mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1055 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1055 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  basis.cpp                                                             */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #include "basis.h"
 | |
| 
 | |
| #include "core/math/math_funcs.h"
 | |
| #include "core/string/ustring.h"
 | |
| 
 | |
| #define cofac(row1, col1, row2, col2) \
 | |
| 	(rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1])
 | |
| 
 | |
| void Basis::invert() {
 | |
| 	real_t co[3] = {
 | |
| 		cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
 | |
| 	};
 | |
| 	real_t det = rows[0][0] * co[0] +
 | |
| 			rows[0][1] * co[1] +
 | |
| 			rows[0][2] * co[2];
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND(det == 0);
 | |
| #endif
 | |
| 	real_t s = 1.0f / det;
 | |
| 
 | |
| 	set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
 | |
| 			co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
 | |
| 			co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
 | |
| }
 | |
| 
 | |
| void Basis::orthonormalize() {
 | |
| 	// Gram-Schmidt Process
 | |
| 
 | |
| 	Vector3 x = get_column(0);
 | |
| 	Vector3 y = get_column(1);
 | |
| 	Vector3 z = get_column(2);
 | |
| 
 | |
| 	x.normalize();
 | |
| 	y = (y - x * (x.dot(y)));
 | |
| 	y.normalize();
 | |
| 	z = (z - x * (x.dot(z)) - y * (y.dot(z)));
 | |
| 	z.normalize();
 | |
| 
 | |
| 	set_column(0, x);
 | |
| 	set_column(1, y);
 | |
| 	set_column(2, z);
 | |
| }
 | |
| 
 | |
| Basis Basis::orthonormalized() const {
 | |
| 	Basis c = *this;
 | |
| 	c.orthonormalize();
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| void Basis::orthogonalize() {
 | |
| 	Vector3 scl = get_scale();
 | |
| 	orthonormalize();
 | |
| 	scale_local(scl);
 | |
| }
 | |
| 
 | |
| Basis Basis::orthogonalized() const {
 | |
| 	Basis c = *this;
 | |
| 	c.orthogonalize();
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| // Returns true if the basis vectors are orthogonal (perpendicular), so it has no skew or shear, and can be decomposed into rotation and scale.
 | |
| // See https://en.wikipedia.org/wiki/Orthogonal_basis
 | |
| bool Basis::is_orthogonal() const {
 | |
| 	const Vector3 x = get_column(0);
 | |
| 	const Vector3 y = get_column(1);
 | |
| 	const Vector3 z = get_column(2);
 | |
| 	return Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
 | |
| }
 | |
| 
 | |
| // Returns true if the basis vectors are orthonormal (orthogonal and normalized), so it has no scale, skew, or shear.
 | |
| // See https://en.wikipedia.org/wiki/Orthonormal_basis
 | |
| bool Basis::is_orthonormal() const {
 | |
| 	const Vector3 x = get_column(0);
 | |
| 	const Vector3 y = get_column(1);
 | |
| 	const Vector3 z = get_column(2);
 | |
| 	return Math::is_equal_approx(x.length_squared(), 1) && Math::is_equal_approx(y.length_squared(), 1) && Math::is_equal_approx(z.length_squared(), 1) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
 | |
| }
 | |
| 
 | |
| // Returns true if the basis is conformal (orthogonal, uniform scale, preserves angles and distance ratios).
 | |
| // See https://en.wikipedia.org/wiki/Conformal_linear_transformation
 | |
| bool Basis::is_conformal() const {
 | |
| 	const Vector3 x = get_column(0);
 | |
| 	const Vector3 y = get_column(1);
 | |
| 	const Vector3 z = get_column(2);
 | |
| 	const real_t x_len_sq = x.length_squared();
 | |
| 	return Math::is_equal_approx(x_len_sq, y.length_squared()) && Math::is_equal_approx(x_len_sq, z.length_squared()) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
 | |
| }
 | |
| 
 | |
| // Returns true if the basis only has diagonal elements, so it may only have scale or flip, but no rotation, skew, or shear.
 | |
| bool Basis::is_diagonal() const {
 | |
| 	return (
 | |
| 			Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) &&
 | |
| 			Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) &&
 | |
| 			Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1]));
 | |
| }
 | |
| 
 | |
| // Returns true if the basis is a pure rotation matrix, so it has no scale, skew, shear, or flip.
 | |
| bool Basis::is_rotation() const {
 | |
| 	return is_conformal() && Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON);
 | |
| }
 | |
| 
 | |
| #ifdef MATH_CHECKS
 | |
| // This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef.
