mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 a4cfc77dc0
			
		
	
	
		a4cfc77dc0
		
	
	
	
	
		
			
			Moves all the navigation mesh query related functions from NavMap and NavRegion to a dedicated file and makes them static.
		
			
				
	
	
		
			715 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			715 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  nav_mesh_queries_3d.cpp                                               */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #ifndef _3D_DISABLED
 | |
| 
 | |
| #include "nav_mesh_queries_3d.h"
 | |
| 
 | |
| #include "../nav_base.h"
 | |
| 
 | |
| #include "core/math/geometry_3d.h"
 | |
| 
 | |
| #define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
 | |
| 
 | |
| #define APPEND_METADATA(poly)                                  \
 | |
| 	if (r_path_types) {                                        \
 | |
| 		r_path_types->push_back(poly->owner->get_type());      \
 | |
| 	}                                                          \
 | |
| 	if (r_path_rids) {                                         \
 | |
| 		r_path_rids->push_back(poly->owner->get_self());       \
 | |
| 	}                                                          \
 | |
| 	if (r_path_owners) {                                       \
 | |
| 		r_path_owners->push_back(poly->owner->get_owner_id()); \
 | |
| 	}
 | |
| 
 | |
| Vector3 NavMeshQueries3D::polygons_get_random_point(const LocalVector<gd::Polygon> &p_polygons, uint32_t p_navigation_layers, bool p_uniformly) {
 | |
| 	const LocalVector<gd::Polygon> ®ion_polygons = p_polygons;
 | |
| 
 | |
| 	if (region_polygons.is_empty()) {
 | |
| 		return Vector3();
 | |
| 	}
 | |
| 
 | |
| 	if (p_uniformly) {
 | |
| 		real_t accumulated_area = 0;
 | |
| 		RBMap<real_t, uint32_t> region_area_map;
 | |
| 
 | |
| 		for (uint32_t rp_index = 0; rp_index < region_polygons.size(); rp_index++) {
 | |
| 			const gd::Polygon ®ion_polygon = region_polygons[rp_index];
 | |
| 			real_t polyon_area = region_polygon.surface_area;
 | |
| 
 | |
| 			if (polyon_area == 0.0) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			region_area_map[accumulated_area] = rp_index;
 | |
| 			accumulated_area += polyon_area;
 | |
| 		}
 | |
| 		if (region_area_map.is_empty() || accumulated_area == 0) {
 | |
| 			// All polygons have no real surface / no area.
 | |
| 			return Vector3();
 | |
| 		}
 | |
| 
 | |
| 		real_t region_area_map_pos = Math::random(real_t(0), accumulated_area);
 | |
| 
 | |
| 		RBMap<real_t, uint32_t>::Iterator region_E = region_area_map.find_closest(region_area_map_pos);
 | |
| 		ERR_FAIL_COND_V(!region_E, Vector3());
 | |
| 		uint32_t rrp_polygon_index = region_E->value;
 | |
| 		ERR_FAIL_UNSIGNED_INDEX_V(rrp_polygon_index, region_polygons.size(), Vector3());
 | |
| 
 | |
| 		const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];
 | |
| 
 | |
| 		real_t accumulated_polygon_area = 0;
 | |
| 		RBMap<real_t, uint32_t> polygon_area_map;
 | |
| 
 | |
| 		for (uint32_t rpp_index = 2; rpp_index < rr_polygon.points.size(); rpp_index++) {
 | |
| 			real_t face_area = Face3(rr_polygon.points[0].pos, rr_polygon.points[rpp_index - 1].pos, rr_polygon.points[rpp_index].pos).get_area();
 | |
| 
 | |
| 			if (face_area == 0.0) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			polygon_area_map[accumulated_polygon_area] = rpp_index;
 | |
| 			accumulated_polygon_area += face_area;
 | |
| 		}
 | |
| 		if (polygon_area_map.is_empty() || accumulated_polygon_area == 0) {
 | |
| 			// All faces have no real surface / no area.
 | |
| 			return Vector3();
 | |
| 		}
 | |
| 
 | |
| 		real_t polygon_area_map_pos = Math::random(real_t(0), accumulated_polygon_area);
 | |
| 
 | |
| 		RBMap<real_t, uint32_t>::Iterator polygon_E = polygon_area_map.find_closest(polygon_area_map_pos);
