mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-04 07:31:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			384 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			384 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*************************************************************************/
 | 
						|
/*  geometry.cpp                                                         */
 | 
						|
/*************************************************************************/
 | 
						|
/*                       This file is part of:                           */
 | 
						|
/*                           GODOT ENGINE                                */
 | 
						|
/*                      https://godotengine.org                          */
 | 
						|
/*************************************************************************/
 | 
						|
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur.                 */
 | 
						|
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md).   */
 | 
						|
/*                                                                       */
 | 
						|
/* Permission is hereby granted, free of charge, to any person obtaining */
 | 
						|
/* a copy of this software and associated documentation files (the       */
 | 
						|
/* "Software"), to deal in the Software without restriction, including   */
 | 
						|
/* without limitation the rights to use, copy, modify, merge, publish,   */
 | 
						|
/* distribute, sublicense, and/or sell copies of the Software, and to    */
 | 
						|
/* permit persons to whom the Software is furnished to do so, subject to */
 | 
						|
/* the following conditions:                                             */
 | 
						|
/*                                                                       */
 | 
						|
/* The above copyright notice and this permission notice shall be        */
 | 
						|
/* included in all copies or substantial portions of the Software.       */
 | 
						|
/*                                                                       */
 | 
						|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | 
						|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | 
						|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | 
						|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | 
						|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | 
						|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | 
						|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | 
						|
/*************************************************************************/
 | 
						|
 | 
						|
#include "geometry_2d.h"
 | 
						|
 | 
						|
#include "thirdparty/misc/clipper.hpp"
 | 
						|
#include "thirdparty/misc/triangulator.h"
 | 
						|
#define STB_RECT_PACK_IMPLEMENTATION
 | 
						|
#include "thirdparty/misc/stb_rect_pack.h"
 | 
						|
 | 
						|
#define SCALE_FACTOR 100000.0 // Based on CMP_EPSILON.
 | 
						|
 | 
						|
Vector<Vector<Vector2>> Geometry2D::decompose_polygon_in_convex(Vector<Point2> polygon) {
 | 
						|
	Vector<Vector<Vector2>> decomp;
 | 
						|
	List<TriangulatorPoly> in_poly, out_poly;
 | 
						|
 | 
						|
	TriangulatorPoly inp;
 | 
						|
	inp.Init(polygon.size());
 | 
						|
	for (int i = 0; i < polygon.size(); i++) {
 | 
						|
		inp.GetPoint(i) = polygon[i];
 | 
						|
	}
 | 
						|
	inp.SetOrientation(TRIANGULATOR_CCW);
 | 
						|
	in_poly.push_back(inp);
 | 
						|
	TriangulatorPartition tpart;
 | 
						|
	if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) { // Failed.
 | 
						|
		ERR_PRINT("Convex decomposing failed!");
 | 
						|
		return decomp;
 | 
						|
	}
 | 
						|
 | 
						|
	decomp.resize(out_poly.size());
 | 
						|
	int idx = 0;
 | 
						|
	for (List<TriangulatorPoly>::Element *I = out_poly.front(); I; I = I->next()) {
 | 
						|
		TriangulatorPoly &tp = I->get();
 | 
						|
 | 
						|
		decomp.write[idx].resize(tp.GetNumPoints());
 | 
						|
 | 
						|
		for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
 | 
						|
			decomp.write[idx].write[i] = tp.GetPoint(i);
 | 
						|
		}
 | 
						|
 | 
						|
		idx++;
 | 
						|
	}
 | 
						|
 | 
						|
	return decomp;
 | 
						|
}
 | 
						|
 | 
						|
struct _AtlasWorkRect {
 | 
						|
	Size2i s;
 | 
						|
	Point2i p;
 | 
						|
	int idx;
 | 
						|
	_FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; };
 | 
						|
};
 | 
						|
 | 
						|
struct _AtlasWorkRectResult {
 | 
						|
	Vector<_AtlasWorkRect> result;
 | 
						|
	int max_w;
 | 
						|
	int max_h;
 | 
						|
};
 | 
						|
 | 
						|
void Geometry2D::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
 | 
						|
	// Super simple, almost brute force scanline stacking fitter.
 | 
						|
	// It's pretty basic for now, but it tries to make sure that the aspect ratio of the
 | 
						|
	// resulting atlas is somehow square. This is necessary because video cards have limits.