 | |
| bool Basis::is_symmetric() const {
 | |
| 	if (!Math::is_equal_approx(rows[0][1], rows[1][0])) {
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (!Math::is_equal_approx(rows[0][2], rows[2][0])) {
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (!Math::is_equal_approx(rows[1][2], rows[2][1])) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| Basis Basis::diagonalize() {
 | |
| // NOTE: only implemented for symmetric matrices
 | |
| // with the Jacobi iterative method
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V(!is_symmetric(), Basis());
 | |
| #endif
 | |
| 	const int ite_max = 1024;
 | |
| 
 | |
| 	real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2];
 | |
| 
 | |
| 	int ite = 0;
 | |
| 	Basis acc_rot;
 | |
| 	while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) {
 | |
| 		real_t el01_2 = rows[0][1] * rows[0][1];
 | |
| 		real_t el02_2 = rows[0][2] * rows[0][2];
 | |
| 		real_t el12_2 = rows[1][2] * rows[1][2];
 | |
| 		// Find the pivot element
 | |
| 		int i, j;
 | |
| 		if (el01_2 > el02_2) {
 | |
| 			if (el12_2 > el01_2) {
 | |
| 				i = 1;
 | |
| 				j = 2;
 | |
| 			} else {
 | |
| 				i = 0;
 | |
| 				j = 1;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (el12_2 > el02_2) {
 | |
| 				i = 1;
 | |
| 				j = 2;
 | |
| 			} else {
 | |
| 				i = 0;
 | |
| 				j = 2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Compute the rotation angle
 | |
| 		real_t angle;
 | |
| 		if (Math::is_equal_approx(rows[j][j], rows[i][i])) {
 | |
| 			angle = Math::PI / 4;
 | |
| 		} else {
 | |
| 			angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i]));
 | |
| 		}
 | |
| 
 | |
| 		// Compute the rotation matrix
 | |
| 		Basis rot;
 | |
| 		rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle);
 | |
| 		rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle));
 | |
| 
 | |
| 		// Update the off matrix norm
 | |
| 		off_matrix_norm_2 -= rows[i][j] * rows[i][j];
 | |
| 
 | |
| 		// Apply the rotation
 | |
| 		*this = rot * *this * rot.transposed();
 | |
| 		acc_rot = rot * acc_rot;
 | |
| 	}
 | |
| 
 | |
| 	return acc_rot;
 | |
| }
 | |
| 
 | |
| Basis Basis::inverse() const {
 | |
| 	Basis inv = *this;
 | |
| 	inv.invert();
 | |
| 	return inv;
 | |
| }
 | |
| 
 | |
| void Basis::transpose() {
 | |
| 	SWAP(rows[0][1], rows[1][0]);
 | |
| 	SWAP(rows[0][2], rows[2][0]);
 | |
| 	SWAP(rows[1][2], rows[2][1]);
 | |
| }
 | |
| 
 | |
| Basis Basis::transposed() const {
 | |
| 	Basis tr = *this;
 | |
| 	tr.transpose();
 | |
| 	return tr;
 | |
| }
 | |
| 
 | |
| Basis Basis::from_scale(const Vector3 &p_scale) {
 | |
| 	return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z);
 | |
| }
 | |
| 
 | |
| // Multiplies the matrix from left by the scaling matrix: M -> S.M
 | |
| // See the comment for Basis::rotated for further explanation.
 | |
| void Basis::scale(const Vector3 &p_scale) {
 | |
| 	rows[0][0] *= p_scale.x;
 | |
| 	rows[0][1] *= p_scale.x;
 | |
| 	rows[0][2] *= p_scale.x;
 | |
| 	rows[1][0] *= p_scale.y;
 | |
| 	rows[1][1] *= p_scale.y;
 | |
| 	rows[1][2] *= p_scale.y;
 | |
| 	rows[2][0] *= p_scale.z;
 | |
| 	rows[2][1] *= p_scale.z;
 | |
| 	rows[2][2] *= p_scale.z;
 | |
| }
 | |
| 
 | |
| Basis Basis::scaled(const Vector3 &p_scale) const {
 | |
| 	Basis m = *this;
 | |
| 	m.scale(p_scale);
 | |
| 	return m;
 | |
| }
 | |
| 
 | |
| void Basis::scale_local(const Vector3 &p_scale) {
 | |
| 	// performs a scaling in object-local coordinate system:
 | |
| 	// M -> (M.S.Minv).M = M.S.
 | |
| 	*this = scaled_local(p_scale);
 | |
| }
 | |
| 
 | |
| void Basis::scale_orthogonal(const Vector3 &p_scale) {
 | |
| 	*this = scaled_orthogonal(p_scale);
 | |
| }
 | |
| 
 | |
| Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const {
 | |
| 	Basis m = *this;
 | |
| 	Vector3 s = Vector3(-1, -1, -1) + p_scale;
 | |
| 	bool sign = std::signbit(s.x + s.y + s.z);
 | |
| 	Basis b = m.orthonormalized();
 | |
| 	s = b.xform_inv(s);
 | |
| 	Vector3 dots;
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 			dots[j] += s[i] * Math::abs(m.get_column(i).normalized().dot(b.get_column(j)));
 | |
| 		}
 | |
| 	}
 | |
| 	if (sign != std::signbit(dots.x + dots.y + dots.z)) {
 | |
| 		dots = -dots;
 | |
| 	}
 | |
| 	m.scale_local(Vector3(1, 1, 1) + dots);
 | |
| 	return m;
 | |
| }
 | |
| 
 | |
| real_t Basis::get_uniform_scale() const {
 | |
| 	return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f;
 | |
| }
 | |
| 
 | |
| Basis Basis::scaled_local(const Vector3 &p_scale) const {
 | |
| 	return (*this) * Basis::from_scale(p_scale);
 | |
| }
 | |
| 
 | |
| Vector3 Basis::get_scale_abs() const {
 | |
| 	return Vector3(
 | |
| 			Vector3(rows[0][0], rows[1][0], rows[2][0]).length(),
 | |
| 			Vector3(rows[0][1], rows[1][1], rows[2][1]).length(),
 | |
| 			Vector3(rows[0][2], rows[1][2], rows[2][2]).length());
 | |
| }
 | |
| 
 | |
| Vector3 Basis::get_scale_global() const {
 | |
| 	real_t det_sign = SIGN(determinant());
 | |
| 	return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length());
 | |
| }
 | |
| 
 | |
| // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
 | |
| Vector3 Basis::get_scale() const {
 | |
| 	// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
 | |
| 	// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
 | |
| 	// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
 | |
| 	//
 | |
| 	// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
 | |
| 	// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
 | |
| 	// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
 | |
| 	// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
 | |
| 	// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
 | |
| 	// Therefore, we are going to do this decomposition by sticking to a particular convention.