 | |
| 		ERR_FAIL_COND_V(!polygon_E, Vector3());
 | |
| 		uint32_t rrp_face_index = polygon_E->value;
 | |
| 		ERR_FAIL_UNSIGNED_INDEX_V(rrp_face_index, rr_polygon.points.size(), Vector3());
 | |
| 
 | |
| 		const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);
 | |
| 
 | |
| 		Vector3 face_random_position = face.get_random_point_inside();
 | |
| 		return face_random_position;
 | |
| 
 | |
| 	} else {
 | |
| 		uint32_t rrp_polygon_index = Math::random(int(0), region_polygons.size() - 1);
 | |
| 
 | |
| 		const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];
 | |
| 
 | |
| 		uint32_t rrp_face_index = Math::random(int(2), rr_polygon.points.size() - 1);
 | |
| 
 | |
| 		const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);
 | |
| 
 | |
| 		Vector3 face_random_position = face.get_random_point_inside();
 | |
| 		return face_random_position;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector<Vector3> NavMeshQueries3D::polygons_get_path(const LocalVector<gd::Polygon> &p_polygons, Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners, const Vector3 &p_map_up, uint32_t p_link_polygons_size) {
 | |
| 	// Clear metadata outputs.
 | |
| 	if (r_path_types) {
 | |
| 		r_path_types->clear();
 | |
| 	}
 | |
| 	if (r_path_rids) {
 | |
| 		r_path_rids->clear();
 | |
| 	}
 | |
| 	if (r_path_owners) {
 | |
| 		r_path_owners->clear();
 | |
| 	}
 | |
| 
 | |
| 	// Find the start poly and the end poly on this map.
 | |
| 	const gd::Polygon *begin_poly = nullptr;
 | |
| 	const gd::Polygon *end_poly = nullptr;
 | |
| 	Vector3 begin_point;
 | |
| 	Vector3 end_point;
 | |
| 	real_t begin_d = FLT_MAX;
 | |
| 	real_t end_d = FLT_MAX;
 | |
| 	// Find the initial poly and the end poly on this map.
 | |
| 	for (const gd::Polygon &p : p_polygons) {
 | |
| 		// Only consider the polygon if it in a region with compatible layers.
 | |
| 		if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// For each face check the distance between the origin/destination
 | |
| 		for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
 | |
| 			const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
 | |
| 
 | |
| 			Vector3 point = face.get_closest_point_to(p_origin);
 | |
| 			real_t distance_to_point = point.distance_to(p_origin);
 | |
| 			if (distance_to_point < begin_d) {
 | |
| 				begin_d = distance_to_point;
 | |
| 				begin_poly = &p;
 | |
| 				begin_point = point;
 | |
| 			}
 | |
| 
 | |
| 			point = face.get_closest_point_to(p_destination);
 | |
| 			distance_to_point = point.distance_to(p_destination);
 | |
| 			if (distance_to_point < end_d) {
 | |
| 				end_d = distance_to_point;
 | |
| 				end_poly = &p;
 | |
| 				end_point = point;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Check for trivial cases
 | |
| 	if (!begin_poly || !end_poly) {
 | |
| 		return Vector<Vector3>();
 | |
| 	}
 | |
| 	if (begin_poly == end_poly) {
 | |
| 		if (r_path_types) {
 | |
| 			r_path_types->resize(2);
 | |
| 			r_path_types->write[0] = begin_poly->owner->get_type();
 | |
| 			r_path_types->write[1] = end_poly->owner->get_type();
 | |
| 		}
 | |
| 
 | |
| 		if (r_path_rids) {
 | |
| 			r_path_rids->resize(2);
 | |
| 			(*r_path_rids)[0] = begin_poly->owner->get_self();
 | |
| 			(*r_path_rids)[1] = end_poly->owner->get_self();
 | |
| 		}
 | |
| 
 | |
| 		if (r_path_owners) {
 | |
| 			r_path_owners->resize(2);
 | |
| 			r_path_owners->write[0] = begin_poly->owner->get_owner_id();
 | |
| 			r_path_owners->write[1] = end_poly->owner->get_owner_id();
 | |
| 		}
 | |
| 
 | |
| 		Vector<Vector3> path;
 | |
| 		path.resize(2);
 | |
| 		path.write[0] = begin_point;
 | |
| 		path.write[1] = end_point;
 | |
| 		return path;
 | |
| 	}
 | |
| 
 | |
| 	// List of all reachable navigation polys.
 | |
| 	LocalVector<gd::NavigationPoly> navigation_polys;
