mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			881 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			881 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  worker_thread_pool.cpp                                                */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #include "worker_thread_pool.h"
 | |
| 
 | |
| #include "core/object/script_language.h"
 | |
| #include "core/os/os.h"
 | |
| #include "core/os/safe_binary_mutex.h"
 | |
| #include "core/os/thread_safe.h"
 | |
| 
 | |
| WorkerThreadPool::Task *const WorkerThreadPool::ThreadData::YIELDING = (Task *)1;
 | |
| 
 | |
| HashMap<StringName, WorkerThreadPool *> WorkerThreadPool::named_pools;
 | |
| 
 | |
| void WorkerThreadPool::Task::free_template_userdata() {
 | |
| 	ERR_FAIL_NULL(template_userdata);
 | |
| 	ERR_FAIL_NULL(native_func_userdata);
 | |
| 	BaseTemplateUserdata *btu = (BaseTemplateUserdata *)native_func_userdata;
 | |
| 	memdelete(btu);
 | |
| }
 | |
| 
 | |
| WorkerThreadPool *WorkerThreadPool::singleton = nullptr;
 | |
| 
 | |
| #ifdef THREADS_ENABLED
 | |
| thread_local WorkerThreadPool::UnlockableLocks WorkerThreadPool::unlockable_locks[MAX_UNLOCKABLE_LOCKS];
 | |
| #endif
 | |
| 
 | |
| void WorkerThreadPool::_process_task(Task *p_task) {
 | |
| #ifdef THREADS_ENABLED
 | |
| 	int pool_thread_index = thread_ids[Thread::get_caller_id()];
 | |
| 	ThreadData &curr_thread = threads[pool_thread_index];
 | |
| 	Task *prev_task = nullptr; // In case this is recursively called.
 | |
| 
 | |
| 	bool safe_for_nodes_backup = is_current_thread_safe_for_nodes();
 | |
| 	CallQueue *call_queue_backup = MessageQueue::get_singleton() != MessageQueue::get_main_singleton() ? MessageQueue::get_singleton() : nullptr;
 | |
| 
 | |
| 	{
 | |
| 		// Tasks must start with these at default values. They are free to set-and-forget otherwise.
 | |
| 		set_current_thread_safe_for_nodes(false);
 | |
| 		MessageQueue::set_thread_singleton_override(nullptr);
 | |
| 
 | |
| 		// Since the WorkerThreadPool is started before the script server,
 | |
| 		// its pre-created threads can't have ScriptServer::thread_enter() called on them early.
 | |
| 		// Therefore, we do it late at the first opportunity, so in case the task
 | |
| 		// about to be run uses scripting, guarantees are held.
 | |
| 		ScriptServer::thread_enter();
 | |
| 
 | |
| 		task_mutex.lock();
 | |
| 		p_task->pool_thread_index = pool_thread_index;
 | |
| 		prev_task = curr_thread.current_task;
 | |
| 		curr_thread.current_task = p_task;
 | |
| 		if (p_task->pending_notify_yield_over) {
 | |
| 			curr_thread.yield_is_over = true;
 | |
| 		}
 | |
| 		task_mutex.unlock();
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef THREADS_ENABLED
 | |
| 	bool low_priority = p_task->low_priority;
 | |
| #endif
 | |
| 
 | |
| 	if (p_task->group) {
 | |
| 		// Handling a group
 | |
| 		bool do_post = false;
 | |
| 
 | |
| 		while (true) {
 | |
| 			uint32_t work_index = p_task->group->index.postincrement();
 | |
| 
 | |
| 			if (work_index >= p_task->group->max) {
 | |
| 				break;
 | |
| 			}
 | |
| 			if (p_task->native_group_func) {
 | |
| 				p_task->native_group_func(p_task->native_func_userdata, work_index);
 | |
| 			} else if (p_task->template_userdata) {
 | |
| 				p_task->template_userdata->callback_indexed(work_index);
 | |
| 			} else {
 | |
| 				p_task->callable.call(work_index);
 | |
| 			}
 | |
| 
 | |
| 			// This is the only way to ensure posting is done when all tasks are really complete.
 | |
| 			uint32_t completed_amount = p_task->group->completed_index.increment();
 | |
| 
 | |
| 			if (completed_amount == p_task->group->max) {
 | |
| 				do_post = true;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (do_post && p_task->template_userdata) {
 | |
| 			memdelete(p_task->template_userdata); // This is no longer needed at this point, so get rid of it.
 | |
| 		}
 | |
| 
 | |
| 		if (do_post) {
 | |
| 			p_task->group->done_semaphore.post();
 | |
| 			p_task->group->completed.set_to(true);
 | |
| 		}
 | |
| 		uint32_t max_users = p_task->group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
 | |
| 		uint32_t finished_users = p_task->group->finished.increment();
 | |
| 
 | |
| 		if (finished_users == max_users) {
 | |
| 			// Get rid of the group, because nobody else is using it.
