mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			814 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			814 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  math_funcs.h                                                          */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "core/error/error_macros.h"
 | |
| #include "core/math/math_defs.h"
 | |
| #include "core/typedefs.h"
 | |
| 
 | |
| #include <cfloat>
 | |
| #include <cmath>
 | |
| 
 | |
| namespace Math {
 | |
| 
 | |
| _ALWAYS_INLINE_ double sin(double p_x) {
 | |
| 	return std::sin(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float sin(float p_x) {
 | |
| 	return std::sin(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double cos(double p_x) {
 | |
| 	return std::cos(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float cos(float p_x) {
 | |
| 	return std::cos(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double tan(double p_x) {
 | |
| 	return std::tan(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float tan(float p_x) {
 | |
| 	return std::tan(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double sinh(double p_x) {
 | |
| 	return std::sinh(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float sinh(float p_x) {
 | |
| 	return std::sinh(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double sinc(double p_x) {
 | |
| 	return p_x == 0 ? 1 : sin(p_x) / p_x;
 | |
| }
 | |
| _ALWAYS_INLINE_ float sinc(float p_x) {
 | |
| 	return p_x == 0 ? 1 : sin(p_x) / p_x;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double sincn(double p_x) {
 | |
| 	return sinc(PI * p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float sincn(float p_x) {
 | |
| 	return sinc((float)PI * p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double cosh(double p_x) {
 | |
| 	return std::cosh(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float cosh(float p_x) {
 | |
| 	return std::cosh(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double tanh(double p_x) {
 | |
| 	return std::tanh(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float tanh(float p_x) {
 | |
| 	return std::tanh(p_x);
 | |
| }
 | |
| 
 | |
| // Always does clamping so always safe to use.
 | |
| _ALWAYS_INLINE_ double asin(double p_x) {
 | |
| 	return p_x < -1 ? (-PI / 2) : (p_x > 1 ? (PI / 2) : std::asin(p_x));
 | |
| }
 | |
| _ALWAYS_INLINE_ float asin(float p_x) {
 | |
| 	return p_x < -1 ? (-(float)PI / 2) : (p_x > 1 ? ((float)PI / 2) : std::asin(p_x));
 | |
| }
 | |
| 
 | |
| // Always does clamping so always safe to use.
 | |
| _ALWAYS_INLINE_ double acos(double p_x) {
 | |
| 	return p_x < -1 ? PI : (p_x > 1 ? 0 : std::acos(p_x));
 | |
| }
 | |
| _ALWAYS_INLINE_ float acos(float p_x) {
 | |
| 	return p_x < -1 ? (float)PI : (p_x > 1 ? 0 : std::acos(p_x));
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double atan(double p_x) {
 | |
| 	return std::atan(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float atan(float p_x) {
 | |
| 	return std::atan(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double atan2(double p_y, double p_x) {
 | |
| 	return std::atan2(p_y, p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float atan2(float p_y, float p_x) {
 | |
| 	return std::atan2(p_y, p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double asinh(double p_x) {
 | |
| 	return std::asinh(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float asinh(float p_x) {
 | |
| 	return std::asinh(p_x);
 | |
| }
 | |
| 
 | |
| // Always does clamping so always safe to use.
 | |
| _ALWAYS_INLINE_ double acosh(double p_x) {
 | |
| 	return p_x < 1 ? 0 : std::acosh(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float acosh(float p_x) {
 | |
| 	return p_x < 1 ? 0 : std::acosh(p_x);
 | |
| }
 | |
| 
 | |
| // Always does clamping so always safe to use.