 | |
| 	navigation_polys.resize(p_polygons.size() + p_link_polygons_size);
 | |
| 
 | |
| 	// Initialize the matching navigation polygon.
 | |
| 	gd::NavigationPoly &begin_navigation_poly = navigation_polys[begin_poly->id];
 | |
| 	begin_navigation_poly.poly = begin_poly;
 | |
| 	begin_navigation_poly.entry = begin_point;
 | |
| 	begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
 | |
| 	begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
 | |
| 
 | |
| 	// Heap of polygons to travel next.
 | |
| 	gd::Heap<gd::NavigationPoly *, gd::NavPolyTravelCostGreaterThan, gd::NavPolyHeapIndexer>
 | |
| 			traversable_polys;
 | |
| 	traversable_polys.reserve(p_polygons.size() * 0.25);
 | |
| 
 | |
| 	// This is an implementation of the A* algorithm.
 | |
| 	int least_cost_id = begin_poly->id;
 | |
| 	int prev_least_cost_id = -1;
 | |
| 	bool found_route = false;
 | |
| 
 | |
| 	const gd::Polygon *reachable_end = nullptr;
 | |
| 	real_t distance_to_reachable_end = FLT_MAX;
 | |
| 	bool is_reachable = true;
 | |
| 
 | |
| 	while (true) {
 | |
| 		// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
 | |
| 		for (const gd::Edge &edge : navigation_polys[least_cost_id].poly->edges) {
 | |
| 			// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
 | |
| 			for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
 | |
| 				const gd::Edge::Connection &connection = edge.connections[connection_index];
 | |
| 
 | |
| 				// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
 | |
| 				if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
 | |
| 				real_t poly_enter_cost = 0.0;
 | |
| 				real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
 | |
| 
 | |
| 				if (prev_least_cost_id != -1 && navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
 | |
| 					poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
 | |
| 				}
 | |
| 				prev_least_cost_id = least_cost_id;
 | |
| 
 | |
| 				Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
 | |
| 				const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
 | |
| 				const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;
 | |
| 
 | |
| 				// Check if the neighbor polygon has already been processed.
 | |
| 				gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
 | |
| 				if (neighbor_poly.poly != nullptr) {
 | |
| 					// If the neighbor polygon hasn't been traversed yet and the new path leading to
 | |
| 					// it is shorter, update the polygon.
 | |
| 					if (neighbor_poly.traversable_poly_index < traversable_polys.size() &&
 | |
| 							new_traveled_distance < neighbor_poly.traveled_distance) {
 | |
| 						neighbor_poly.back_navigation_poly_id = least_cost_id;
 | |
| 						neighbor_poly.back_navigation_edge = connection.edge;
 | |
| 						neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
 | |
| 						neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
 | |
| 						neighbor_poly.traveled_distance = new_traveled_distance;
 | |
| 						neighbor_poly.distance_to_destination =
 | |
| 								new_entry.distance_to(end_point) *
 | |
| 								neighbor_poly.poly->owner->get_travel_cost();
 | |
| 						neighbor_poly.entry = new_entry;
 | |
| 
 | |
| 						// Update the priority of the polygon in the heap.
 | |
| 						traversable_polys.shift(neighbor_poly.traversable_poly_index);
 | |
| 					}
 | |
| 				} else {
 | |
| 					// Initialize the matching navigation polygon.
 | |
| 					neighbor_poly.poly = connection.polygon;
 | |
| 					neighbor_poly.back_navigation_poly_id = least_cost_id;
 | |
| 					neighbor_poly.back_navigation_edge = connection.edge;
 | |
| 					neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
 | |
| 					neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
 | |
| 					neighbor_poly.traveled_distance = new_traveled_distance;
