mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-03 23:21:15 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			274 lines
		
	
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			274 lines
		
	
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*************************************************************************/
 | 
						|
/*  vector2.cpp                                                          */
 | 
						|
/*************************************************************************/
 | 
						|
/*                       This file is part of:                           */
 | 
						|
/*                           GODOT ENGINE                                */
 | 
						|
/*                      https://godotengine.org                          */
 | 
						|
/*************************************************************************/
 | 
						|
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur.                 */
 | 
						|
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md).   */
 | 
						|
/*                                                                       */
 | 
						|
/* Permission is hereby granted, free of charge, to any person obtaining */
 | 
						|
/* a copy of this software and associated documentation files (the       */
 | 
						|
/* "Software"), to deal in the Software without restriction, including   */
 | 
						|
/* without limitation the rights to use, copy, modify, merge, publish,   */
 | 
						|
/* distribute, sublicense, and/or sell copies of the Software, and to    */
 | 
						|
/* permit persons to whom the Software is furnished to do so, subject to */
 | 
						|
/* the following conditions:                                             */
 | 
						|
/*                                                                       */
 | 
						|
/* The above copyright notice and this permission notice shall be        */
 | 
						|
/* included in all copies or substantial portions of the Software.       */
 | 
						|
/*                                                                       */
 | 
						|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | 
						|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | 
						|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | 
						|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | 
						|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | 
						|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | 
						|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | 
						|
/*************************************************************************/
 | 
						|
 | 
						|
#include "vector2.h"
 | 
						|
 | 
						|
real_t Vector2::angle() const {
 | 
						|
 | 
						|
	return Math::atan2(y, x);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::length() const {
 | 
						|
 | 
						|
	return Math::sqrt(x * x + y * y);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::length_squared() const {
 | 
						|
 | 
						|
	return x * x + y * y;
 | 
						|
}
 | 
						|
 | 
						|
void Vector2::normalize() {
 | 
						|
 | 
						|
	real_t l = x * x + y * y;
 | 
						|
	if (l != 0) {
 | 
						|
 | 
						|
		l = Math::sqrt(l);
 | 
						|
		x /= l;
 | 
						|
		y /= l;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::normalized() const {
 | 
						|
 | 
						|
	Vector2 v = *this;
 | 
						|
	v.normalize();
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
bool Vector2::is_normalized() const {
 | 
						|
	// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
 | 
						|
	return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
 | 
						|
 | 
						|
	return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
 | 
						|
 | 
						|
	return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
 | 
						|
 | 
						|
	return Math::atan2(cross(p_vector2), dot(p_vector2));
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
 | 
						|
 | 
						|
	return Math::atan2(y - p_vector2.y, x - p_vector2.x);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::dot(const Vector2 &p_other) const {
 | 
						|
 | 
						|
	return x * p_other.x + y * p_other.y;
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::cross(const Vector2 &p_other) const {
 | 
						|
 | 
						|
	return x * p_other.y - y * p_other.x;
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::sign() const {
 | 
						|
 | 
						|
	return Vector2(SGN(x), SGN(y));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::floor() const {
 | 
						|
 | 
						|
	return Vector2(Math::floor(x), Math::floor(y));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::ceil() const {
 | 
						|
 | 
						|
	return Vector2(Math::ceil(x), Math::ceil(y));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::round() const {
 | 
						|
 | 
						|
	return Vector2(Math::round(x), Math::round(y));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::rotated(real_t p_by) const {
 | 
						|
 | 
						|
	Vector2 v;
 | 
						|
	v.set_rotation(angle() + p_by);
 | 
						|
	v *= length();
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::posmod(const real_t p_mod) const {
 | 
						|
	return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
 | 
						|
	return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::project(const Vector2 &p_b) const {
 | 
						|
	return p_b * (dot(p_b) / p_b.length_squared());
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::snapped(const Vector2 &p_by) const {
 | 
						|
 | 
						|
	return Vector2(
 | 
						|
			Math::stepify(x, p_by.x),
 | 
						|
			Math::stepify(y, p_by.y));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::clamped(real_t p_len) const {
 | 
						|
 | 
						|
	real_t l = length();
 | 
						|
	Vector2 v = *this;
 | 
						|
	if (l > 0 && p_len < l) {
 | 
						|
 | 
						|
		v /= l;
 | 
						|
		v *= p_len;
 | 
						|
	}
 | 
						|
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
 | 
						|
 | 
						|
	Vector2 p0 = p_pre_a;
 | 
						|
	Vector2 p1 = *this;
 | 
						|
	Vector2 p2 = p_b;
 | 
						|
	Vector2 p3 = p_post_b;
 | 
						|
 | 
						|
	real_t t = p_t;
 | 
						|
	real_t t2 = t * t;
 | 
						|
	real_t t3 = t2 * t;
 | 
						|
 | 
						|
	Vector2 out;
 | 
						|
	out = 0.5 * ((p1 * 2.0) +
 | 
						|
						(-p0 + p2) * t +
 | 
						|
						(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
 | 
						|
						(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
 | 
						|
	return out;
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
 | 
						|
	Vector2 v = *this;
 | 
						|
	Vector2 vd = p_to - v;
 | 
						|
	real_t len = vd.length();
 | 
						|
	return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
 | 
						|
}
 | 
						|
 | 
						|
// slide returns the component of the vector along the given plane, specified by its normal vector.