 | |
| 	// This may lead to confusion for some users though.
 | |
| 	//
 | |
| 	// The convention we use here is to absorb the sign flip into the scaling matrix.
 | |
| 	// The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
 | |
| 	//
 | |
| 	// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
 | |
| 	// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
 | |
| 	// matrix elements.
 | |
| 	//
 | |
| 	// The rotation part of this decomposition is returned by get_rotation* functions.
 | |
| 	real_t det_sign = SIGN(determinant());
 | |
| 	return det_sign * get_scale_abs();
 | |
| }
 | |
| 
 | |
| // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
 | |
| // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
 | |
| // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
 | |
| Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V(determinant() == 0, Vector3());
 | |
| 
 | |
| 	Basis m = transposed() * (*this);
 | |
| 	ERR_FAIL_COND_V(!m.is_diagonal(), Vector3());
 | |
| #endif
 | |
| 	Vector3 scale = get_scale();
 | |
| 	Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
 | |
| 	rotref = (*this) * inv_scale;
 | |
| 
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
 | |
| #endif
 | |
| 	return scale.abs();
 | |
| }
 | |
| 
 | |
| // Multiplies the matrix from left by the rotation matrix: M -> R.M
 | |
| // Note that this does *not* rotate the matrix itself.
 | |
| //
 | |
| // The main use of Basis is as Transform.basis, which is used by the transformation matrix
 | |
| // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
 | |
| // not the matrix itself (which is R * (*this) * R.transposed()).
 | |
| Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const {
 | |
| 	return Basis(p_axis, p_angle) * (*this);
 | |
| }
 | |
| 
 | |
| void Basis::rotate(const Vector3 &p_axis, real_t p_angle) {
 | |
| 	*this = rotated(p_axis, p_angle);
 | |
| }
 | |
| 
 | |
| void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) {
 | |
| 	// performs a rotation in object-local coordinate system:
 | |
| 	// M -> (M.R.Minv).M = M.R.
 | |
| 	*this = rotated_local(p_axis, p_angle);
 | |
| }
 | |
| 
 | |
| Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
 | |
| 	return (*this) * Basis(p_axis, p_angle);
 | |
| }
 | |
| 
 | |
| Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const {
 | |
| 	return Basis::from_euler(p_euler, p_order) * (*this);
 | |
| }
 | |
| 
 | |
| void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) {
 | |
| 	*this = rotated(p_euler, p_order);
 | |
| }
 | |
| 
 | |
| Basis Basis::rotated(const Quaternion &p_quaternion) const {
 | |
| 	return Basis(p_quaternion) * (*this);
 | |
| }
 | |
| 
 | |
| void Basis::rotate(const Quaternion &p_quaternion) {
 | |
| 	*this = rotated(p_quaternion);
 | |
| }
 | |
| 
 | |
| Vector3 Basis::get_euler_normalized(EulerOrder p_order) const {
 | |
| 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
 | |
| 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
 | |
| 	// See the comment in get_scale() for further information.
 | |
| 	Basis m = orthonormalized();
 | |
| 	real_t det = m.determinant();
 | |
| 	if (det < 0) {
 | |
| 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
 | |
| 		m.scale(Vector3(-1, -1, -1));
 | |
| 	}
 | |
| 
 | |
| 	return m.get_euler(p_order);
 | |
| }
 | |
| 
 | |
| Quaternion Basis::get_rotation_quaternion() const {
 | |
| 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
 | |
| 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
 | |
| 	// See the comment in get_scale() for further information.
 | |
| 	Basis m = orthonormalized();
 | |
| 	real_t det = m.determinant();
 | |
| 	if (det < 0) {
 | |
| 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
 | |
| 		m.scale(Vector3(-1, -1, -1));
 | |
| 	}
 | |
| 
 | |
| 	return m.get_quaternion();
 | |
| }
 | |
| 
 | |
| void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) {
 | |
| 	// Takes two vectors and rotates the basis from the first vector to the second vector.
 | |
| 	// Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724
 | |
| 	const Vector3 axis = p_start_direction.cross(p_end_direction).normalized();
 | |
| 	if (axis.length_squared() != 0) {
 | |
| 		real_t dot = p_start_direction.dot(p_end_direction);
 | |
| 		dot = CLAMP(dot, -1.0f, 1.0f);
 | |
| 		const real_t angle_rads = Math::acos(dot);
 | |
| 		*this = Basis(axis, angle_rads) * (*this);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
 | |
| 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
 | |
| 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
 | |
| 	// See the comment in get_scale() for further information.
 | |
| 	Basis m = orthonormalized();
 | |
| 	real_t det = m.determinant();
 | |
| 	if (det < 0) {
 | |
| 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
 | |
| 		m.scale(Vector3(-1, -1, -1));
 | |
| 	}
 | |
| 
 | |
| 	m.get_axis_angle(p_axis, p_angle);
 | |
| }
 | |
| 
 | |
| void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
 | |
| 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
 | |
| 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
 | |
| 	// See the comment in get_scale() for further information.