 | |
| _ALWAYS_INLINE_ double atanh(double p_x) {
 | |
| 	return p_x <= -1 ? -INF : (p_x >= 1 ? INF : std::atanh(p_x));
 | |
| }
 | |
| _ALWAYS_INLINE_ float atanh(float p_x) {
 | |
| 	return p_x <= -1 ? (float)-INF : (p_x >= 1 ? (float)INF : std::atanh(p_x));
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double sqrt(double p_x) {
 | |
| 	return std::sqrt(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float sqrt(float p_x) {
 | |
| 	return std::sqrt(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double fmod(double p_x, double p_y) {
 | |
| 	return std::fmod(p_x, p_y);
 | |
| }
 | |
| _ALWAYS_INLINE_ float fmod(float p_x, float p_y) {
 | |
| 	return std::fmod(p_x, p_y);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double modf(double p_x, double *r_y) {
 | |
| 	return std::modf(p_x, r_y);
 | |
| }
 | |
| _ALWAYS_INLINE_ float modf(float p_x, float *r_y) {
 | |
| 	return std::modf(p_x, r_y);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double floor(double p_x) {
 | |
| 	return std::floor(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float floor(float p_x) {
 | |
| 	return std::floor(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double ceil(double p_x) {
 | |
| 	return std::ceil(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float ceil(float p_x) {
 | |
| 	return std::ceil(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double pow(double p_x, double p_y) {
 | |
| 	return std::pow(p_x, p_y);
 | |
| }
 | |
| _ALWAYS_INLINE_ float pow(float p_x, float p_y) {
 | |
| 	return std::pow(p_x, p_y);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double log(double p_x) {
 | |
| 	return std::log(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float log(float p_x) {
 | |
| 	return std::log(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double log1p(double p_x) {
 | |
| 	return std::log1p(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float log1p(float p_x) {
 | |
| 	return std::log1p(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double log2(double p_x) {
 | |
| 	return std::log2(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float log2(float p_x) {
 | |
| 	return std::log2(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double exp(double p_x) {
 | |
| 	return std::exp(p_x);
 | |
| }
 | |
| _ALWAYS_INLINE_ float exp(float p_x) {
 | |
| 	return std::exp(p_x);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_nan(double p_val) {
 | |
| 	return std::isnan(p_val);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_nan(float p_val) {
 | |
| 	return std::isnan(p_val);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_inf(double p_val) {
 | |
| 	return std::isinf(p_val);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_inf(float p_val) {
 | |
| 	return std::isinf(p_val);
 | |
| }
 | |
| 
 | |
| // These methods assume (p_num + p_den) doesn't overflow.
 | |
| _ALWAYS_INLINE_ int32_t division_round_up(int32_t p_num, int32_t p_den) {
 | |
| 	int32_t offset = (p_num < 0 && p_den < 0) ? 1 : -1;
 | |
| 	return (p_num + p_den + offset) / p_den;
 | |
| }
 | |
| _ALWAYS_INLINE_ uint32_t division_round_up(uint32_t p_num, uint32_t p_den) {
 | |
| 	return (p_num + p_den - 1) / p_den;
 | |
| }
 | |
| _ALWAYS_INLINE_ int64_t division_round_up(int64_t p_num, int64_t p_den) {
 | |
| 	int32_t offset = (p_num < 0 && p_den < 0) ? 1 : -1;
 | |
| 	return (p_num + p_den + offset) / p_den;
 | |
| }
 | |
| _ALWAYS_INLINE_ uint64_t division_round_up(uint64_t p_num, uint64_t p_den) {
 | |
| 	return (p_num + p_den - 1) / p_den;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_finite(double p_val) {
 | |
| 	return std::isfinite(p_val);
 | |
| }
 | |