 | |
| 					neighbor_poly.distance_to_destination =
 | |
| 							new_entry.distance_to(end_point) *
 | |
| 							neighbor_poly.poly->owner->get_travel_cost();
 | |
| 					neighbor_poly.entry = new_entry;
 | |
| 
 | |
| 					// Add the polygon to the heap of polygons to traverse next.
 | |
| 					traversable_polys.push(&neighbor_poly);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// When the heap of traversable polygons is empty at this point it means the end polygon is
 | |
| 		// unreachable.
 | |
| 		if (traversable_polys.is_empty()) {
 | |
| 			// Thus use the further reachable polygon
 | |
| 			ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
 | |
| 			is_reachable = false;
 | |
| 			if (reachable_end == nullptr) {
 | |
| 				// The path is not found and there is not a way out.
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			// Set as end point the furthest reachable point.
 | |
| 			end_poly = reachable_end;
 | |
| 			end_d = FLT_MAX;
 | |
| 			for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
 | |
| 				Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
 | |
| 				Vector3 spoint = f.get_closest_point_to(p_destination);
 | |
| 				real_t dpoint = spoint.distance_to(p_destination);
 | |
| 				if (dpoint < end_d) {
 | |
| 					end_point = spoint;
 | |
| 					end_d = dpoint;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Search all faces of start polygon as well.
 | |
| 			bool closest_point_on_start_poly = false;
 | |
| 			for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
 | |
| 				Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
 | |
| 				Vector3 spoint = f.get_closest_point_to(p_destination);
 | |
| 				real_t dpoint = spoint.distance_to(p_destination);
 | |
| 				if (dpoint < end_d) {
 | |
| 					end_point = spoint;
 | |
| 					end_d = dpoint;
 | |
| 					closest_point_on_start_poly = true;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (closest_point_on_start_poly) {
 | |
| 				// No point to run PostProcessing when start and end convex polygon is the same.
 | |
| 				if (r_path_types) {
 | |
| 					r_path_types->resize(2);
 | |
| 					r_path_types->write[0] = begin_poly->owner->get_type();
 | |
| 					r_path_types->write[1] = begin_poly->owner->get_type();
 | |
| 				}
 | |
| 
 | |
| 				if (r_path_rids) {
 | |
| 					r_path_rids->resize(2);
 | |
| 					(*r_path_rids)[0] = begin_poly->owner->get_self();
 | |
| 					(*r_path_rids)[1] = begin_poly->owner->get_self();
 | |
| 				}
 | |
| 
 | |
| 				if (r_path_owners) {
 | |
| 					r_path_owners->resize(2);
 | |
| 					r_path_owners->write[0] = begin_poly->owner->get_owner_id();
 | |
| 					r_path_owners->write[1] = begin_poly->owner->get_owner_id();
 | |
| 				}
 | |
| 
 | |
| 				Vector<Vector3> path;
 | |
| 				path.resize(2);
 | |
| 				path.write[0] = begin_point;
 | |
| 				path.write[1] = end_point;
 | |
| 				return path;
 | |
| 			}
 | |
| 
 | |
| 			for (gd::NavigationPoly &nav_poly : navigation_polys) {
 | |
| 				nav_poly.poly = nullptr;
 | |
| 			}
 | |
| 			navigation_polys[begin_poly->id].poly = begin_poly;
 | |
| 
 | |
| 			least_cost_id = begin_poly->id;
 | |
| 			prev_least_cost_id = -1;
 | |
| 
 | |
| 			reachable_end = nullptr;
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
 | |
| 		least_cost_id = traversable_polys.pop()->poly->id;
 | |
| 
 | |
| 		// Store the farthest reachable end polygon in case our goal is not reachable.
 | |
| 		if (is_reachable) {
 | |
| 			real_t distance = navigation_polys[least_cost_id].entry.distance_to(p_destination);
 | |
| 			if (distance_to_reachable_end > distance) {
 | |
| 				distance_to_reachable_end = distance;
 | |
| 				reachable_end = navigation_polys[least_cost_id].poly;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Check if we reached the end
