *right;
 | |
| 
 | |
| 	int face_index;
 | |
| };
 | |
| 
 | |
| _VolumeSW_BVH *_volume_sw_build_bvh(_VolumeSW_BVH_Element *p_elements, int p_size, int &count) {
 | |
| 
 | |
| 	_VolumeSW_BVH *bvh = memnew(_VolumeSW_BVH);
 | |
| 
 | |
| 	if (p_size == 1) {
 | |
| 		//leaf
 | |
| 		bvh->aabb = p_elements[0].aabb;
 | |
| 		bvh->left = NULL;
 | |
| 		bvh->right = NULL;
 | |
| 		bvh->face_index = p_elements->face_index;
 | |
| 		count++;
 | |
| 		return bvh;
 | |
| 	} else {
 | |
| 
 | |
| 		bvh->face_index = -1;
 | |
| 	}
 | |
| 
 | |
| 	Rect3 aabb;
 | |
| 	for (int i = 0; i < p_size; i++) {
 | |
| 
 | |
| 		if (i == 0)
 | |
| 			aabb = p_elements[i].aabb;
 | |
| 		else
 | |
| 			aabb.merge_with(p_elements[i].aabb);
 | |
| 	}
 | |
| 	bvh->aabb = aabb;
 | |
| 	switch (aabb.get_longest_axis_index()) {
 | |
| 
 | |
| 		case 0: {
 | |
| 
 | |
| 			SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareX> sort_x;
 | |
| 			sort_x.sort(p_elements, p_size);
 | |
| 
 | |
| 		} break;
 | |
| 		case 1: {
 | |
| 
 | |
| 			SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareY> sort_y;
 | |
| 			sort_y.sort(p_elements, p_size);
 | |
| 		} break;
 | |
| 		case 2: {
 | |
| 
 | |
| 			SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareZ> sort_z;
 | |
| 			sort_z.sort(p_elements, p_size);
 | |
| 		} break;
 | |
| 	}
 | |
| 
 | |
| 	int split = p_size / 2;
 | |
| 	bvh->left = _volume_sw_build_bvh(p_elements, split, count);
 | |
| 	bvh->right = _volume_sw_build_bvh(&p_elements[split], p_size - split, count);
 | |
| 
 | |
| 	//printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index);
 | |
| 	count++;
 | |
| 	return bvh;
 | |
| }
 | |
| 
 | |
| void ConcavePolygonShapeSW::_fill_bvh(_VolumeSW_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) {
 | |
| 
 | |
| 	int idx = p_idx;
 | |
| 
 | |
| 	p_bvh_array[idx].aabb = p_bvh_tree->aabb;
 | |
| 	p_bvh_array[idx].face_index = p_bvh_tree->face_index;
 | |
| 	//printf("%p - %i: %i(%p)  -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right);
 | |
| 
 | |
| 	if (p_bvh_tree->left) {
 | |
| 		p_bvh_array[idx].left = ++p_idx;
 | |
| 		_fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx);
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		p_bvh_array[p_idx].left = -1;
 | |
| 	}
 | |
| 
 | |
| 	if (p_bvh_tree->right) {
 | |
| 		p_bvh_array[idx].right = ++p_idx;
 | |
| 		_fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx);
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		p_bvh_array[p_idx].right = -1;
 | |
| 	}
 | |
| 
 | |
| 	memdelete(p_bvh_tree);
 | |
| }
 | |
| 
 | |
| void ConcavePolygonShapeSW::_setup(PoolVector<Vector3> p_faces) {
 | |
| 
 | |
| 	int src_face_count = p_faces.size();
 | |
| 	if (src_face_count == 0) {
 | |
| 		configure(Rect3());
 | |
| 		return;
 | |
| 	}
 | |
| 	ERR_FAIL_COND(src_face_count % 3);
 | |
| 	src_face_count /= 3;
 | |
| 
 | |
| 	PoolVector<Vector3>::Read r = p_faces.read();