| _ALWAYS_INLINE_ bool is_finite(float p_val) {
 | |
| 	return std::isfinite(p_val);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double abs(double p_value) {
 | |
| 	return std::abs(p_value);
 | |
| }
 | |
| _ALWAYS_INLINE_ float abs(float p_value) {
 | |
| 	return std::abs(p_value);
 | |
| }
 | |
| _ALWAYS_INLINE_ int8_t abs(int8_t p_value) {
 | |
| 	return p_value > 0 ? p_value : -p_value;
 | |
| }
 | |
| _ALWAYS_INLINE_ int16_t abs(int16_t p_value) {
 | |
| 	return p_value > 0 ? p_value : -p_value;
 | |
| }
 | |
| _ALWAYS_INLINE_ int32_t abs(int32_t p_value) {
 | |
| 	return std::abs(p_value);
 | |
| }
 | |
| _ALWAYS_INLINE_ int64_t abs(int64_t p_value) {
 | |
| 	return std::abs(p_value);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
 | |
| 	double value = fmod(p_x, p_y);
 | |
| 	if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
 | |
| 		value += p_y;
 | |
| 	}
 | |
| 	value += 0.0;
 | |
| 	return value;
 | |
| }
 | |
| _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
 | |
| 	float value = fmod(p_x, p_y);
 | |
| 	if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
 | |
| 		value += p_y;
 | |
| 	}
 | |
| 	value += 0.0f;
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double fposmodp(double p_x, double p_y) {
 | |
| 	double value = fmod(p_x, p_y);
 | |
| 	if (value < 0) {
 | |
| 		value += p_y;
 | |
| 	}
 | |
| 	value += 0.0;
 | |
| 	return value;
 | |
| }
 | |
| _ALWAYS_INLINE_ float fposmodp(float p_x, float p_y) {
 | |
| 	float value = fmod(p_x, p_y);
 | |
| 	if (value < 0) {
 | |
| 		value += p_y;
 | |
| 	}
 | |
| 	value += 0.0f;
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ int64_t posmod(int64_t p_x, int64_t p_y) {
 | |
| 	ERR_FAIL_COND_V_MSG(p_y == 0, 0, "Division by zero in posmod is undefined. Returning 0 as fallback.");
 | |
| 	int64_t value = p_x % p_y;
 | |
| 	if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
 | |
| 		value += p_y;
 | |
| 	}
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double deg_to_rad(double p_y) {
 | |
| 	return p_y * (PI / 180.0);
 | |
| }
 | |
| _ALWAYS_INLINE_ float deg_to_rad(float p_y) {
 | |
| 	return p_y * ((float)PI / 180.0f);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double rad_to_deg(double p_y) {
 | |
| 	return p_y * (180.0 / PI);
 | |
| }
 | |
| _ALWAYS_INLINE_ float rad_to_deg(float p_y) {
 | |
| 	return p_y * (180.0f / (float)PI);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) {
 | |
| 	return p_from + (p_to - p_from) * p_weight;
 | |
| }
 | |
| _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) {
 | |
| 	return p_from + (p_to - p_from) * p_weight;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
 | |
| 	return 0.5 *
 | |
| 			((p_from * 2.0) +
 | |
| 					(-p_pre + p_to) * p_weight +
 | |
| 					(2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) +
 | |
| 					(-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight));
 | |
| }
 | |
| _ALWAYS_INLINE_ float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
 | |
| 	return 0.5f *
 | |
| 			((p_from * 2.0f) +
 | |
| 					(-p_pre + p_to) * p_weight +
 | |
| 					(2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) +
 | |
| 					(-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
 | |
| 	double from_rot = fmod(p_from, TAU);
 | |
| 
 | |
| 	double pre_diff = fmod(p_pre - from_rot, TAU);
 | |
| 	double pre_rot = from_rot + fmod(2.0 * pre_diff, TAU) - pre_diff;
 | |
| 
 | |
| 	double to_diff = fmod(p_to - from_rot, TAU);
 | |
| 	double to_rot = from_rot + fmod(2.0 * to_diff, TAU) - to_diff;
 | |
| 
 | |
| 	double post_diff = fmod(p_post - to_rot, TAU);
 | |
| 	double post_rot = to_rot + fmod(2.0 * post_diff, TAU) - post_diff;
 | |
| 
 | |