 | |
| 			MutexLock task_lock(task_mutex);
 | |
| 			group_allocator.free(p_task->group);
 | |
| 		}
 | |
| 
 | |
| 		// For groups, tasks get rid of themselves.
 | |
| 
 | |
| 		task_mutex.lock();
 | |
| 		task_allocator.free(p_task);
 | |
| 	} else {
 | |
| 		if (p_task->native_func) {
 | |
| 			p_task->native_func(p_task->native_func_userdata);
 | |
| 		} else if (p_task->template_userdata) {
 | |
| 			p_task->template_userdata->callback();
 | |
| 			memdelete(p_task->template_userdata);
 | |
| 		} else {
 | |
| 			p_task->callable.call();
 | |
| 		}
 | |
| 
 | |
| 		task_mutex.lock();
 | |
| 		p_task->completed = true;
 | |
| 		p_task->pool_thread_index = -1;
 | |
| 		if (p_task->waiting_user) {
 | |
| 			p_task->done_semaphore.post(p_task->waiting_user);
 | |
| 		}
 | |
| 		// Let awaiters know.
 | |
| 		for (uint32_t i = 0; i < threads.size(); i++) {
 | |
| 			if (threads[i].awaited_task == p_task) {
 | |
| 				threads[i].cond_var.notify_one();
 | |
| 				threads[i].signaled = true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef THREADS_ENABLED
 | |
| 	{
 | |
| 		curr_thread.current_task = prev_task;
 | |
| 		if (low_priority) {
 | |
| 			low_priority_threads_used--;
 | |
| 
 | |
| 			if (_try_promote_low_priority_task()) {
 | |
| 				if (prev_task) { // Otherwise, this thread will catch it.
 | |
| 					_notify_threads(&curr_thread, 1, 0);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		task_mutex.unlock();
 | |
| 	}
 | |
| 
 | |
| 	set_current_thread_safe_for_nodes(safe_for_nodes_backup);
 | |
| 	MessageQueue::set_thread_singleton_override(call_queue_backup);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::_thread_function(void *p_user) {
 | |
| 	ThreadData *thread_data = (ThreadData *)p_user;
 | |
| 
 | |
| 	while (true) {
 | |
| 		Task *task_to_process = nullptr;
 | |
| 		{
 | |
| 			// Create the lock outside the inner loop so it isn't needlessly unlocked and relocked
 | |
| 			//  when no task was found to process, and the loop is re-entered.
 | |
| 			MutexLock lock(thread_data->pool->task_mutex);
 | |
| 
 | |
| 			while (true) {
 | |
| 				bool exit = thread_data->pool->_handle_runlevel(thread_data, lock);
 | |
| 				if (unlikely(exit)) {
 | |
| 					return;
 | |
| 				}
 | |
| 
 | |
| 				thread_data->signaled = false;
 | |
| 
 | |
| 				if (!thread_data->pool->task_queue.first()) {
 | |
| 					// There wasn't a task available yet.
 | |
| 					// Let's wait for the next notification, then recheck.
 | |
| 					thread_data->cond_var.wait(lock);
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				// Got a task to process! Remove it from the queue, then break into the task handling section.
 | |
| 				task_to_process = thread_data->pool->task_queue.first()->self();
 | |
| 				thread_data->pool->task_queue.remove(thread_data->pool->task_queue.first());
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		DEV_ASSERT(task_to_process);
 | |
| 		thread_data->pool->_process_task(task_to_process);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::_post_tasks(Task **p_tasks, uint32_t p_count, bool p_high_priority, MutexLock<BinaryMutex> &p_lock) {
 | |
| 	// Fall back to processing on the calling thread if there are no worker threads.
 | |
| 	// Separated into its own variable to make it easier to extend this logic
 | |
| 	// in custom builds.
 | |
| 	bool process_on_calling_thread = threads.size() == 0;
 | |
| 	if (process_on_calling_thread) {
 | |
| 		p_lock.temp_unlock();
 | |
| 		for (uint32_t i = 0; i < p_count; i++) {
 | |
| 			_process_task(p_tasks[i]);
 | |
| 		}
 | |
| 		p_lock.temp_relock();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (runlevel == RUNLEVEL_EXIT_LANGUAGES) {
 | |
| 		control_cond_var.wait(p_lock);
 | |
| 	}
 | |
| 
 | |
| 	uint32_t to_process = 0;
 | |
| 	uint32_t to_promote = 0;
 | |
| 
 | |
| 	ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr;
 | |
| 
 | |
| 	for (uint32_t i = 0; i < p_count; i++) {
 | |
| 		p_tasks[i]->low_priority = !p_high_priority;
 | |
| 		if (p_high_priority || low_priority_threads_used < max_low_priority_threads) {
 | |
| 			task_queue.add_last(&p_tasks[i]->task_elem);
 | |
| 			if (!p_high_priority) {
 | |
| 				low_priority_threads_used++;
 | |
| 			}
 | |
| 			to_process++;
 | |
| 		} else {
 | |
| 			// Too many threads using low priority, must go to queue.