 | |
| 	Basis m = transposed();
 | |
| 	m.orthonormalize();
 | |
| 	real_t det = m.determinant();
 | |
| 	if (det < 0) {
 | |
| 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
 | |
| 		m.scale(Vector3(-1, -1, -1));
 | |
| 	}
 | |
| 
 | |
| 	m.get_axis_angle(p_axis, p_angle);
 | |
| 	p_angle = -p_angle;
 | |
| }
 | |
| 
 | |
| Vector3 Basis::get_euler(EulerOrder p_order) const {
 | |
| 	// This epsilon value results in angles within a +/- 0.04 degree range being simplified/truncated.
 | |
| 	// Based on testing, this is the largest the epsilon can be without the angle truncation becoming
 | |
| 	// visually noticeable.
 | |
| 	const real_t epsilon = 0.00000025;
 | |
| 
 | |
| 	switch (p_order) {
 | |
| 		case EulerOrder::XYZ: {
 | |
| 			// Euler angles in XYZ convention.
 | |
| 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
 | |
| 			//
 | |
| 			// rot =  cy*cz          -cy*sz           sy
 | |
| 			//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
 | |
| 			//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
 | |
| 
 | |
| 			Vector3 euler;
 | |
| 			real_t sy = rows[0][2];
 | |
| 			if (sy < (1.0f - epsilon)) {
 | |
| 				if (sy > -(1.0f - epsilon)) {
 | |
| 					// is this a pure Y rotation?
 | |
| 					if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) {
 | |
| 						// return the simplest form (human friendlier in editor and scripts)
 | |
| 						euler.x = 0;
 | |
| 						euler.y = std::atan2(rows[0][2], rows[0][0]);
 | |
| 						euler.z = 0;
 | |
| 					} else {
 | |
| 						euler.x = Math::atan2(-rows[1][2], rows[2][2]);
 | |
| 						euler.y = Math::asin(sy);
 | |
| 						euler.z = Math::atan2(-rows[0][1], rows[0][0]);
 | |
| 					}
 | |
| 				} else {
 | |
| 					euler.x = Math::atan2(rows[2][1], rows[1][1]);
 | |
| 					euler.y = -Math::PI / 2.0f;
 | |
| 					euler.z = 0.0f;
 | |
| 				}
 | |
| 			} else {
 | |
| 				euler.x = Math::atan2(rows[2][1], rows[1][1]);
 | |
| 				euler.y = Math::PI / 2.0f;
 | |
| 				euler.z = 0.0f;
 | |
| 			}
 | |
| 			return euler;
 | |
| 		}
 | |
| 		case EulerOrder::XZY: {
 | |
| 			// Euler angles in XZY convention.
 | |
| 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
 | |
| 			//
 | |
| 			// rot =  cz*cy             -sz             cz*sy
 | |
| 			//        sx*sy+cx*cy*sz    cx*cz           cx*sz*sy-cy*sx
 | |
| 			//        cy*sx*sz          cz*sx           cx*cy+sx*sz*sy
 | |
| 
 | |
| 			Vector3 euler;
 | |
| 			real_t sz = rows[0][1];
 | |
| 			if (sz < (1.0f - epsilon)) {
 | |
| 				if (sz > -(1.0f - epsilon)) {
 | |
| 					euler.x = Math::atan2(rows[2][1], rows[1][1]);
 | |
| 					euler.y = Math::atan2(rows[0][2], rows[0][0]);
 | |
| 					euler.z = Math::asin(-sz);
 | |
| 				} else {
 | |
| 					// It's -1
 | |
| 					euler.x = -Math::atan2(rows[1][2], rows[2][2]);
 | |
| 					euler.y = 0.0f;
 | |
| 					euler.z = Math::PI / 2.0f;
 | |
| 				}
 | |
| 			} else {
 | |
| 				// It's 1
 | |
| 				euler.x = -Math::atan2(rows[1][2], rows[2][2]);
 | |
| 				euler.y = 0.0f;
 | |
| 				euler.z = -Math::PI / 2.0f;
 | |
| 			}
 | |
| 			return euler;
 | |
| 		}
 | |
| 		case EulerOrder::YXZ: {
 | |
| 			// Euler angles in YXZ convention.
 | |
| 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
 | |
| 			//
 | |
| 			// rot =  cy*cz+sy*sx*sz    cz*sy*sx-cy*sz        cx*sy
 | |
| 			//        cx*sz             cx*cz                 -sx
 | |
| 			//        cy*sx*sz-cz*sy    cy*cz*sx+sy*sz        cy*cx
 | |
| 
 | |
| 			Vector3 euler;
 | |
| 
 | |
| 			real_t m12 = rows[1][2];
 | |
| 
 | |
| 			if (m12 < (1 - epsilon)) {
 | |
| 				if (m12 > -(1 - epsilon)) {
 | |
| 					// is this a pure X rotation?
 | |
| 					if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) {
 | |
| 						// return the simplest form (human friendlier in editor and scripts)
 | |
| 						euler.x = std::atan2(-m12, rows[1][1]);
 | |
| 						euler.y = 0;
 | |
| 						euler.z = 0;
 | |
| 					} else {
 | |
| 						euler.x = std::asin(-m12);
 | |
| 						euler.y = std::atan2(rows[0][2], rows[2][2]);
 | |
| 						euler.z = std::atan2(rows[1][0], rows[1][1]);
 | |
| 					}
 | |
| 				} else { // m12 == -1
 | |
| 					euler.x = Math::PI * 0.5f;
 | |
| 					euler.y = std::atan2(rows[0][1], rows[0][0]);
 | |
| 					euler.z = 0;
 | |
| 				}
 | |
| 			} else { // m12 == 1
 | |
| 				euler.x = -Math::PI * 0.5f;
 | |
| 				euler.y = -std::atan2(rows[0][1], rows[0][0]);
 | |
| 				euler.z = 0;
 | |
| 			}
 | |
| 
 | |
| 			return euler;
 | |
| 		}
 | |
| 		case EulerOrder::YZX: {
 | |
| 			// Euler angles in YZX convention.