| 	return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
 | |
| 	float from_rot = fmod(p_from, (float)TAU);
 | |
| 
 | |
| 	float pre_diff = fmod(p_pre - from_rot, (float)TAU);
 | |
| 	float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)TAU) - pre_diff;
 | |
| 
 | |
| 	float to_diff = fmod(p_to - from_rot, (float)TAU);
 | |
| 	float to_rot = from_rot + fmod(2.0f * to_diff, (float)TAU) - to_diff;
 | |
| 
 | |
| 	float post_diff = fmod(p_post - to_rot, (float)TAU);
 | |
| 	float post_rot = to_rot + fmod(2.0f * post_diff, (float)TAU) - post_diff;
 | |
| 
 | |
| 	return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
 | |
| 		double p_to_t, double p_pre_t, double p_post_t) {
 | |
| 	/* Barry-Goldman method */
 | |
| 	double t = lerp(0.0, p_to_t, p_weight);
 | |
| 	double a1 = lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t);
 | |
| 	double a2 = lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t);
 | |
| 	double a3 = lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t));
 | |
| 	double b1 = lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t));
 | |
| 	double b2 = lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t);
 | |
| 	return lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t);
 | |
| }
 | |
| _ALWAYS_INLINE_ float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
 | |
| 		float p_to_t, float p_pre_t, float p_post_t) {
 | |
| 	/* Barry-Goldman method */
 | |
| 	float t = lerp(0.0f, p_to_t, p_weight);
 | |
| 	float a1 = lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t);
 | |
| 	float a2 = lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t);
 | |
| 	float a3 = lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t));
 | |
| 	float b1 = lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t));
 | |
| 	float b2 = lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t);
 | |
| 	return lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
 | |
| 		double p_to_t, double p_pre_t, double p_post_t) {
 | |
| 	double from_rot = fmod(p_from, TAU);
 | |
| 
 | |
| 	double pre_diff = fmod(p_pre - from_rot, TAU);
 | |
| 	double pre_rot = from_rot + fmod(2.0 * pre_diff, TAU) - pre_diff;
 | |
| 
 | |
| 	double to_diff = fmod(p_to - from_rot, TAU);
 | |
| 	double to_rot = from_rot + fmod(2.0 * to_diff, TAU) - to_diff;
 | |
| 
 | |
| 	double post_diff = fmod(p_post - to_rot, TAU);
 | |
| 	double post_rot = to_rot + fmod(2.0 * post_diff, TAU) - post_diff;
 | |
| 
 | |
| 	return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
 | |
| }
 | |
| _ALWAYS_INLINE_ float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
 | |
| 		float p_to_t, float p_pre_t, float p_post_t) {
 | |
| 	float from_rot = fmod(p_from, (float)TAU);
 | |
| 
 | |
| 	float pre_diff = fmod(p_pre - from_rot, (float)TAU);
 | |
| 	float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)TAU) - pre_diff;
 | |
| 
 | |
| 	float to_diff = fmod(p_to - from_rot, (float)TAU);
 | |
| 	float to_rot = from_rot + fmod(2.0f * to_diff, (float)TAU) - to_diff;
 | |
| 
 | |
| 	float post_diff = fmod(p_post - to_rot, (float)TAU);
 | |
| 	float post_rot = to_rot + fmod(2.0f * post_diff, (float)TAU) - post_diff;
 | |
| 
 | |
| 	return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
 | |
| 	/* Formula from Wikipedia article on Bezier curves. */
 | |
| 	double omt = (1.0 - p_t);
 | |
| 	double omt2 = omt * omt;
 | |
| 	double omt3 = omt2 * omt;
 | |
| 	double t2 = p_t * p_t;
 | |
| 	double t3 = t2 * p_t;
 | |
| 
 | |
| 	return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
 | |
| }
 | |
| _ALWAYS_INLINE_ float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
 | |
| 	/* Formula from Wikipedia article on Bezier curves. */