 | |
| 			low_priority_task_queue.add_last(&p_tasks[i]->task_elem);
 | |
| 			to_promote++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	_notify_threads(caller_pool_thread, to_process, to_promote);
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::_notify_threads(const ThreadData *p_current_thread_data, uint32_t p_process_count, uint32_t p_promote_count) {
 | |
| 	uint32_t to_process = p_process_count;
 | |
| 	uint32_t to_promote = p_promote_count;
 | |
| 
 | |
| 	// This is where which threads are awaken is decided according to the workload.
 | |
| 	// Threads that will anyway have a chance to check the situation and process/promote tasks
 | |
| 	// are excluded from being notified. Others will be tried anyway to try to distribute load.
 | |
| 	// The current thread, if is a pool thread, is also excluded depending on the promoting/processing
 | |
| 	// needs because it will anyway loop again. However, it will contribute to decreasing the count,
 | |
| 	// which helps reducing sync traffic.
 | |
| 
 | |
| 	uint32_t thread_count = threads.size();
 | |
| 
 | |
| 	// First round:
 | |
| 	// 1. For processing: notify threads that are not running tasks, to keep the stacks as shallow as possible.
 | |
| 	// 2. For promoting: since it's exclusive with processing, we fin threads able to promote low-prio tasks now.
 | |
| 	for (uint32_t i = 0;
 | |
| 			i < thread_count && (to_process || to_promote);
 | |
| 			i++, notify_index = (notify_index + 1) % thread_count) {
 | |
| 		ThreadData &th = threads[notify_index];
 | |
| 
 | |
| 		if (th.signaled) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (th.current_task) {
 | |
| 			// Good thread for promoting low-prio?
 | |
| 			if (to_promote && th.awaited_task && th.current_task->low_priority) {
 | |
| 				if (likely(&th != p_current_thread_data)) {
 | |
| 					th.cond_var.notify_one();
 | |
| 				}
 | |
| 				th.signaled = true;
 | |
| 				to_promote--;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (to_process) {
 | |
| 				if (likely(&th != p_current_thread_data)) {
 | |
| 					th.cond_var.notify_one();
 | |
| 				}
 | |
| 				th.signaled = true;
 | |
| 				to_process--;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Second round:
 | |
| 	// For processing: if the first round wasn't enough, let's try now with threads processing tasks but currently awaiting.
 | |
| 	for (uint32_t i = 0;
 | |
| 			i < thread_count && to_process;
 | |
| 			i++, notify_index = (notify_index + 1) % thread_count) {
 | |
| 		ThreadData &th = threads[notify_index];
 | |
| 
 | |
| 		if (th.signaled) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (th.awaited_task) {
 | |
| 			if (likely(&th != p_current_thread_data)) {
 | |
| 				th.cond_var.notify_one();
 | |
| 			}
 | |
| 			th.signaled = true;
 | |
| 			to_process--;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool WorkerThreadPool::_try_promote_low_priority_task() {
 | |
| 	if (low_priority_task_queue.first()) {
 | |
| 		Task *low_prio_task = low_priority_task_queue.first()->self();
 | |
| 		low_priority_task_queue.remove(low_priority_task_queue.first());
 | |
| 		task_queue.add_last(&low_prio_task->task_elem);
 | |
| 		low_priority_threads_used++;
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::TaskID WorkerThreadPool::add_native_task(void (*p_func)(void *), void *p_userdata, bool p_high_priority, const String &p_description) {
 | |
| 	return _add_task(Callable(), p_func, p_userdata, nullptr, p_high_priority, p_description);
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::TaskID WorkerThreadPool::_add_task(const Callable &p_callable, void (*p_func)(void *), void *p_userdata, BaseTemplateUserdata *p_template_userdata, bool p_high_priority, const String &p_description) {
 | |
| 	MutexLock<BinaryMutex> lock(task_mutex);
 | |
| 
 | |
| 	// Get a free task
 | |
| 	Task *task = task_allocator.alloc();
 | |
| 	TaskID id = last_task++;
 | |
| 	task->self = id;
 | |
| 	task->callable = p_callable;
 | |
| 	task->native_func = p_func;
 | |
| 	task->native_func_userdata = p_userdata;
 | |