 | 
						|
	// On texture size (usually 2048 or 4096), so the more square a texture, the more chances.
 | 
						|
	// It will work in every hardware.
 | 
						|
	// For example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
 | 
						|
	// 256x8192 atlas (won't work anywhere).
 | 
						|
 | 
						|
	ERR_FAIL_COND(p_rects.size() == 0);
 | 
						|
 | 
						|
	Vector<_AtlasWorkRect> wrects;
 | 
						|
	wrects.resize(p_rects.size());
 | 
						|
	for (int i = 0; i < p_rects.size(); i++) {
 | 
						|
		wrects.write[i].s = p_rects[i];
 | 
						|
		wrects.write[i].idx = i;
 | 
						|
	}
 | 
						|
	wrects.sort();
 | 
						|
	int widest = wrects[0].s.width;
 | 
						|
 | 
						|
	Vector<_AtlasWorkRectResult> results;
 | 
						|
 | 
						|
	for (int i = 0; i <= 12; i++) {
 | 
						|
		int w = 1 << i;
 | 
						|
		int max_h = 0;
 | 
						|
		int max_w = 0;
 | 
						|
		if (w < widest) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		Vector<int> hmax;
 | 
						|
		hmax.resize(w);
 | 
						|
		for (int j = 0; j < w; j++) {
 | 
						|
			hmax.write[j] = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		// Place them.
 | 
						|
		int ofs = 0;
 | 
						|
		int limit_h = 0;
 | 
						|
		for (int j = 0; j < wrects.size(); j++) {
 | 
						|
			if (ofs + wrects[j].s.width > w) {
 | 
						|
				ofs = 0;
 | 
						|
			}
 | 
						|
 | 
						|
			int from_y = 0;
 | 
						|
			for (int k = 0; k < wrects[j].s.width; k++) {
 | 
						|
				if (hmax[ofs + k] > from_y) {
 | 
						|
					from_y = hmax[ofs + k];
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			wrects.write[j].p.x = ofs;
 | 
						|
			wrects.write[j].p.y = from_y;
 | 
						|
			int end_h = from_y + wrects[j].s.height;
 | 
						|
			int end_w = ofs + wrects[j].s.width;
 | 
						|
			if (ofs == 0) {
 | 
						|
				limit_h = end_h;
 | 
						|
			}
 | 
						|
 | 
						|
			for (int k = 0; k < wrects[j].s.width; k++) {
 | 
						|
				hmax.write[ofs + k] = end_h;
 | 
						|
			}
 | 
						|
 | 
						|
			if (end_h > max_h) {
 | 
						|
				max_h = end_h;
 | 
						|
			}
 | 
						|
 | 
						|
			if (end_w > max_w) {
 | 
						|
				max_w = end_w;
 | 
						|
			}
 | 
						|
 | 
						|
			if (ofs == 0 || end_h > limit_h) { // While h limit not reached, keep stacking.
 | 
						|
				ofs += wrects[j].s.width;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		_AtlasWorkRectResult result;
 | 
						|
		result.result = wrects;
 | 
						|
		result.max_h = max_h;
 | 
						|
		result.max_w = max_w;
 | 
						|
		results.push_back(result);
 | 
						|
	}
 | 
						|
 | 
						|
	// Find the result with the best aspect ratio.
 | 
						|
 | 
						|
	int best = -1;
 | 
						|
	real_t best_aspect = 1e20;
 | 
						|
 | 
						|
	for (int i = 0; i < results.size(); i++) {
 | 
						|
		real_t h = next_power_of_2(results[i].max_h);
 | 
						|
		real_t w = next_power_of_2(results[i].max_w);
 | 
						|
		real_t aspect = h > w ? h / w : w / h;
 | 
						|
		if (aspect < best_aspect) {
 | 
						|
			best = i;
 | 
						|
			best_aspect = aspect;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	r_result.resize(p_rects.size());
 | 
						|
 | 
						|
	for (int i = 0; i < p_rects.size(); i++) {
 | 
						|
		r_result.write[results[best].result[i].idx] = results[best].result[i].p;
 | 
						|
	}
 | 
						|
 | 
						|
	r_size = Size2(results[best].max_w, results[best].max_h);
 | 
						|
}
 | 
						|
 | 
						|
Vector<Vector<Point2>> Geometry2D::_polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open) {
 | 
						|
	using namespace ClipperLib;
 | 
						|
 | 
						|
	ClipType op = ctUnion;
 | 
						|
 | 
						|
	switch (p_op) {
 | 
						|
		case OPERATION_UNION:
 | 
						|
			op = ctUnion;
 | 
						|
			break;
 | 
						|
		case OPERATION_DIFFERENCE:
 | 
						|
			op = ctDifference;
 | 
						|
			break;
 | 
						|
		case OPERATION_INTERSECTION:
 | 
						|
			op = ctIntersection;
 | 
						|
			break;
 | 
						|
		case OPERATION_XOR:
 | 
						|
			op = ctXor;
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	Path path_a, path_b;
 | 
						|
 | 
						|
	// Need to scale points (Clipper's requirement for robust computation).