 | |
| 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
 | |
| 			//
 | |
| 			// rot =  cy*cz             sy*sx-cy*cx*sz     cx*sy+cy*sz*sx
 | |
| 			//        sz                cz*cx              -cz*sx
 | |
| 			//        -cz*sy            cy*sx+cx*sy*sz     cy*cx-sy*sz*sx
 | |
| 
 | |
| 			Vector3 euler;
 | |
| 			real_t sz = rows[1][0];
 | |
| 			if (sz < (1.0f - epsilon)) {
 | |
| 				if (sz > -(1.0f - epsilon)) {
 | |
| 					euler.x = Math::atan2(-rows[1][2], rows[1][1]);
 | |
| 					euler.y = Math::atan2(-rows[2][0], rows[0][0]);
 | |
| 					euler.z = Math::asin(sz);
 | |
| 				} else {
 | |
| 					// It's -1
 | |
| 					euler.x = Math::atan2(rows[2][1], rows[2][2]);
 | |
| 					euler.y = 0.0f;
 | |
| 					euler.z = -Math::PI / 2.0f;
 | |
| 				}
 | |
| 			} else {
 | |
| 				// It's 1
 | |
| 				euler.x = Math::atan2(rows[2][1], rows[2][2]);
 | |
| 				euler.y = 0.0f;
 | |
| 				euler.z = Math::PI / 2.0f;
 | |
| 			}
 | |
| 			return euler;
 | |
| 		} break;
 | |
| 		case EulerOrder::ZXY: {
 | |
| 			// Euler angles in ZXY convention.
 | |
| 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
 | |
| 			//
 | |
| 			// rot =  cz*cy-sz*sx*sy    -cx*sz                cz*sy+cy*sz*sx
 | |
| 			//        cy*sz+cz*sx*sy    cz*cx                 sz*sy-cz*cy*sx
 | |
| 			//        -cx*sy            sx                    cx*cy
 | |
| 			Vector3 euler;
 | |
| 			real_t sx = rows[2][1];
 | |
| 			if (sx < (1.0f - epsilon)) {
 | |
| 				if (sx > -(1.0f - epsilon)) {
 | |
| 					euler.x = Math::asin(sx);
 | |
| 					euler.y = Math::atan2(-rows[2][0], rows[2][2]);
 | |
| 					euler.z = Math::atan2(-rows[0][1], rows[1][1]);
 | |
| 				} else {
 | |
| 					// It's -1
 | |
| 					euler.x = -Math::PI / 2.0f;
 | |
| 					euler.y = Math::atan2(rows[0][2], rows[0][0]);
 | |
| 					euler.z = 0;
 | |
| 				}
 | |
| 			} else {
 | |
| 				// It's 1
 | |
| 				euler.x = Math::PI / 2.0f;
 | |
| 				euler.y = Math::atan2(rows[0][2], rows[0][0]);
 | |
| 				euler.z = 0;
 | |
| 			}
 | |
| 			return euler;
 | |
| 		} break;
 | |
| 		case EulerOrder::ZYX: {
 | |
| 			// Euler angles in ZYX convention.
 | |
| 			// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
 | |
| 			//
 | |
| 			// rot =  cz*cy             cz*sy*sx-cx*sz        sz*sx+cz*cx*cy
 | |
| 			//        cy*sz             cz*cx+sz*sy*sx        cx*sz*sy-cz*sx
 | |
| 			//        -sy               cy*sx                 cy*cx
 | |
| 			Vector3 euler;
 | |
| 			real_t sy = rows[2][0];
 | |
| 			if (sy < (1.0f - epsilon)) {
 | |
| 				if (sy > -(1.0f - epsilon)) {
 | |
| 					euler.x = Math::atan2(rows[2][1], rows[2][2]);
 | |
| 					euler.y = Math::asin(-sy);
 | |
| 					euler.z = Math::atan2(rows[1][0], rows[0][0]);
 | |
| 				} else {
 | |
| 					// It's -1
 | |
| 					euler.x = 0;
 | |
| 					euler.y = Math::PI / 2.0f;
 | |
| 					euler.z = -Math::atan2(rows[0][1], rows[1][1]);
 | |
| 				}
 | |
| 			} else {
 | |
| 				// It's 1
 | |
| 				euler.x = 0;
 | |
| 				euler.y = -Math::PI / 2.0f;
 | |
| 				euler.z = -Math::atan2(rows[0][1], rows[1][1]);
 | |
| 			}
 | |
| 			return euler;
 | |
| 		}
 | |
| 		default: {
 | |
| 			ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)");
 | |
| 		}
 | |
| 	}
 | |
| 	return Vector3();
 | |
| }
 | |
| 
 | |
| void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
 | |
| 	real_t c, s;
 | |
| 
 | |
| 	c = Math::cos(p_euler.x);
 | |
| 	s = Math::sin(p_euler.x);
 | |
| 	Basis xmat(1, 0, 0, 0, c, -s, 0, s, c);
 | |
| 
 | |
| 	c = Math::cos(p_euler.y);
 | |
| 	s = Math::sin(p_euler.y);
 | |
| 	Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c);
 | |
| 
 | |
| 	c = Math::cos(p_euler.z);
 | |
| 	s = Math::sin(p_euler.z);
 | |
| 	Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1);
 | |
| 
 | |
| 	switch (p_order) {
 | |
| 		case EulerOrder::XYZ: {
 | |
| 			*this = xmat * (ymat * zmat);
 | |
| 		} break;
 | |
| 		case EulerOrder::XZY: {
 | |
| 			*this = xmat * zmat * ymat;
 | |
| 		} break;
 | |
| 		case EulerOrder::YXZ: {
 | |
| 			*this = ymat * xmat * zmat;
 | |
| 		} break;
 | |
| 		case EulerOrder::YZX: {
 | |
| 			*this = ymat * zmat * xmat;
 | |
| 		} break;
 | |
| 		case EulerOrder::ZXY: {
 | |