| 	task->description = p_description;
 | |
| 	task->template_userdata = p_template_userdata;
 | |
| 	tasks.insert(id, task);
 | |
| 
 | |
| 	_post_tasks(&task, 1, p_high_priority, lock);
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::TaskID WorkerThreadPool::add_task(const Callable &p_action, bool p_high_priority, const String &p_description) {
 | |
| 	return _add_task(p_action, nullptr, nullptr, nullptr, p_high_priority, p_description);
 | |
| }
 | |
| 
 | |
| bool WorkerThreadPool::is_task_completed(TaskID p_task_id) const {
 | |
| 	MutexLock task_lock(task_mutex);
 | |
| 	const Task *const *taskp = tasks.getptr(p_task_id);
 | |
| 	if (!taskp) {
 | |
| 		ERR_FAIL_V_MSG(false, "Invalid Task ID"); // Invalid task
 | |
| 	}
 | |
| 
 | |
| 	return (*taskp)->completed;
 | |
| }
 | |
| 
 | |
| Error WorkerThreadPool::wait_for_task_completion(TaskID p_task_id) {
 | |
| 	task_mutex.lock();
 | |
| 	Task **taskp = tasks.getptr(p_task_id);
 | |
| 	if (!taskp) {
 | |
| 		task_mutex.unlock();
 | |
| 		ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Invalid Task ID"); // Invalid task
 | |
| 	}
 | |
| 	Task *task = *taskp;
 | |
| 
 | |
| 	if (task->completed) {
 | |
| 		if (task->waiting_pool == 0 && task->waiting_user == 0) {
 | |
| 			tasks.erase(p_task_id);
 | |
| 			task_allocator.free(task);
 | |
| 		}
 | |
| 		task_mutex.unlock();
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr;
 | |
| 	if (caller_pool_thread && p_task_id <= caller_pool_thread->current_task->self) {
 | |
| 		// Deadlock prevention:
 | |
| 		// When a pool thread wants to wait for an older task, the following situations can happen:
 | |
| 		// 1. Awaited task is deep in the stack of the awaiter.
 | |
| 		// 2. A group of awaiter threads end up depending on some tasks buried in the stack
 | |
| 		//    of their worker threads in such a way that progress can't be made.
 | |
| 		// Both would entail a deadlock. Some may be handled here in the WorkerThreadPool
 | |
| 		// with some extra logic and bookkeeping. However, there would still be unavoidable
 | |
| 		// cases of deadlock because of the way waiting threads process outstanding tasks.
 | |
| 		// Taking into account there's no feasible solution for every possible case
 | |
| 		// with the current design, we just simply reject attempts to await on older tasks,
 | |
| 		// with a specific error code that signals the situation so the caller can handle it.
 | |
| 		task_mutex.unlock();
 | |
| 		return ERR_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (caller_pool_thread) {
 | |
| 		task->waiting_pool++;
 | |
| 	} else {
 | |
| 		task->waiting_user++;
 | |
| 	}
 | |
| 
 | |
| 	if (caller_pool_thread) {
 | |
| 		task_mutex.unlock();
 | |
| 		_wait_collaboratively(caller_pool_thread, task);
 | |
| 		task_mutex.lock();
 | |
| 		task->waiting_pool--;
 | |
| 		if (task->waiting_pool == 0 && task->waiting_user == 0) {
 | |
| 			tasks.erase(p_task_id);
 | |
| 			task_allocator.free(task);
 | |
| 		}
 | |
| 	} else {
 | |
| 		task_mutex.unlock();
 | |
| 		task->done_semaphore.wait();
 | |
| 		task_mutex.lock();
 | |
| 		task->waiting_user--;
 | |
| 		if (task->waiting_pool == 0 && task->waiting_user == 0) {
 | |
| 			tasks.erase(p_task_id);
 | |
| 			task_allocator.free(task);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	task_mutex.unlock();
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::_lock_unlockable_mutexes() {
 | |
| #ifdef THREADS_ENABLED
 | |
| 	for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) {
 | |
| 		if (unlockable_locks[i].ulock) {
 | |
| 			unlockable_locks[i].ulock->lock();
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::_unlock_unlockable_mutexes() {
 | |
| #ifdef THREADS_ENABLED
 | |
| 	for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) {
 | |
| 		if (unlockable_locks[i].ulock) {
 | |
| 			unlockable_locks[i].ulock->unlock();
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::_wait_collaboratively(ThreadData *p_caller_pool_thread, Task *p_task) {
 | |
| 	// Keep processing tasks until the condition to stop waiting is met.