 | 
						|
	for (int i = 0; i != p_polypath_a.size(); ++i) {
 | 
						|
		path_a << IntPoint(p_polypath_a[i].x * SCALE_FACTOR, p_polypath_a[i].y * SCALE_FACTOR);
 | 
						|
	}
 | 
						|
	for (int i = 0; i != p_polypath_b.size(); ++i) {
 | 
						|
		path_b << IntPoint(p_polypath_b[i].x * SCALE_FACTOR, p_polypath_b[i].y * SCALE_FACTOR);
 | 
						|
	}
 | 
						|
	Clipper clp;
 | 
						|
	clp.AddPath(path_a, ptSubject, !is_a_open); // Forward compatible with Clipper 10.0.0.
 | 
						|
	clp.AddPath(path_b, ptClip, true); // Polylines cannot be set as clip.
 | 
						|
 | 
						|
	Paths paths;
 | 
						|
 | 
						|
	if (is_a_open) {
 | 
						|
		PolyTree tree; // Needed to populate polylines.
 | 
						|
		clp.Execute(op, tree);
 | 
						|
		OpenPathsFromPolyTree(tree, paths);
 | 
						|
	} else {
 | 
						|
		clp.Execute(op, paths); // Works on closed polygons only.
 | 
						|
	}
 | 
						|
	// Have to scale points down now.
 | 
						|
	Vector<Vector<Point2>> polypaths;
 | 
						|
 | 
						|
	for (Paths::size_type i = 0; i < paths.size(); ++i) {
 | 
						|
		Vector<Vector2> polypath;
 | 
						|
 | 
						|
		const Path &scaled_path = paths[i];
 | 
						|
 | 
						|
		for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
 | 
						|
			polypath.push_back(Point2(
 | 
						|
					static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
 | 
						|
					static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
 | 
						|
		}
 | 
						|
		polypaths.push_back(polypath);
 | 
						|
	}
 | 
						|
	return polypaths;
 | 
						|
}
 | 
						|
 | 
						|
Vector<Vector<Point2>> Geometry2D::_polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
 | 
						|
	using namespace ClipperLib;
 | 
						|
 | 
						|
	JoinType jt = jtSquare;
 | 
						|
 | 
						|
	switch (p_join_type) {
 | 
						|
		case JOIN_SQUARE:
 | 
						|
			jt = jtSquare;
 | 
						|
			break;
 | 
						|
		case JOIN_ROUND:
 | 
						|
			jt = jtRound;
 | 
						|
			break;
 | 
						|
		case JOIN_MITER:
 | 
						|
			jt = jtMiter;
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	EndType et = etClosedPolygon;
 | 
						|
 | 
						|
	switch (p_end_type) {
 | 
						|
		case END_POLYGON:
 | 
						|
			et = etClosedPolygon;
 | 
						|
			break;
 | 
						|
		case END_JOINED:
 | 
						|
			et = etClosedLine;
 | 
						|
			break;
 | 
						|
		case END_BUTT:
 | 
						|
			et = etOpenButt;
 | 
						|
			break;
 | 
						|
		case END_SQUARE:
 | 
						|
			et = etOpenSquare;
 | 
						|
			break;
 | 
						|
		case END_ROUND:
 | 
						|
			et = etOpenRound;
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	ClipperOffset co(2.0, 0.25 * SCALE_FACTOR); // Defaults from ClipperOffset.
 | 
						|
	Path path;
 | 
						|
 | 
						|
	// Need to scale points (Clipper's requirement for robust computation).