 | |
| 	const Vector3 *facesr = r.ptr();
 | |
| 
 | |
| #if 0
 | |
| 	Map<Vector3,int> point_map;
 | |
| 	List<Face> face_list;
 | |
| 
 | |
| 
 | |
| 	for(int i=0;i<src_face_count;i++) {
 | |
| 
 | |
| 		Face3 faceaux;
 | |
| 
 | |
| 		for(int j=0;j<3;j++) {
 | |
| 
 | |
| 			faceaux.vertex[j]=facesr[i*3+j].snapped(_POINT_SNAP);
 | |
| 			//faceaux.vertex[j]=facesr[i*3+j];//facesr[i*3+j].snapped(_POINT_SNAP);
 | |
| 		}
 | |
| 
 | |
| 		ERR_CONTINUE( faceaux.is_degenerate() );
 | |
| 
 | |
| 		Face face;
 | |
| 
 | |
| 		for(int j=0;j<3;j++) {
 | |
| 
 | |
| 
 | |
| 			Map<Vector3,int>::Element *E=point_map.find(faceaux.vertex[j]);
 | |
| 			if (E) {
 | |
| 
 | |
| 				face.indices[j]=E->value();
 | |
| 			} else {
 | |
| 
 | |
| 				face.indices[j]=point_map.size();
 | |
| 				point_map.insert(faceaux.vertex[j],point_map.size());
 | |
| 
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		face_list.push_back(face);
 | |
| 	}
 | |
| 
 | |
| 	vertices.resize( point_map.size() );
 | |
| 
 | |
| 	PoolVector<Vector3>::Write vw = vertices.write();
 | |
| 	Vector3 *verticesw=vw.ptr();
 | |
| 
 | |
| 	AABB _aabb;
 | |
| 
 | |
| 	for( Map<Vector3,int>::Element *E=point_map.front();E;E=E->next()) {
 | |
| 
 | |
| 		if (E==point_map.front()) {
 | |
| 			_aabb.pos=E->key();
 | |
| 		} else {
 | |
| 
 | |
| 			_aabb.expand_to(E->key());
 | |
| 		}
 | |
| 		verticesw[E->value()]=E->key();
 | |
| 	}
 | |
| 
 | |
| 	point_map.clear(); // not needed anymore
 | |
| 
 | |
| 	faces.resize(face_list.size());
 | |
| 	PoolVector<Face>::Write w = faces.write();
 | |
| 	Face *facesw=w.ptr();
 | |
| 
 | |
| 	int fc=0;
 | |
| 
 | |
| 	for( List<Face>::Element *E=face_list.front();E;E=E->next()) {
 | |
| 
 | |
| 		facesw[fc++]=E->get();
 | |
| 	}
 | |
| 
 | |
| 	face_list.clear();
 | |
| 
 | |
| 
 | |
| 	PoolVector<_VolumeSW_BVH_Element> bvh_array;
 | |
| 	bvh_array.resize( fc );
 | |
| 
 | |
| 	PoolVector<_VolumeSW_BVH_Element>::Write bvhw = bvh_array.write();
 | |
| 	_VolumeSW_BVH_Element *bvh_arrayw=bvhw.ptr();
 | |
| 
 | |
| 
 | |
| 	for(int i=0;i<fc;i++) {
 | |
| 
 | |
| 		AABB face_aabb;
 | |
| 		face_aabb.pos=verticesw[facesw[i].indices[0]];
 | |
| 		face_aabb.expand_to( verticesw[facesw[i].indices[1]] );
 | |
| 		face_aabb.expand_to( verticesw[facesw[i].indices[2]] );
 | |
| 
 | |
| 		bvh_arrayw[i].face_index=i;
 | |
| 		bvh_arrayw[i].aabb=face_aabb;
 | |
| 		bvh_arrayw[i].center=face_aabb.pos+face_aabb.size*0.5;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	w=PoolVector<Face>::Write();
 | |
| 	vw=PoolVector<Vector3>::Write();
 | |
| 
 | |
| 
 | |
| 	int count=0;
 | |
| 	_VolumeSW_BVH *bvh_tree=_volume_sw_build_bvh(bvh_arrayw,fc,count);
 | |
| 
 | |
| 	ERR_FAIL_COND(count==0);
 | |
| 
 | |
| 	bvhw=PoolVector<_VolumeSW_BVH_Element>::Write();
 | |
| 
 | |
| 	bvh.resize( count+1 );
 | |
| 
 | |
| 	PoolVector<BVH>::Write bvhw2 = bvh.write();
 | |
| 	BVH*bvh_arrayw2=bvhw2.ptr();