 | |
| 
 | |
| 	while (true) {
 | |
| 		Task *task_to_process = nullptr;
 | |
| 		bool relock_unlockables = false;
 | |
| 		{
 | |
| 			MutexLock lock(task_mutex);
 | |
| 
 | |
| 			bool was_signaled = p_caller_pool_thread->signaled;
 | |
| 			p_caller_pool_thread->signaled = false;
 | |
| 
 | |
| 			bool exit = _handle_runlevel(p_caller_pool_thread, lock);
 | |
| 			if (unlikely(exit)) {
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			bool wait_is_over = false;
 | |
| 			if (unlikely(p_task == ThreadData::YIELDING)) {
 | |
| 				if (p_caller_pool_thread->yield_is_over) {
 | |
| 					p_caller_pool_thread->yield_is_over = false;
 | |
| 					wait_is_over = true;
 | |
| 				}
 | |
| 			} else {
 | |
| 				if (p_task->completed) {
 | |
| 					wait_is_over = true;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (wait_is_over) {
 | |
| 				if (was_signaled) {
 | |
| 					// This thread was awaken for some additional reason, but it's about to exit.
 | |
| 					// Let's find out what may be pending and forward the requests.
 | |
| 					uint32_t to_process = task_queue.first() ? 1 : 0;
 | |
| 					uint32_t to_promote = p_caller_pool_thread->current_task->low_priority && low_priority_task_queue.first() ? 1 : 0;
 | |
| 					if (to_process || to_promote) {
 | |
| 						// This thread must be left alone since it won't loop again.
 | |
| 						p_caller_pool_thread->signaled = true;
 | |
| 						_notify_threads(p_caller_pool_thread, to_process, to_promote);
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (p_caller_pool_thread->current_task->low_priority && low_priority_task_queue.first()) {
 | |
| 				if (_try_promote_low_priority_task()) {
 | |
| 					_notify_threads(p_caller_pool_thread, 1, 0);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (p_caller_pool_thread->pool->task_queue.first()) {
 | |
| 				task_to_process = task_queue.first()->self();
 | |
| 				task_queue.remove(task_queue.first());
 | |
| 			}
 | |
| 
 | |
| 			if (!task_to_process) {
 | |
| 				p_caller_pool_thread->awaited_task = p_task;
 | |
| 
 | |
| 				if (this == singleton) {
 | |
| 					_unlock_unlockable_mutexes();
 | |
| 				}
 | |
| 				relock_unlockables = true;
 | |
| 
 | |
| 				p_caller_pool_thread->cond_var.wait(lock);
 | |
| 
 | |
| 				p_caller_pool_thread->awaited_task = nullptr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (relock_unlockables && this == singleton) {
 | |
| 			_lock_unlockable_mutexes();
 | |
| 		}
 | |
| 
 | |
| 		if (task_to_process) {
 | |
| 			_process_task(task_to_process);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::_switch_runlevel(Runlevel p_runlevel) {
 | |
| 	DEV_ASSERT(p_runlevel > runlevel);
 | |
| 	runlevel = p_runlevel;
 | |
| 	memset(&runlevel_data, 0, sizeof(runlevel_data));
 | |
| 	for (uint32_t i = 0; i < threads.size(); i++) {
 | |
| 		threads[i].cond_var.notify_one();
 | |
| 		threads[i].signaled = true;
 | |
| 	}
 | |
| 	control_cond_var.notify_all();
 | |
| }
 | |
| 
 | |
| // Returns whether threads have to exit. This may perform the check about handling needed.
 | |
| bool WorkerThreadPool::_handle_runlevel(ThreadData *p_thread_data, MutexLock<BinaryMutex> &p_lock) {
 | |
| 	bool exit = false;
 | |
| 	switch (runlevel) {
 | |
| 		case RUNLEVEL_NORMAL: {
 | |
| 		} break;
 | |
| 		case RUNLEVEL_PRE_EXIT_LANGUAGES: {
 | |
| 			if (!p_thread_data->pre_exited_languages) {
 | |
| 				if (!task_queue.first() && !low_priority_task_queue.first()) {
 | |
| 					p_thread_data->pre_exited_languages = true;
 | |
| 					runlevel_data.pre_exit_languages.num_idle_threads++;
 | |
| 					control_cond_var.notify_all();
 | |
| 				}
 | |
| 			}
 | |
| 		} break;
 | |
| 		case RUNLEVEL_EXIT_LANGUAGES: {
 | |
| 			if (!p_thread_data->exited_languages) {
 | |
| 				p_lock.temp_unlock();
 | |
| 				ScriptServer::thread_exit();
 | |
| 				p_lock.temp_relock();
 | |
| 				p_thread_data->exited_languages = true;
 | |
| 				runlevel_data.exit_languages.num_exited_threads++;
 | |
| 				control_cond_var.notify_all();
 | |
| 			}
 | |
| 		} break;
 | |
| 		case RUNLEVEL_EXIT: {
 | |
| 			exit = true;
 | |
| 		} break;
 | |
| 	}
 | |
| 	return exit;
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::yield() {
 | |
| 	int th_index = get_thread_index();
 | |
| 	ERR_FAIL_COND_MSG(th_index == -1, "This function can only be called from a worker thread.");
 | |
| 	_wait_collaboratively(&threads[th_index], ThreadData::YIELDING);
 | |
| 
 | |
| 	task_mutex.lock();
 | |
| 	if (runlevel < RUNLEVEL_EXIT_LANGUAGES) {
 | |
| 		// If this long-lived task started before the scripting server was initialized,
 | |
| 		// now is a good time to have scripting languages ready for the current thread.