| 			*this = zmat * xmat * ymat;
 | |
| 		} break;
 | |
| 		case EulerOrder::ZYX: {
 | |
| 			*this = zmat * ymat * xmat;
 | |
| 		} break;
 | |
| 		default: {
 | |
| 			ERR_FAIL_MSG("Invalid Euler order parameter.");
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool Basis::is_equal_approx(const Basis &p_basis) const {
 | |
| 	return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]);
 | |
| }
 | |
| 
 | |
| bool Basis::is_same(const Basis &p_basis) const {
 | |
| 	return rows[0].is_same(p_basis.rows[0]) && rows[1].is_same(p_basis.rows[1]) && rows[2].is_same(p_basis.rows[2]);
 | |
| }
 | |
| 
 | |
| bool Basis::is_finite() const {
 | |
| 	return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite();
 | |
| }
 | |
| 
 | |
| Basis::operator String() const {
 | |
| 	return "[X: " + get_column(0).operator String() +
 | |
| 			", Y: " + get_column(1).operator String() +
 | |
| 			", Z: " + get_column(2).operator String() + "]";
 | |
| }
 | |
| 
 | |
| Quaternion Basis::get_quaternion() const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis " + operator String() + " must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors.");
 | |
| #endif
 | |
| 	/* Allow getting a quaternion from an unnormalized transform */
 | |
| 	Basis m = *this;
 | |
| 	real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
 | |
| 	real_t temp[4];
 | |
| 
 | |
| 	if (trace > 0.0f) {
 | |
| 		real_t s = Math::sqrt(trace + 1.0f);
 | |
| 		temp[3] = (s * 0.5f);
 | |
| 		s = 0.5f / s;
 | |
| 
 | |
| 		temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
 | |
| 		temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
 | |
| 		temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
 | |
| 	} else {
 | |
| 		int i = m.rows[0][0] < m.rows[1][1]
 | |
| 				? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
 | |
| 				: (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
 | |
| 		int j = (i + 1) % 3;
 | |
| 		int k = (i + 2) % 3;
 | |
| 
 | |
| 		real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
 | |
| 		temp[i] = s * 0.5f;
 | |
| 		s = 0.5f / s;
 | |
| 
 | |
| 		temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
 | |
| 		temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
 | |
| 		temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
 | |
| 	}
 | |
| 
 | |
| 	return Quaternion(temp[0], temp[1], temp[2], temp[3]);
 | |
| }
 | |
| 
 | |
| void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
 | |
| 	/* checking this is a bad idea, because obtaining from scaled transform is a valid use case
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND(!is_rotation());
 | |
| #endif
 | |
| 	*/
 | |
| 
 | |
| 	// https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
 | |
| 	real_t x, y, z; // Variables for result.
 | |
| 	if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) {
 | |
| 		// Singularity found.
 | |
| 		// First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
 | |
| 		if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) {
 | |
| 			// This singularity is identity matrix so angle = 0.
 | |
| 			r_axis = Vector3(0, 1, 0);
 | |
| 			r_angle = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 		// Otherwise this singularity is angle = 180.
 | |
| 		real_t xx = (rows[0][0] + 1) / 2;
 | |
| 		real_t yy = (rows[1][1] + 1) / 2;
 | |
| 		real_t zz = (rows[2][2] + 1) / 2;
 | |
| 		real_t xy = (rows[0][1] + rows[1][0]) / 4;
 | |
| 		real_t xz = (rows[0][2] + rows[2][0]) / 4;
 | |
| 		real_t yz = (rows[1][2] + rows[2][1]) / 4;
 | |
| 
 | |
| 		if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term.
 | |
| 			if (xx < CMP_EPSILON) {
 | |
| 				x = 0;
 | |
| 				y = Math::SQRT12;
 | |
| 				z = Math::SQRT12;
 | |
| 			} else {
 | |
| 				x = Math::sqrt(xx);
 | |
| 				y = xy / x;
 | |
| 				z = xz / x;
 | |
| 			}
 | |
| 		} else if (yy > zz) { // rows[1][1] is the largest diagonal term.
 | |
| 			if (yy < CMP_EPSILON) {
 | |
| 				x = Math::SQRT12;
 | |
| 				y = 0;
 | |
| 				z = Math::SQRT12;
 | |
| 			} else {
 | |
| 				y = Math::sqrt(yy);
 | |
| 				x = xy / y;
 | |
| 				z = yz / y;
 | |
| 			}
 | |
| 		} else { // rows[2][2] is the largest diagonal term so base result on this.