 | |
| 	float omt = (1.0f - p_t);
 | |
| 	float omt2 = omt * omt;
 | |
| 	float omt3 = omt2 * omt;
 | |
| 	float t2 = p_t * p_t;
 | |
| 	float t3 = t2 * p_t;
 | |
| 
 | |
| 	return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
 | |
| 	/* Formula from Wikipedia article on Bezier curves. */
 | |
| 	double omt = (1.0 - p_t);
 | |
| 	double omt2 = omt * omt;
 | |
| 	double t2 = p_t * p_t;
 | |
| 
 | |
| 	double d = (p_control_1 - p_start) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2;
 | |
| 	return d;
 | |
| }
 | |
| _ALWAYS_INLINE_ float bezier_derivative(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
 | |
| 	/* Formula from Wikipedia article on Bezier curves. */
 | |
| 	float omt = (1.0f - p_t);
 | |
| 	float omt2 = omt * omt;
 | |
| 	float t2 = p_t * p_t;
 | |
| 
 | |
| 	float d = (p_control_1 - p_start) * 3.0f * omt2 + (p_control_2 - p_control_1) * 6.0f * omt * p_t + (p_end - p_control_2) * 3.0f * t2;
 | |
| 	return d;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double angle_difference(double p_from, double p_to) {
 | |
| 	double difference = fmod(p_to - p_from, TAU);
 | |
| 	return fmod(2.0 * difference, TAU) - difference;
 | |
| }
 | |
| _ALWAYS_INLINE_ float angle_difference(float p_from, float p_to) {
 | |
| 	float difference = fmod(p_to - p_from, (float)TAU);
 | |
| 	return fmod(2.0f * difference, (float)TAU) - difference;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) {
 | |
| 	return p_from + angle_difference(p_from, p_to) * p_weight;
 | |
| }
 | |
| _ALWAYS_INLINE_ float lerp_angle(float p_from, float p_to, float p_weight) {
 | |
| 	return p_from + angle_difference(p_from, p_to) * p_weight;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) {
 | |
| 	return (p_value - p_from) / (p_to - p_from);
 | |
| }
 | |
| _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) {
 | |
| 	return (p_value - p_from) / (p_to - p_from);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
 | |
| 	return lerp(p_ostart, p_ostop, inverse_lerp(p_istart, p_istop, p_value));
 | |
| }
 | |
| _ALWAYS_INLINE_ float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
 | |
| 	return lerp(p_ostart, p_ostop, inverse_lerp(p_istart, p_istop, p_value));
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_equal_approx(double p_left, double p_right, double p_tolerance) {
 | |
| 	// Check for exact equality first, required to handle "infinity" values.
 | |
| 	if (p_left == p_right) {
 | |
| 		return true;
 | |
| 	}
 | |
| 	// Then check for approximate equality.
 | |
| 	return abs(p_left - p_right) < p_tolerance;
 | |
| }
 | |
| _ALWAYS_INLINE_ bool is_equal_approx(float p_left, float p_right, float p_tolerance) {
 | |
| 	// Check for exact equality first, required to handle "infinity" values.
 | |
| 	if (p_left == p_right) {
 | |
| 		return true;
 | |
| 	}
 | |
| 	// Then check for approximate equality.
 | |
| 	return abs(p_left - p_right) < p_tolerance;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_equal_approx(double p_left, double p_right) {
 | |
| 	// Check for exact equality first, required to handle "infinity" values.
 | |
| 	if (p_left == p_right) {
 | |
| 		return true;
 | |
| 	}
 | |
| 	// Then check for approximate equality.
 | |
| 	double tolerance = CMP_EPSILON * abs(p_left);
 | |
| 	if (tolerance < CMP_EPSILON) {
 | |
| 		tolerance = CMP_EPSILON;
 | |
| 	}
 | |
| 	return abs(p_left - p_right) < tolerance;
 | |
| }
 | |
| _ALWAYS_INLINE_ bool is_equal_approx(float p_left, float p_right) {
 | |
| 	// Check for exact equality first, required to handle "infinity" values.
 | |
| 	if (p_left == p_right) {
 | |
| 		return true;
 | |
| 	}
 | |
| 	// Then check for approximate equality.