 | |
| 		// Otherwise, such a piece of setup won't happen unless another task has been
 | |
| 		// run during the collaborative wait.
 | |
| 		task_mutex.unlock();
 | |
| 		ScriptServer::thread_enter();
 | |
| 	} else {
 | |
| 		task_mutex.unlock();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::notify_yield_over(TaskID p_task_id) {
 | |
| 	MutexLock task_lock(task_mutex);
 | |
| 	Task **taskp = tasks.getptr(p_task_id);
 | |
| 	if (!taskp) {
 | |
| 		ERR_FAIL_MSG("Invalid Task ID.");
 | |
| 	}
 | |
| 	Task *task = *taskp;
 | |
| 	if (task->pool_thread_index == -1) { // Completed or not started yet.
 | |
| 		if (!task->completed) {
 | |
| 			// This avoids a race condition where a task is created and yield-over called before it's processed.
 | |
| 			task->pending_notify_yield_over = true;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ThreadData &td = threads[task->pool_thread_index];
 | |
| 	td.yield_is_over = true;
 | |
| 	td.signaled = true;
 | |
| 	td.cond_var.notify_one();
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::GroupID WorkerThreadPool::_add_group_task(const Callable &p_callable, void (*p_func)(void *, uint32_t), void *p_userdata, BaseTemplateUserdata *p_template_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
 | |
| 	ERR_FAIL_COND_V(p_elements < 0, INVALID_TASK_ID);
 | |
| 	if (p_tasks < 0) {
 | |
| 		p_tasks = MAX(1u, threads.size());
 | |
| 	}
 | |
| 
 | |
| 	MutexLock<BinaryMutex> lock(task_mutex);
 | |
| 
 | |
| 	Group *group = group_allocator.alloc();
 | |
| 	GroupID id = last_task++;
 | |
| 	group->max = p_elements;
 | |
| 	group->self = id;
 | |
| 
 | |
| 	Task **tasks_posted = nullptr;
 | |
| 	if (p_elements == 0) {
 | |
| 		// Should really not call it with zero Elements, but at least it should work.
 | |
| 		group->completed.set_to(true);
 | |
| 		group->done_semaphore.post();
 | |
| 		group->tasks_used = 0;
 | |
| 		p_tasks = 0;
 | |
| 		if (p_template_userdata) {
 | |
| 			memdelete(p_template_userdata);
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		group->tasks_used = p_tasks;
 | |
| 		tasks_posted = (Task **)alloca(sizeof(Task *) * p_tasks);
 | |
| 		for (int i = 0; i < p_tasks; i++) {
 | |
| 			Task *task = task_allocator.alloc();
 | |
| 			task->native_group_func = p_func;
 | |
| 			task->native_func_userdata = p_userdata;
 | |
| 			task->description = p_description;
 | |
| 			task->group = group;
 | |
| 			task->callable = p_callable;
 | |
| 			task->template_userdata = p_template_userdata;
 | |
| 			tasks_posted[i] = task;
 | |
| 			// No task ID is used.