 | 
						|
	for (int i = 0; i != p_polypath.size(); ++i) {
 | 
						|
		path << IntPoint(p_polypath[i].x * SCALE_FACTOR, p_polypath[i].y * SCALE_FACTOR);
 | 
						|
	}
 | 
						|
	co.AddPath(path, jt, et);
 | 
						|
 | 
						|
	Paths paths;
 | 
						|
	co.Execute(paths, p_delta * SCALE_FACTOR); // Inflate/deflate.
 | 
						|
 | 
						|
	// Have to scale points down now.
 | 
						|
	Vector<Vector<Point2>> polypaths;
 | 
						|
 | 
						|
	for (Paths::size_type i = 0; i < paths.size(); ++i) {
 | 
						|
		Vector<Vector2> polypath;
 | 
						|
 | 
						|
		const Path &scaled_path = paths[i];
 | 
						|
 | 
						|
		for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
 | 
						|
			polypath.push_back(Point2(
 | 
						|
					static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
 | 
						|
					static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
 | 
						|
		}
 | 
						|
		polypaths.push_back(polypath);
 | 
						|
	}
 | 
						|
	return polypaths;
 | 
						|
}
 | 
						|
 | 
						|
Vector<Point2i> Geometry2D::pack_rects(const Vector<Size2i> &p_sizes, const Size2i &p_atlas_size) {
 | 
						|
	Vector<stbrp_node> nodes;
 | 
						|
	nodes.resize(p_atlas_size.width);
 | 
						|
 | 
						|
	stbrp_context context;
 | 
						|
	stbrp_init_target(&context, p_atlas_size.width, p_atlas_size.height, nodes.ptrw(), p_atlas_size.width);
 | 
						|
 | 
						|
	Vector<stbrp_rect> rects;
 | 
						|
	rects.resize(p_sizes.size());
 | 
						|
 | 
						|
	for (int i = 0; i < p_sizes.size(); i++) {
 | 
						|
		rects.write[i].id = 0;
 | 
						|
		rects.write[i].w = p_sizes[i].width;
 | 
						|
		rects.write[i].h = p_sizes[i].height;
 | 
						|
		rects.write[i].x = 0;
 | 
						|
		rects.write[i].y = 0;
 | 
						|
		rects.write[i].was_packed = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	int res = stbrp_pack_rects(&context, rects.ptrw(), rects.size());
 | 
						|
	if (res == 0) { //pack failed
 | 
						|
		return Vector<Point2i>();
 | 
						|
	}
 | 
						|
 | 
						|
	Vector<Point2i> ret;
 | 
						|
	ret.resize(p_sizes.size());
 | 
						|
 | 
						|
	for (int i = 0; i < p_sizes.size(); i++) {
 | 
						|
		Point2i r(rects[i].x, rects[i].y);
 | 
						|
		ret.write[i] = r;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
Vector<Vector3i> Geometry2D::partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size) {
 | 
						|
	Vector<stbrp_node> nodes;
 | 
						|
	nodes.resize(p_atlas_size.width);
 | 
						|
	zeromem(nodes.ptrw(), sizeof(stbrp_node) * nodes.size());
 | 
						|
 | 
						|
	stbrp_context context;
 | 
						|
	stbrp_init_target(&context, p_atlas_size.width, p_atlas_size.height, nodes.ptrw(), p_atlas_size.width);
 | 
						|
 | 
						|
	Vector<stbrp_rect> rects;
 | 
						|
	rects.resize(p_sizes.size());
 | 
						|
 | 
						|
	for (int i = 0; i < p_sizes.size(); i++) {
 | 
						|
		rects.write[i].id = i;
 | 
						|
		rects.write[i].w = p_sizes[i].width;
 | 
						|
		rects.write[i].h = p_sizes[i].height;
 | 
						|
		rects.write[i].x = 0;
 | 
						|
		rects.write[i].y = 0;
 | 
						|
		rects.write[i].was_packed = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	stbrp_pack_rects(&context, rects.ptrw(), rects.size());
 | 
						|
 | 
						|
	Vector<Vector3i> ret;
 | 
						|
	ret.resize(p_sizes.size());
 | 
						|
 | 
						|
	for (int i = 0; i < p_sizes.size(); i++) {
 | 
						|
		ret.write[rects[i].id] = Vector3i(rects[i].x, rects[i].y, rects[i].was_packed != 0 ? 1 : 0);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 |