 | |
| 	float tolerance = (float)CMP_EPSILON * abs(p_left);
 | |
| 	if (tolerance < (float)CMP_EPSILON) {
 | |
| 		tolerance = (float)CMP_EPSILON;
 | |
| 	}
 | |
| 	return abs(p_left - p_right) < tolerance;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_zero_approx(double p_value) {
 | |
| 	return abs(p_value) < CMP_EPSILON;
 | |
| }
 | |
| _ALWAYS_INLINE_ bool is_zero_approx(float p_value) {
 | |
| 	return abs(p_value) < (float)CMP_EPSILON;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ bool is_same(double p_left, double p_right) {
 | |
| 	return (p_left == p_right) || (is_nan(p_left) && is_nan(p_right));
 | |
| }
 | |
| _ALWAYS_INLINE_ bool is_same(float p_left, float p_right) {
 | |
| 	return (p_left == p_right) || (is_nan(p_left) && is_nan(p_right));
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_s) {
 | |
| 	if (is_equal_approx(p_from, p_to)) {
 | |
| 		if (likely(p_from <= p_to)) {
 | |
| 			return p_s <= p_from ? 0.0 : 1.0;
 | |
| 		} else {
 | |
| 			return p_s <= p_to ? 1.0 : 0.0;
 | |
| 		}
 | |
| 	}
 | |
| 	double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0);
 | |
| 	return s * s * (3.0 - 2.0 * s);
 | |
| }
 | |
| _ALWAYS_INLINE_ float smoothstep(float p_from, float p_to, float p_s) {
 | |
| 	if (is_equal_approx(p_from, p_to)) {
 | |
| 		if (likely(p_from <= p_to)) {
 | |
| 			return p_s <= p_from ? 0.0f : 1.0f;
 | |
| 		} else {
 | |
| 			return p_s <= p_to ? 1.0f : 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| 	float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f);
 | |
| 	return s * s * (3.0f - 2.0f * s);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) {
 | |
| 	return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
 | |
| }
 | |
| _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) {
 | |
| 	return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double rotate_toward(double p_from, double p_to, double p_delta) {
 | |
| 	double difference = angle_difference(p_from, p_to);
 | |
| 	double abs_difference = abs(difference);
 | |
| 	// When `p_delta < 0` move no further than to PI radians away from `p_to` (as PI is the max possible angle distance).
 | |
| 	return p_from + CLAMP(p_delta, abs_difference - PI, abs_difference) * (difference >= 0.0 ? 1.0 : -1.0);
 | |
| }
 | |
| _ALWAYS_INLINE_ float rotate_toward(float p_from, float p_to, float p_delta) {
 | |
| 	float difference = angle_difference(p_from, p_to);
 | |
| 	float abs_difference = abs(difference);
 | |
| 	// When `p_delta < 0` move no further than to PI radians away from `p_to` (as PI is the max possible angle distance).
