mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 21:51:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			293 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  quaternion.cpp                                                       */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #include "quaternion.h"
 | |
| 
 | |
| #include "core/math/basis.h"
 | |
| #include "core/string/print_string.h"
 | |
| 
 | |
| real_t Quaternion::angle_to(const Quaternion &p_to) const {
 | |
| 	real_t d = dot(p_to);
 | |
| 	return Math::acos(CLAMP(d * d * 2 - 1, -1, 1));
 | |
| }
 | |
| 
 | |
| // get_euler_xyz returns a vector containing the Euler angles in the format
 | |
| // (ax,ay,az), where ax is the angle of rotation around x axis,
 | |
| // and similar for other axes.
 | |
| // This implementation uses XYZ convention (Z is the first rotation).
 | |
| Vector3 Quaternion::get_euler_xyz() const {
 | |
| 	Basis m(*this);
 | |
| 	return m.get_euler(Basis::EULER_ORDER_XYZ);
 | |
| }
 | |
| 
 | |
| // get_euler_yxz returns a vector containing the Euler angles in the format
 | |
| // (ax,ay,az), where ax is the angle of rotation around x axis,
 | |
| // and similar for other axes.
 | |
| // This implementation uses YXZ convention (Z is the first rotation).
 | |
| Vector3 Quaternion::get_euler_yxz() const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
 | |
| #endif
 | |
| 	Basis m(*this);
 | |
| 	return m.get_euler(Basis::EULER_ORDER_YXZ);
 | |
| }
 | |
| 
 | |
| void Quaternion::operator*=(const Quaternion &p_q) {
 | |
| 	real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
 | |
| 	real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
 | |
| 	real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
 | |
| 	w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;
 | |
| 	x = xx;
 | |
| 	y = yy;
 | |
| 	z = zz;
 | |
| }
 | |
| 
 | |
| Quaternion Quaternion::operator*(const Quaternion &p_q) const {
 | |
| 	Quaternion r = *this;
 | |
| 	r *= p_q;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const {
 | |
| 	return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w);
 | |
| }
 | |
| 
 | |
| real_t Quaternion::length() const {
 | |
| 	return Math::sqrt(length_squared());
 | |
| }
 | |
| 
 | |
| void Quaternion::normalize() {
 | |
| 	*this /= length();
 | |
| }
 | |
| 
 | |
| Quaternion Quaternion::normalized() const {
 | |
| 	return *this / length();
 | |
| }
 | |
| 
 | |
| bool Quaternion::is_normalized() const {
 | |
| 	return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon
 | |
| }
 | |
| 
 | |
| Quaternion Quaternion::inverse() const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized.");
 | |
| #endif
 | |
| 	return Quaternion(-x, -y, -z, w);
 | |
| }
 | |
| 
 | |
| Quaternion Quaternion::log() const {
 | |
| 	Quaternion src = *this;
 | |
| 	Vector3 src_v = src.get_axis() * src.get_angle();
 | |
| 	return Quaternion(src_v.x, src_v.y, src_v.z, 0);
 | |
| }
 | |
| 
 | |
| Quaternion Quaternion::exp() const {
 | |
| 	Quaternion src = *this;
 | |
| 	Vector3 src_v = Vector3(src.x, src.y, src.z);
 | |
| 	real_t theta = src_v.length();
 | |
| 	if (theta < CMP_EPSILON) {
 | |
| 		return Quaternion(0, 0, 0, 1);
 | |
| 	}
 | |
| 	return Quaternion(src_v.normalized(), theta);
 | |
| }
 | |
| 
 | |
| Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
 | |
| 	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
 | |
| #endif
 | |
| 	Quaternion to1;
 | |
| 	real_t omega, cosom, sinom, scale0, scale1;
 | |
| 
 | |
| 	// calc cosine
 | |
| 	cosom = dot(p_to);
 | |
| 
 | |
| 	// adjust signs (if necessary)
 | |
| 	if (cosom < 0.0f) {
 | |
| 		cosom = -cosom;
 | |
| 		to1 = -p_to;
 | |
| 	} else {
 | |
| 		to1 = p_to;
 | |
| 	}
 | |
| 
 | |
| 	// calculate coefficients
 | |
| 
 | |
| 	if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
 | |
| 		// standard case (slerp)
 | |
| 		omega = Math::acos(cosom);
 | |
| 		sinom = Math::sin(omega);
 | |
| 		scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
 | |
| 		scale1 = Math::sin(p_weight * omega) / sinom;
 | |
| 	} else {
 | |
| 		// "from" and "to" quaternions are very close
 | |
| 		//  ... so we can do a linear interpolation
 | |
| 		scale0 = 1.0f - p_weight;
 | |
| 		scale1 = p_weight;
 | |
| 	}
 | |
| 	// calculate final values
 | |
| 	return Quaternion(
 | |
| 			scale0 * x + scale1 * to1.x,
 | |
| 			scale0 * y + scale1 * to1.y,
 | |
| 			scale0 * z + scale1 * to1.z,
 | |
| 			scale0 * w + scale1 * to1.w);
 | |
| }
 | |
| 
 | |
| Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
 | |
| 	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
 | |
| #endif
 | |
| 	const Quaternion &from = *this;
 | |
| 
 | |
| 	real_t dot = from.dot(p_to);
 | |
| 
 | |
| 	if (Math::absf(dot) > 0.9999f) {
 | |
| 		return from;
 | |
| 	}
 | |
| 
 | |
| 	real_t theta = Math::acos(dot),
 | |
| 		   sinT = 1.0f / Math::sin(theta),
 | |
| 		   newFactor = Math::sin(p_weight * theta) * sinT,
 | |
| 		   invFactor = Math::sin((1.0f - p_weight) * theta) * sinT;
 | |
| 
 | |
| 	return Quaternion(invFactor * from.x + newFactor * p_to.x,
 | |
| 			invFactor * from.y + newFactor * p_to.y,
 | |
| 			invFactor * from.z + newFactor * p_to.z,
 | |
| 			invFactor * from.w + newFactor * p_to.w);
 | |
| }
 | |
| 
 | |
| Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
 | |
| 	ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
 | |
| #endif
 | |
| 	Quaternion ret_q = *this;
 | |
| 	Quaternion pre_q = p_pre_a;
 | |
| 	Quaternion to_q = p_b;
 | |
| 	Quaternion post_q = p_post_b;
 | |
| 
 | |
| 	// Align flip phases.