 | |
| 			if (zz < CMP_EPSILON) {
 | |
| 				x = Math::SQRT12;
 | |
| 				y = Math::SQRT12;
 | |
| 				z = 0;
 | |
| 			} else {
 | |
| 				z = Math::sqrt(zz);
 | |
| 				x = xz / z;
 | |
| 				y = yz / z;
 | |
| 			}
 | |
| 		}
 | |
| 		r_axis = Vector3(x, y, z);
 | |
| 		r_angle = Math::PI;
 | |
| 		return;
 | |
| 	}
 | |
| 	// As we have reached here there are no singularities so we can handle normally.
 | |
| 	double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalize.
 | |
| 
 | |
| 	if (Math::abs(s) < CMP_EPSILON) {
 | |
| 		// Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
 | |
| 		s = 1;
 | |
| 	}
 | |
| 
 | |
| 	x = (rows[2][1] - rows[1][2]) / s;
 | |
| 	y = (rows[0][2] - rows[2][0]) / s;
 | |
| 	z = (rows[1][0] - rows[0][1]) / s;
 | |
| 
 | |
| 	r_axis = Vector3(x, y, z);
 | |
| 	// acos does clamping.
 | |
| 	r_angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2);
 | |
| }
 | |
| 
 | |
| void Basis::set_quaternion(const Quaternion &p_quaternion) {
 | |
| 	real_t d = p_quaternion.length_squared();
 | |
| 	real_t s = 2.0f / d;
 | |
| 	real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
 | |
| 	real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs;
 | |
| 	real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs;
 | |
| 	real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs;
 | |
| 	set(1.0f - (yy + zz), xy - wz, xz + wy,
 | |
| 			xy + wz, 1.0f - (xx + zz), yz - wx,
 | |
| 			xz - wy, yz + wx, 1.0f - (xx + yy));
 | |
| }
 | |
| 
 | |
| void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) {
 | |
| // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 " + p_axis.operator String() + " must be normalized.");
 | |
| #endif
 | |
| 	Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
 | |
| 	real_t cosine = Math::cos(p_angle);
 | |
| 	rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x);
 | |
| 	rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y);
 | |
| 	rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z);
 | |
| 
 | |
| 	real_t sine = Math::sin(p_angle);
 | |
| 	real_t t = 1 - cosine;
 | |
| 
 | |
| 	real_t xyzt = p_axis.x * p_axis.y * t;
 | |
| 	real_t zyxs = p_axis.z * sine;
 | |
| 	rows[0][1] = xyzt - zyxs;
 | |
| 	rows[1][0] = xyzt + zyxs;
 | |
| 
 | |
| 	xyzt = p_axis.x * p_axis.z * t;
 | |
| 	zyxs = p_axis.y * sine;
 | |
| 	rows[0][2] = xyzt + zyxs;
 | |
| 	rows[2][0] = xyzt - zyxs;
 | |
| 
 | |
| 	xyzt = p_axis.y * p_axis.z * t;
 | |
| 	zyxs = p_axis.x * sine;
 | |
| 	rows[1][2] = xyzt - zyxs;
 | |
| 	rows[2][1] = xyzt + zyxs;
 | |
| }
 | |
| 
 | |
| void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) {
 | |
| 	_set_diagonal(p_scale);
 | |
| 	rotate(p_axis, p_angle);
 | |
| }
 | |
| 
 | |
| void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) {
 | |
| 	_set_diagonal(p_scale);
 | |
| 	rotate(p_euler, p_order);
 | |
| }
 | |
| 
 | |
| void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) {
 | |
| 	_set_diagonal(p_scale);
 | |
| 	rotate(p_quaternion);
 | |
| }
 | |
| 
 | |
| // This also sets the non-diagonal elements to 0, which is misleading from the
 | |
| // name, so we want this method to be private. Use `from_scale` externally.
 | |
| void Basis::_set_diagonal(const Vector3 &p_diag) {
 | |
| 	rows[0][0] = p_diag.x;
 | |
| 	rows[0][1] = 0;
 | |
| 	rows[0][2] = 0;
 | |
| 
 | |
| 	rows[1][0] = 0;
 | |
| 	rows[1][1] = p_diag.y;
 | |
| 	rows[1][2] = 0;
 | |
| 
 | |
| 	rows[2][0] = 0;
 | |
| 	rows[2][1] = 0;
 | |
| 	rows[2][2] = p_diag.z;
 | |
| }
 | |
| 
 | |
| Basis Basis::lerp(const Basis &p_to, real_t p_weight) const {
 | |
| 	Basis b;
 | |
| 	b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight);
 | |
| 	b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight);
 | |
| 	b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight);
 | |
| 
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| Basis Basis::slerp(const Basis &p_to, real_t p_weight) const {
 | |
| 	//consider scale
 | |
| 	Quaternion from(*this);
 | |
| 	Quaternion to(p_to);
 | |
| 
 | |
| 	Basis b(from.slerp(to, p_weight));
 | |
| 	b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight);
 | |
| 	b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight);
 | |
| 	b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight);
 | |
| 
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| void Basis::rotate_sh(real_t *p_values) {
 | |
| 	// code by John Hable
 | |