 | |
| 	return p_from + CLAMP(p_delta, abs_difference - (float)PI, abs_difference) * (difference >= 0.0f ? 1.0f : -1.0f);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double linear_to_db(double p_linear) {
 | |
| 	return log(p_linear) * 8.6858896380650365530225783783321;
 | |
| }
 | |
| _ALWAYS_INLINE_ float linear_to_db(float p_linear) {
 | |
| 	return log(p_linear) * (float)8.6858896380650365530225783783321;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double db_to_linear(double p_db) {
 | |
| 	return exp(p_db * 0.11512925464970228420089957273422);
 | |
| }
 | |
| _ALWAYS_INLINE_ float db_to_linear(float p_db) {
 | |
| 	return exp(p_db * (float)0.11512925464970228420089957273422);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double round(double p_val) {
 | |
| 	return std::round(p_val);
 | |
| }
 | |
| _ALWAYS_INLINE_ float round(float p_val) {
 | |
| 	return std::round(p_val);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double wrapf(double p_value, double p_min, double p_max) {
 | |
| 	double range = p_max - p_min;
 | |
| 	if (is_zero_approx(range)) {
 | |
| 		return p_min;
 | |
| 	}
 | |
| 	double result = p_value - (range * floor((p_value - p_min) / range));
 | |
| 	if (is_equal_approx(result, p_max)) {
 | |
| 		return p_min;
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| _ALWAYS_INLINE_ float wrapf(float p_value, float p_min, float p_max) {
 | |
| 	float range = p_max - p_min;
 | |
| 	if (is_zero_approx(range)) {
 | |
| 		return p_min;
 | |
| 	}
 | |
| 	float result = p_value - (range * floor((p_value - p_min) / range));
 | |
| 	if (is_equal_approx(result, p_max)) {
 | |
| 		return p_min;
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ int64_t wrapi(int64_t p_value, int64_t p_min, int64_t p_max) {
 | |
| 	int64_t range = p_max - p_min;
 | |
| 	return range == 0 ? p_min : p_min + ((((p_value - p_min) % range) + range) % range);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double fract(double p_value) {
 | |
| 	return p_value - floor(p_value);
 | |
| }
 | |
| _ALWAYS_INLINE_ float fract(float p_value) {
 | |
| 	return p_value - floor(p_value);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ double pingpong(double p_value, double p_length) {
 | |
| 	return (p_length != 0.0) ? abs(fract((p_value - p_length) / (p_length * 2.0)) * p_length * 2.0 - p_length) : 0.0;
 | |
| }
 | |
| _ALWAYS_INLINE_ float pingpong(float p_value, float p_length) {
 | |
| 	return (p_length != 0.0f) ? abs(fract((p_value - p_length) / (p_length * 2.0f)) * p_length * 2.0f - p_length) : 0.0f;
 | |
| }
 | |
| 
 | |
| // double only, as these functions are mainly used by the editor and not performance-critical,
 | |
| double ease(double p_x, double p_c);
 | |
| int step_decimals(double p_step);
 | |
| int range_step_decimals(double p_step); // For editor use only.
 | |
| double snapped(double p_value, double p_step);
 | |
| 
 | |
| uint32_t larger_prime(uint32_t p_val);
 | |
| 
 | |
| void seed(uint64_t p_seed);
 | |
| void randomize();
 | |
| uint32_t rand_from_seed(uint64_t *p_seed);
 | |
| uint32_t rand();
 | |
| _ALWAYS_INLINE_ double randd() {
 | |
| 	return (double)rand() / (double)UINT32_MAX;
 | |
| }
 | |
| _ALWAYS_INLINE_ float randf() {
 | |
| 	return (float)rand() / (float)UINT32_MAX;
 | |
| }
 | |
| double randfn(double p_mean, double p_deviation);
 | |
| 
 | |
| double random(double p_from, double p_to);
 | |
| float random(float p_from, float p_to);
 | |
| int random(int p_from, int p_to);
 | |
| 
 | |
| // This function should be as fast as possible and rounding mode should not matter.