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	groups[id] = group;
 | |
| 
 | |
| 	_post_tasks(tasks_posted, p_tasks, p_high_priority, lock);
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::GroupID WorkerThreadPool::add_native_group_task(void (*p_func)(void *, uint32_t), void *p_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
 | |
| 	return _add_group_task(Callable(), p_func, p_userdata, nullptr, p_elements, p_tasks, p_high_priority, p_description);
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::GroupID WorkerThreadPool::add_group_task(const Callable &p_action, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
 | |
| 	return _add_group_task(p_action, nullptr, nullptr, nullptr, p_elements, p_tasks, p_high_priority, p_description);
 | |
| }
 | |
| 
 | |
| uint32_t WorkerThreadPool::get_group_processed_element_count(GroupID p_group) const {
 | |
| 	MutexLock task_lock(task_mutex);
 | |
| 	const Group *const *groupp = groups.getptr(p_group);
 | |
| 	if (!groupp) {
 | |
| 		ERR_FAIL_V_MSG(0, "Invalid Group ID");
 | |
| 	}
 | |
| 	return (*groupp)->completed_index.get();
 | |
| }
 | |
| bool WorkerThreadPool::is_group_task_completed(GroupID p_group) const {
 | |
| 	MutexLock task_lock(task_mutex);
 | |
| 	const Group *const *groupp = groups.getptr(p_group);
 | |
| 	if (!groupp) {
 | |
| 		ERR_FAIL_V_MSG(false, "Invalid Group ID");
 | |
| 	}
 | |
| 	return (*groupp)->completed.is_set();
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::wait_for_group_task_completion(GroupID p_group) {
 | |
| #ifdef THREADS_ENABLED
 | |
| 	task_mutex.lock();
 | |
| 	Group **groupp = groups.getptr(p_group);
 | |
| 	task_mutex.unlock();
 | |
| 	if (!groupp) {
 | |
| 		ERR_FAIL_MSG("Invalid Group ID.");
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		Group *group = *groupp;
 | |
| 
 | |
| 		if (this == singleton) {
 | |
| 			_unlock_unlockable_mutexes();
 | |
| 		}
 | |
| 		group->done_semaphore.wait();
 | |
| 		if (this == singleton) {
 | |
| 			_lock_unlockable_mutexes();
 | |
| 		}
 | |
| 
 | |
| 		uint32_t max_users = group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
 | |
| 		uint32_t finished_users = group->finished.increment(); // fetch happens before inc, so increment later.
 | |
| 
 | |
| 		if (finished_users == max_users) {
 | |
| 			// All tasks using this group are gone (finished before the group), so clear the group too.
 | |
| 			MutexLock task_lock(task_mutex);
 | |
| 			group_allocator.free(group);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	MutexLock task_lock(task_mutex); // This mutex is needed when Physics 2D and/or 3D is selected to run on a separate thread.
 | |
| 	groups.erase(p_group);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int WorkerThreadPool::get_thread_index() const {
 | |
| 	Thread::ID tid = Thread::get_caller_id();
 | |
| 	return thread_ids.has(tid) ? thread_ids[tid] : -1;
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::TaskID WorkerThreadPool::get_caller_task_id() const {
 | |
| 	int th_index = get_thread_index();
 | |
| 	if (th_index != -1 && threads[th_index].current_task) {
 | |
| 		return threads[th_index].current_task->self;
 | |
| 	} else {
 | |
| 		return INVALID_TASK_ID;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef THREADS_ENABLED
 | |
| uint32_t WorkerThreadPool::_thread_enter_unlock_allowance_zone(THREADING_NAMESPACE::unique_lock<THREADING_NAMESPACE::mutex> &p_ulock) {
 | |
| 	for (uint32_t i = 0; i < MAX_UNLOCKABLE_LOCKS; i++) {
 | |
| 		DEV_ASSERT((bool)unlockable_locks[i].ulock == (bool)unlockable_locks[i].rc);
 | |
| 		if (unlockable_locks[i].ulock == &p_ulock) {
 | |
| 			// Already registered in the current thread.
 | |
| 			unlockable_locks[i].rc++;
 | |
| 			return i;
 | |
| 		} else if (!unlockable_locks[i].ulock) {
 | |
| 			unlockable_locks[i].ulock = &p_ulock;
 | |
| 			unlockable_locks[i].rc = 1;
 | |
| 			return i;
 | |
| 		}
 | |
| 	}
 | |
| 	ERR_FAIL_V_MSG(UINT32_MAX, "No more unlockable lock slots available. Engine bug.");
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::thread_exit_unlock_allowance_zone(uint32_t p_zone_id) {
 | |
| 	DEV_ASSERT(unlockable_locks[p_zone_id].ulock && unlockable_locks[p_zone_id].rc);
 | |
| 	unlockable_locks[p_zone_id].rc--;
 | |
| 	if (unlockable_locks[p_zone_id].rc == 0) {
 | |
| 		unlockable_locks[p_zone_id].ulock = nullptr;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void WorkerThreadPool::init(int p_thread_count, float p_low_priority_task_ratio) {
 | |
| 	ERR_FAIL_COND(threads.size() > 0);
 | |
| 
 | |
| 	runlevel = RUNLEVEL_NORMAL;
 | |
| 
 | |
| 	if (p_thread_count < 0) {
 | |
| 		p_thread_count = OS::get_singleton()->get_default_thread_pool_size();
 | |
| 	}
 | |
| 
 | |
| 	max_low_priority_threads = CLAMP(p_thread_count * p_low_priority_task_ratio, 1, p_thread_count - 1);
 | |
| 
 | |
| 	print_verbose(vformat("WorkerThreadPool: %d threads, %d max low-priority.", p_thread_count, max_low_priority_threads));
 | |
| 
 | |
| 	threads.resize(p_thread_count);
 | |
| 
 | |
| 	for (uint32_t i = 0; i < threads.size(); i++) {
 | |
| 		threads[i].index = i;
 | |
| 		threads[i].pool = this;
 | |
| 		threads[i].thread.start(&WorkerThreadPool::_thread_function, &threads[i]);
 | |
| 		thread_ids.insert(threads[i].thread.get_id(), i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::exit_languages_threads() {
 | |
| 	if (threads.size() == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	MutexLock lock(task_mutex);
 | |
| 
 | |
| 	// Wait until all threads are idle.