| 	// http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/
 | |
| 	// this code is Public Domain
 | |
| 
 | |
| 	const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi))
 | |
| 	const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi))
 | |
| 	const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi))
 | |
| 
 | |
| 	const static real_t s_c_scale = 1.0 / 0.91529123286551084;
 | |
| 	const static real_t s_c_scale_inv = 0.91529123286551084;
 | |
| 
 | |
| 	const static real_t s_rc2 = 1.5853309190550713 * s_c_scale;
 | |
| 	const static real_t s_c4_div_c3 = s_c4 / s_c3;
 | |
| 	const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0;
 | |
| 
 | |
| 	const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv;
 | |
| 	const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv;
 | |
| 
 | |
| 	const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };
 | |
| 
 | |
| 	real_t m00 = rows[0][0];
 | |
| 	real_t m01 = rows[0][1];
 | |
| 	real_t m02 = rows[0][2];
 | |
| 	real_t m10 = rows[1][0];
 | |
| 	real_t m11 = rows[1][1];
 | |
| 	real_t m12 = rows[1][2];
 | |
| 	real_t m20 = rows[2][0];
 | |
| 	real_t m21 = rows[2][1];
 | |
| 	real_t m22 = rows[2][2];
 | |
| 
 | |
| 	p_values[0] = src[0];
 | |
| 	p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3];
 | |
| 	p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3];
 | |
| 	p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3];
 | |
| 
 | |
| 	real_t sh0 = src[7] + src[8] + src[8] - src[5];
 | |
| 	real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8];
 | |
| 	real_t sh2 = src[4];
 | |
| 	real_t sh3 = -src[7];
 | |
| 	real_t sh4 = -src[5];
 | |
| 
 | |
| 	// Rotations.  R0 and R1 just use the raw matrix columns
 | |
| 	real_t r2x = m00 + m01;
 | |
| 	real_t r2y = m10 + m11;
 | |
| 	real_t r2z = m20 + m21;
 | |
| 
 | |
| 	real_t r3x = m00 + m02;
 | |
| 	real_t r3y = m10 + m12;
 | |
| 	real_t r3z = m20 + m22;
 | |
| 
 | |
| 	real_t r4x = m01 + m02;
 | |
| 	real_t r4y = m11 + m12;
 | |
| 	real_t r4z = m21 + m22;
 | |
| 
 | |
| 	// dense matrix multiplication one column at a time
 | |
| 
 | |
| 	// column 0
 | |
| 	real_t sh0_x = sh0 * m00;
 | |
| 	real_t sh0_y = sh0 * m10;
 | |
| 	real_t d0 = sh0_x * m10;
 | |
| 	real_t d1 = sh0_y * m20;
 | |
| 	real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3);
 | |
| 	real_t d3 = sh0_x * m20;
 | |
| 	real_t d4 = sh0_x * m00 - sh0_y * m10;
 | |
| 
 | |
| 	// column 1
 | |
| 	real_t sh1_x = sh1 * m02;
 | |
| 	real_t sh1_y = sh1 * m12;
 | |
| 	d0 += sh1_x * m12;
 | |
| 	d1 += sh1_y * m22;
 | |
| 	d2 += sh1 * (m22 * m22 + s_c4_div_c3);
 | |
| 	d3 += sh1_x * m22;
 | |
| 	d4 += sh1_x * m02 - sh1_y * m12;
 | |
| 
 | |
| 	// column 2
 | |
| 	real_t sh2_x = sh2 * r2x;
 | |
| 	real_t sh2_y = sh2 * r2y;
 | |
| 	d0 += sh2_x * r2y;
 | |
| 	d1 += sh2_y * r2z;
 | |
| 	d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2);
 | |
| 	d3 += sh2_x * r2z;
 | |
| 	d4 += sh2_x * r2x - sh2_y * r2y;
 | |
| 
 | |
| 	// column 3
 | |
| 	real_t sh3_x = sh3 * r3x;
 | |
| 	real_t sh3_y = sh3 * r3y;
 | |
| 	d0 += sh3_x * r3y;
 | |
| 	d1 += sh3_y * r3z;
 | |
| 	d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2);
 | |
| 	d3 += sh3_x * r3z;
 | |
| 	d4 += sh3_x * r3x - sh3_y * r3y;
 | |
| 
 | |
| 	// column 4
 | |
| 	real_t sh4_x = sh4 * r4x;
 | |
| 	real_t sh4_y = sh4 * r4y;
 | |
| 	d0 += sh4_x * r4y;
 | |
| 	d1 += sh4_y * r4z;
 | |
| 	d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2);
 | |
| 	d3 += sh4_x * r4z;
 | |
| 	d4 += sh4_x * r4x - sh4_y * r4y;
 | |
| 
 | |
| 	// extra multipliers
 | |
| 	p_values[4] = d0;
 | |
| 	p_values[5] = -d1;
 | |
| 	p_values[6] = d2 * s_scale_dst2;
 | |
| 	p_values[7] = -d3;
 | |
| 	p_values[8] = d4 * s_scale_dst4;
 | |
| }
 | |
| 
 | |
| Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero.");
 | |
| 	ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero.");
 | |
| #endif
 | |
| 	Vector3 v_z = p_target.normalized();
 | |
| 	if (!p_use_model_front) {
 | |
| 		v_z = -v_z;
 | |
| 	}
 | |
| 	Vector3 v_x = p_up.cross(v_z);
 | |
| 	if (v_x.is_zero_approx()) {
 | |
| 		WARN_PRINT("Target and up vectors are colinear. This is not advised as it may cause unwanted rotation around local Z axis.");
 | |
| 		v_x = p_up.get_any_perpendicular(); // Vectors are almost parallel.
 | |
| 	}
 | |
| 	v_x.normalize();
 | |
| 	Vector3 v_y = v_z.cross(v_x);
 | |
| 
 | |
| 	Basis basis;
 | |
| 	basis.set_columns(v_x, v_y, v_z);
 | |
| 	return basis;
 | |
| }
 | 