 | |
| _ALWAYS_INLINE_ int fast_ftoi(float p_value) {
 | |
| 	return std::rint(p_value);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t p_half) {
 | |
| 	uint16_t h_exp, h_sig;
 | |
| 	uint32_t f_sgn, f_exp, f_sig;
 | |
| 
 | |
| 	h_exp = (p_half & 0x7c00u);
 | |
| 	f_sgn = ((uint32_t)p_half & 0x8000u) << 16;
 | |
| 	switch (h_exp) {
 | |
| 		case 0x0000u: /* 0 or subnormal */
 | |
| 			h_sig = (p_half & 0x03ffu);
 | |
| 			/* Signed zero */
 | |
| 			if (h_sig == 0) {
 | |
| 				return f_sgn;
 | |
| 			}
 | |
| 			/* Subnormal */
 | |
| 			h_sig <<= 1;
 | |
| 			while ((h_sig & 0x0400u) == 0) {
 | |
| 				h_sig <<= 1;
 | |
| 				h_exp++;
 | |
| 			}
 | |
| 			f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
 | |
| 			f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
 | |
| 			return f_sgn + f_exp + f_sig;
 | |
| 		case 0x7c00u: /* inf or NaN */
 | |
| 			/* All-ones exponent and a copy of the significand */
 | |
| 			return f_sgn + 0x7f800000u + (((uint32_t)(p_half & 0x03ffu)) << 13);
 | |
| 		default: /* normalized */
 | |
| 			/* Just need to adjust the exponent and shift */
 | |
| 			return f_sgn + (((uint32_t)(p_half & 0x7fffu) + 0x1c000u) << 13);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *p_half) {
 | |
| 	union {
 | |
| 		uint32_t u32;
 | |
| 		float f32;
 | |
| 	} u;
 | |
| 
 | |
| 	u.u32 = halfbits_to_floatbits(*p_half);
 | |
| 	return u.f32;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ float half_to_float(const uint16_t p_half) {
 | |
| 	return halfptr_to_float(&p_half);
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ uint16_t make_half_float(float p_value) {
 | |
| 	union {
 | |
| 		float fv;
 | |
| 		uint32_t ui;
 | |
| 	} ci;
 | |
| 	ci.fv = p_value;
 | |
| 
 | |
| 	uint32_t x = ci.ui;
 | |
| 	uint32_t sign = (unsigned short)(x >> 31);
 | |
| 	uint32_t mantissa;
 | |
| 	uint32_t exponent;
 | |
| 	uint16_t hf;
 | |
| 
 | |
| 	// get mantissa
 | |
| 	mantissa = x & ((1 << 23) - 1);
 | |
| 	// get exponent bits
 | |
| 	exponent = x & (0xFF << 23);
 | |
| 	if (exponent >= 0x47800000) {
 | |
| 		// check if the original single precision float number is a NaN
 | |
| 		if (mantissa && (exponent == (0xFF << 23))) {
 | |
| 			// we have a single precision NaN
 | |
| 			mantissa = (1 << 23) - 1;
 | |
| 		} else {
 | |
| 			// 16-bit half-float representation stores number as Inf
 | |
| 			mantissa = 0;
 | |
| 		}
 | |
| 		hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
 | |
| 				(uint16_t)(mantissa >> 13);
 | |
| 	}
 | |
| 	// check if exponent is <= -15
 | |
| 	else if (exponent <= 0x38000000) {
 | |
| 		/*
 | |
| 		// store a denorm half-float value or zero
 | |
| 		exponent = (0x38000000 - exponent) >> 23;
 | |
| 		mantissa >>= (14 + exponent);
 | |
| 
 | |
| 		hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
 | |
| 		*/
 | |
| 		hf = 0; //denormals do not work for 3D, convert to zero
 | |
| 	} else {
 | |
| 		hf = (((uint16_t)sign) << 15) |
 | |
| 				(uint16_t)((exponent - 0x38000000) >> 13) |
 | |
| 				(uint16_t)(mantissa >> 13);
 | |
| 	}
 | |
| 
 | |
| 	return hf;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) {
 | |
| 	return p_step != 0 ? snapped(p_target - p_offset, p_step) + p_offset : p_target;
 | |
| }
 | |
| 
 | |
| _ALWAYS_INLINE_ float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
 | |
| 	if (p_step != 0) {
 | |
| 		float a = snapped(p_target - p_offset, p_step + p_separation) + p_offset;
 | |
| 		float b = a;
 | |
| 		if (p_target >= 0) {
 | |
| 			b -= p_separation;
 | |
| 		} else {
 | |
| 			b += p_step;
 | |
| 		}
 | |
| 		return (abs(p_target - a) < abs(p_target - b)) ? a : b;
 | |
| 	}
 | |
| 	return p_target;
 | |
| }
 | |
| 
 | |
| }; // namespace Math
 | 