 | |
| 
 | |
| 	int idx=0;
 | |
| 	_fill_bvh(bvh_tree,bvh_arrayw2,idx);
 | |
| 
 | |
| 	set_aabb(_aabb);
 | |
| 
 | |
| #else
 | |
| 	PoolVector<_VolumeSW_BVH_Element> bvh_array;
 | |
| 	bvh_array.resize(src_face_count);
 | |
| 
 | |
| 	PoolVector<_VolumeSW_BVH_Element>::Write bvhw = bvh_array.write();
 | |
| 	_VolumeSW_BVH_Element *bvh_arrayw = bvhw.ptr();
 | |
| 
 | |
| 	faces.resize(src_face_count);
 | |
| 	PoolVector<Face>::Write w = faces.write();
 | |
| 	Face *facesw = w.ptr();
 | |
| 
 | |
| 	vertices.resize(src_face_count * 3);
 | |
| 
 | |
| 	PoolVector<Vector3>::Write vw = vertices.write();
 | |
| 	Vector3 *verticesw = vw.ptr();
 | |
| 
 | |
| 	Rect3 _aabb;
 | |
| 
 | |
| 	for (int i = 0; i < src_face_count; i++) {
 | |
| 
 | |
| 		Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]);
 | |
| 
 | |
| 		bvh_arrayw[i].aabb = face.get_aabb();
 | |
| 		bvh_arrayw[i].center = bvh_arrayw[i].aabb.position + bvh_arrayw[i].aabb.size * 0.5;
 | |
| 		bvh_arrayw[i].face_index = i;
 | |
| 		facesw[i].indices[0] = i * 3 + 0;
 | |
| 		facesw[i].indices[1] = i * 3 + 1;
 | |
| 		facesw[i].indices[2] = i * 3 + 2;
 | |
| 		facesw[i].normal = face.get_plane().normal;
 | |
| 		verticesw[i * 3 + 0] = face.vertex[0];
 | |
| 		verticesw[i * 3 + 1] = face.vertex[1];
 | |
| 		verticesw[i * 3 + 2] = face.vertex[2];
 | |
| 		if (i == 0)
 | |
| 			_aabb = bvh_arrayw[i].aabb;
 | |
| 		else
 | |
| 			_aabb.merge_with(bvh_arrayw[i].aabb);
 | |
| 	}
 | |
| 
 | |
| 	w = PoolVector<Face>::Write();
 | |
| 	vw = PoolVector<Vector3>::Write();
 | |
| 
 | |
| 	int count = 0;
 | |
| 	_VolumeSW_BVH *bvh_tree = _volume_sw_build_bvh(bvh_arrayw, src_face_count, count);
 | |
| 
 | |
| 	bvh.resize(count + 1);
 | |
| 
 | |
| 	PoolVector<BVH>::Write bvhw2 = bvh.write();
 | |
| 	BVH *bvh_arrayw2 = bvhw2.ptr();
 | |
| 
 | |
| 	int idx = 0;
 | |
| 	_fill_bvh(bvh_tree, bvh_arrayw2, idx);
 | |
| 
 | |
| 	configure(_aabb); // this type of shape has no margin
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ConcavePolygonShapeSW::set_data(const Variant &p_data) {
 | |
| 
 | |
| 	_setup(p_data);
 | |
| }
 | |
| 
 | |
| Variant ConcavePolygonShapeSW::get_data() const {
 | |
| 
 | |
| 	return get_faces();
 | |
| }
 | |
| 
 | |
| ConcavePolygonShapeSW::ConcavePolygonShapeSW() {
 | |
| }
 | |
| 
 | |
| /* HEIGHT MAP SHAPE */
 | |
| 
 | |
| PoolVector<real_t> HeightMapShapeSW::get_heights() const {
 | |
| 
 | |
| 	return heights;
 | |
| }
 | |
| int HeightMapShapeSW::get_width() const {
 | |
| 
 | |
| 	return width;
 | |
| }
 | |
| int HeightMapShapeSW::get_depth() const {
 | |
| 
 | |
| 	return depth;
 | |
| }
 | |
| real_t HeightMapShapeSW::get_cell_size() const {
 | |
| 
 | |
| 	return cell_size;
 | |
| }
 | |
| 
 | |
| void HeightMapShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
 | |
| 
 | |
| 	//not very useful, but not very used either
 | |
| 	p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal, 0), r_min, r_max);