 | |
| 	_switch_runlevel(RUNLEVEL_PRE_EXIT_LANGUAGES);
 | |
| 	while (runlevel_data.pre_exit_languages.num_idle_threads != threads.size()) {
 | |
| 		control_cond_var.wait(lock);
 | |
| 	}
 | |
| 
 | |
| 	// Wait until all threads have detached from scripting languages.
 | |
| 	_switch_runlevel(RUNLEVEL_EXIT_LANGUAGES);
 | |
| 	while (runlevel_data.exit_languages.num_exited_threads != threads.size()) {
 | |
| 		control_cond_var.wait(lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::finish() {
 | |
| 	if (threads.size() == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		MutexLock lock(task_mutex);
 | |
| 		SelfList<Task> *E = low_priority_task_queue.first();
 | |
| 		while (E) {
 | |
| 			print_error("Task waiting was never re-claimed: " + E->self()->description);
 | |
| 			E = E->next();
 | |
| 		}
 | |
| 
 | |
| 		_switch_runlevel(RUNLEVEL_EXIT);
 | |
| 	}
 | |
| 
 | |
| 	for (ThreadData &data : threads) {
 | |
| 		data.thread.wait_to_finish();
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		MutexLock lock(task_mutex);
 | |
| 		for (KeyValue<TaskID, Task *> &E : tasks) {
 | |
| 			task_allocator.free(E.value);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	threads.clear();
 | |
| }
 | |
| 
 | |
| void WorkerThreadPool::_bind_methods() {
 | |
| 	ClassDB::bind_method(D_METHOD("add_task", "action", "high_priority", "description"), &WorkerThreadPool::add_task, DEFVAL(false), DEFVAL(String()));
 | |
| 	ClassDB::bind_method(D_METHOD("is_task_completed", "task_id"), &WorkerThreadPool::is_task_completed);
 | |
| 	ClassDB::bind_method(D_METHOD("wait_for_task_completion", "task_id"), &WorkerThreadPool::wait_for_task_completion);
 | |
| 
 | |
| 	ClassDB::bind_method(D_METHOD("add_group_task", "action", "elements", "tasks_needed", "high_priority", "description"), &WorkerThreadPool::add_group_task, DEFVAL(-1), DEFVAL(false), DEFVAL(String()));
 | |
| 	ClassDB::bind_method(D_METHOD("is_group_task_completed", "group_id"), &WorkerThreadPool::is_group_task_completed);
 | |
| 	ClassDB::bind_method(D_METHOD("get_group_processed_element_count", "group_id"), &WorkerThreadPool::get_group_processed_element_count);
 | |
| 	ClassDB::bind_method(D_METHOD("wait_for_group_task_completion", "group_id"), &WorkerThreadPool::wait_for_group_task_completion);
 | |
| }
 | |
| 
 | |
| WorkerThreadPool *WorkerThreadPool::get_named_pool(const StringName &p_name) {
 | |
| 	WorkerThreadPool **pool_ptr = named_pools.getptr(p_name);
 | |
| 	if (pool_ptr) {
 | |
| 		return *pool_ptr;
 | |
| 	} else {
 | |
| 		WorkerThreadPool *pool = memnew(WorkerThreadPool(false));
 | |
| 		pool->init();
 | |
| 		named_pools[p_name] = pool;
 | |
| 		return pool;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::WorkerThreadPool(bool p_singleton) {
 | |
| 	if (p_singleton) {
 | |
| 		singleton = this;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| WorkerThreadPool::~WorkerThreadPool() {
 | |
| 	finish();
 | |
| 
 | |
| 	if (this == singleton) {
 | |
| 		singleton = nullptr;
 | |
| 		for (KeyValue<StringName, WorkerThreadPool *> &E : named_pools) {
 | |
| 			E.value->finish();
 | |
| 			memdelete(E.value);
 | |
| 		}
 | |
| 		named_pools.clear();
 | |
| 	}
 | |
| }
 | 