 | |
| 	ret_q = Basis(ret_q).get_rotation_quaternion();
 | |
| 	pre_q = Basis(pre_q).get_rotation_quaternion();
 | |
| 	to_q = Basis(to_q).get_rotation_quaternion();
 | |
| 	post_q = Basis(post_q).get_rotation_quaternion();
 | |
| 
 | |
| 	// Flip quaternions to shortest path if necessary.
 | |
| 	bool flip1 = signbit(ret_q.dot(pre_q));
 | |
| 	pre_q = flip1 ? -pre_q : pre_q;
 | |
| 	bool flip2 = signbit(ret_q.dot(to_q));
 | |
| 	to_q = flip2 ? -to_q : to_q;
 | |
| 	bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));
 | |
| 	post_q = flip3 ? -post_q : post_q;
 | |
| 
 | |
| 	if (flip1 || flip2 || flip3) {
 | |
| 		// Angle is too large, calc by Approximate.
 | |
| 		ret_q.x = Math::cubic_interpolate(ret_q.x, to_q.x, pre_q.x, post_q.x, p_weight);
 | |
| 		ret_q.y = Math::cubic_interpolate(ret_q.y, to_q.y, pre_q.y, post_q.y, p_weight);
 | |
| 		ret_q.z = Math::cubic_interpolate(ret_q.z, to_q.z, pre_q.z, post_q.z, p_weight);
 | |
| 		ret_q.w = Math::cubic_interpolate(ret_q.w, to_q.w, pre_q.w, post_q.w, p_weight);
 | |
| 		ret_q.normalize();
 | |
| 	} else {
 | |
| 		// Calc by Expmap.
 | |
| 		Quaternion ln_ret = ret_q.log();
 | |
| 		Quaternion ln_to = to_q.log();
 | |
| 		Quaternion ln_pre = pre_q.log();
 | |
| 		Quaternion ln_post = post_q.log();
 | |
| 		Quaternion ln = Quaternion(0, 0, 0, 0);
 | |
| 		ln.x = Math::cubic_interpolate(ln_ret.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);
 | |
| 		ln.y = Math::cubic_interpolate(ln_ret.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);
 | |
| 		ln.z = Math::cubic_interpolate(ln_ret.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
 | |
| 		ret_q = ln.exp();
 | |
| 	}
 | |
| 	return ret_q;
 | |
| }
 | |
| 
 | |
| Quaternion::operator String() const {
 | |
| 	return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")";
 | |
| }
 | |
| 
 | |
| Vector3 Quaternion::get_axis() const {
 | |
| 	if (Math::abs(w) > 1 - CMP_EPSILON) {
 | |
| 		return Vector3(x, y, z);
 | |
| 	}
 | |
| 	real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
 | |
| 	return Vector3(x * r, y * r, z * r);
 | |
| }
 | |
| 
 | |
| real_t Quaternion::get_angle() const {
 | |
| 	return 2 * Math::acos(w);
 | |
| }
 | |
| 
 | |
| Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
 | |
| #endif
 | |
| 	real_t d = p_axis.length();
 | |
| 	if (d == 0) {
 | |
| 		x = 0;
 | |
| 		y = 0;
 | |
| 		z = 0;
 | |
| 		w = 0;
 | |
| 	} else {
 | |
| 		real_t sin_angle = Math::sin(p_angle * 0.5f);
 | |
| 		real_t cos_angle = Math::cos(p_angle * 0.5f);
 | |
| 		real_t s = sin_angle / d;
 | |
| 		x = p_axis.x * s;
 | |
| 		y = p_axis.y * s;
 | |
| 		z = p_axis.z * s;
 | |
| 		w = cos_angle;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Euler constructor expects a vector containing the Euler angles in the format
 | |
| // (ax, ay, az), where ax is the angle of rotation around x axis,
 | |
| // and similar for other axes.
 | |
| // This implementation uses YXZ convention (Z is the first rotation).
 | |
| Quaternion::Quaternion(const Vector3 &p_euler) {
 | |
| 	real_t half_a1 = p_euler.y * 0.5f;
 | |
| 	real_t half_a2 = p_euler.x * 0.5f;
 | |
| 	real_t half_a3 = p_euler.z * 0.5f;
 | |
| 
 | |
| 	// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
 | |
| 	// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
 | |
| 	// a3 is the angle of the first rotation, following the notation in this reference.
 | |
| 
 | |
| 	real_t cos_a1 = Math::cos(half_a1);
 | |
| 	real_t sin_a1 = Math::sin(half_a1);
 | |
| 	real_t cos_a2 = Math::cos(half_a2);
 | |
| 	real_t sin_a2 = Math::sin(half_a2);
 | |
| 	real_t cos_a3 = Math::cos(half_a3);
 | |
| 	real_t sin_a3 = Math::sin(half_a3);
 | |
| 
 | |
| 	x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
 | |
| 	y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
 | |
| 	z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
 | |
| 	w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
 | |
| }
 | 