 | 
						|
Vector2 Vector2::slide(const Vector2 &p_normal) const {
 | 
						|
#ifdef MATH_CHECKS
 | 
						|
	ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
 | 
						|
#endif
 | 
						|
	return *this - p_normal * this->dot(p_normal);
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
 | 
						|
	return -reflect(p_normal);
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
 | 
						|
#ifdef MATH_CHECKS
 | 
						|
	ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
 | 
						|
#endif
 | 
						|
	return 2.0 * p_normal * this->dot(p_normal) - *this;
 | 
						|
}
 | 
						|
 | 
						|
bool Vector2::is_equal_approx(const Vector2 &p_v) const {
 | 
						|
	return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
 | 
						|
}
 | 
						|
 | 
						|
/* Vector2i */
 | 
						|
 | 
						|
Vector2i Vector2i::operator+(const Vector2i &p_v) const {
 | 
						|
 | 
						|
	return Vector2i(x + p_v.x, y + p_v.y);
 | 
						|
}
 | 
						|
void Vector2i::operator+=(const Vector2i &p_v) {
 | 
						|
 | 
						|
	x += p_v.x;
 | 
						|
	y += p_v.y;
 | 
						|
}
 | 
						|
Vector2i Vector2i::operator-(const Vector2i &p_v) const {
 | 
						|
 | 
						|
	return Vector2i(x - p_v.x, y - p_v.y);
 | 
						|
}
 | 
						|
void Vector2i::operator-=(const Vector2i &p_v) {
 | 
						|
 | 
						|
	x -= p_v.x;
 | 
						|
	y -= p_v.y;
 | 
						|
}
 | 
						|
 | 
						|
Vector2i Vector2i::operator*(const Vector2i &p_v1) const {
 | 
						|
 | 
						|
	return Vector2i(x * p_v1.x, y * p_v1.y);
 | 
						|
};
 | 
						|
 | 
						|
Vector2i Vector2i::operator*(const int &rvalue) const {
 | 
						|
 | 
						|
	return Vector2i(x * rvalue, y * rvalue);
 | 
						|
};
 | 
						|
void Vector2i::operator*=(const int &rvalue) {
 | 
						|
 | 
						|
	x *= rvalue;
 | 
						|
	y *= rvalue;
 | 
						|
};
 | 
						|
 | 
						|
Vector2i Vector2i::operator/(const Vector2i &p_v1) const {
 | 
						|
 | 
						|
	return Vector2i(x / p_v1.x, y / p_v1.y);
 | 
						|
};
 | 
						|
 | 
						|
Vector2i Vector2i::operator/(const int &rvalue) const {
 | 
						|
 | 
						|
	return Vector2i(x / rvalue, y / rvalue);
 | 
						|
};
 | 
						|
 | 
						|
void Vector2i::operator/=(const int &rvalue) {
 | 
						|
 | 
						|
	x /= rvalue;
 | 
						|
	y /= rvalue;
 | 
						|
};
 | 
						|
 | 
						|
Vector2i Vector2i::operator-() const {
 | 
						|
 | 
						|
	return Vector2i(-x, -y);
 | 
						|
}
 | 
						|
 | 
						|
bool Vector2i::operator==(const Vector2i &p_vec2) const {
 | 
						|
 | 
						|
	return x == p_vec2.x && y == p_vec2.y;
 | 
						|
}
 | 
						|
bool Vector2i::operator!=(const Vector2i &p_vec2) const {
 | 
						|
 | 
						|
	return x != p_vec2.x || y != p_vec2.y;
 | 
						|
}
 |