 | |
| }
 | |
| 
 | |
| Vector3 HeightMapShapeSW::get_support(const Vector3 &p_normal) const {
 | |
| 
 | |
| 	//not very useful, but not very used either
 | |
| 	return get_aabb().get_support(p_normal);
 | |
| }
 | |
| 
 | |
| bool HeightMapShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal) const {
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool HeightMapShapeSW::intersect_point(const Vector3 &p_point) const {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| Vector3 HeightMapShapeSW::get_closest_point_to(const Vector3 &p_point) const {
 | |
| 
 | |
| 	return Vector3();
 | |
| }
 | |
| 
 | |
| void HeightMapShapeSW::cull(const Rect3 &p_local_aabb, Callback p_callback, void *p_userdata) const {
 | |
| }
 | |
| 
 | |
| Vector3 HeightMapShapeSW::get_moment_of_inertia(real_t p_mass) const {
 | |
| 
 | |
| 	// use crappy AABB approximation
 | |
| 	Vector3 extents = get_aabb().size * 0.5;
 | |
| 
 | |
| 	return Vector3(
 | |
| 			(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
 | |
| 			(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
 | |
| 			(p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y));
 | |
| }
 | |
| 
 | |
| void HeightMapShapeSW::_setup(PoolVector<real_t> p_heights, int p_width, int p_depth, real_t p_cell_size) {
 | |
| 
 | |
| 	heights = p_heights;
 | |
| 	width = p_width;
 | |
| 	depth = p_depth;
 | |
| 	cell_size = p_cell_size;
 | |
| 
 | |
| 	PoolVector<real_t>::Read r = heights.read();
 | |
| 
 | |
| 	Rect3 aabb;
 | |
| 
 | |
| 	for (int i = 0; i < depth; i++) {
 | |
| 
 | |
| 		for (int j = 0; j < width; j++) {
 | |
| 
 | |
| 			real_t h = r[i * width + j];
 | |
| 
 | |
| 			Vector3 pos(j * cell_size, h, i * cell_size);
 | |
| 			if (i == 0 || j == 0)
 | |
| 				aabb.position = pos;
 | |
| 			else
 | |
| 				aabb.expand_to(pos);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	configure(aabb);
 | |
| }
 | |
| 
 | |
| void HeightMapShapeSW::set_data(const Variant &p_data) {
 | |
| 
 | |
| 	ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY);
 | |
| 	Dictionary d = p_data;
 | |
| 	ERR_FAIL_COND(!d.has("width"));
 | |
| 	ERR_FAIL_COND(!d.has("depth"));
 | |
| 	ERR_FAIL_COND(!d.has("cell_size"));
 | |
| 	ERR_FAIL_COND(!d.has("heights"));
 | |
| 
 | |
| 	int width = d["width"];
 | |
| 	int depth = d["depth"];
 | |
| 	real_t cell_size = d["cell_size"];
 | |
| 	PoolVector<real_t> heights = d["heights"];
 | |
| 
 | |
| 	ERR_FAIL_COND(width <= 0);
 | |
| 	ERR_FAIL_COND(depth <= 0);
 | |
| 	ERR_FAIL_COND(cell_size <= CMP_EPSILON);
 | |
| 	ERR_FAIL_COND(heights.size() != (width * depth));
 | |
| 	_setup(heights, width, depth, cell_size);
 | |
| }
 | |
| 
 | |
| Variant HeightMapShapeSW::get_data() const {
 | |
| 
 | |
| 	ERR_FAIL_V(Variant());
 | |
| }
 | |
| 
 | |
| HeightMapShapeSW::HeightMapShapeSW() {
 | |
| 
 | |
| 	width = 0;
 | |
| 	depth = 0;
 | |
| 	cell_size = 0;
 | |
| }
 | 