 | |
| 		if (navigation_polys[least_cost_id].poly == end_poly) {
 | |
| 			found_route = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// We did not find a route but we have both a start polygon and an end polygon at this point.
 | |
| 	// Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon.
 | |
| 	if (!found_route) {
 | |
| 		end_d = FLT_MAX;
 | |
| 		// Search all faces of the start polygon for the closest point to our target position.
 | |
| 		for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
 | |
| 			Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
 | |
| 			Vector3 spoint = f.get_closest_point_to(p_destination);
 | |
| 			real_t dpoint = spoint.distance_to(p_destination);
 | |
| 			if (dpoint < end_d) {
 | |
| 				end_point = spoint;
 | |
| 				end_d = dpoint;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (r_path_types) {
 | |
| 			r_path_types->resize(2);
 | |
| 			r_path_types->write[0] = begin_poly->owner->get_type();
 | |
| 			r_path_types->write[1] = begin_poly->owner->get_type();
 | |
| 		}
 | |
| 
 | |
| 		if (r_path_rids) {
 | |
| 			r_path_rids->resize(2);
 | |
| 			(*r_path_rids)[0] = begin_poly->owner->get_self();
 | |
| 			(*r_path_rids)[1] = begin_poly->owner->get_self();
 | |
| 		}
 | |
| 
 | |
| 		if (r_path_owners) {
 | |
| 			r_path_owners->resize(2);
 | |
| 			r_path_owners->write[0] = begin_poly->owner->get_owner_id();
 | |
| 			r_path_owners->write[1] = begin_poly->owner->get_owner_id();
 | |
| 		}
 | |
| 
 | |
| 		Vector<Vector3> path;
 | |
| 		path.resize(2);
 | |
| 		path.write[0] = begin_point;
 | |
| 		path.write[1] = end_point;
 | |
| 		return path;
 | |
| 	}
 | |
| 
 | |
| 	Vector<Vector3> path;
 | |
| 	// Optimize the path.
 | |
| 	if (p_optimize) {
 | |
| 		// Set the apex poly/point to the end point
 | |
| 		gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
 | |
| 
 | |
| 		Vector3 back_pathway[2] = { apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end };
 | |
| 		const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(end_point, back_pathway);
 | |
| 		if (end_point.is_equal_approx(back_edge_closest_point)) {
 | |
| 			// The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing.
 | |
| 			// At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon.
 | |
| 			if (apex_poly->back_navigation_poly_id != -1) {
 | |
| 				apex_poly = &navigation_polys[apex_poly->back_navigation_poly_id];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		Vector3 apex_point = end_point;
 | |
| 
 | |
| 		gd::NavigationPoly *left_poly = apex_poly;
 | |
| 		Vector3 left_portal = apex_point;
 | |
| 		gd::NavigationPoly *right_poly = apex_poly;
 | |
| 		Vector3 right_portal = apex_point;
 | |
| 
 | |
| 		gd::NavigationPoly *p = apex_poly;
 | |
| 
 | |
| 		path.push_back(end_point);
 | |
| 		APPEND_METADATA(end_poly);
 | |
| 
 | |
| 		while (p) {
 | |
| 			// Set left and right points of the pathway between polygons.
 | |
| 			Vector3 left = p->back_navigation_edge_pathway_start;
 | |
| 			Vector3 right = p->back_navigation_edge_pathway_end;
 | |
| 			if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(p_map_up) < 0) {
 | |
| 				SWAP(left, right);
 | |
| 			}
 | |
| 
 | |
| 			bool skip = false;
 | |
| 			if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(p_map_up) >= 0) {
 | |
| 				//process
 | |
| 				if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(p_map_up) > 0) {
 | |
| 					left_poly = p;
 | |
| 					left_portal = left;
 | |
| 				} else {
 | |
| 					clip_path(navigation_polys, path, apex_poly, right_portal, right_poly, r_path_types, r_path_rids, r_path_owners, p_map_up);
 | |
| 
 | |
| 					apex_point = right_portal;
 | |
| 					p = right_poly;
 | |
| 					left_poly = p;
 | |
| 					apex_poly = p;
 | |
| 					left_portal = apex_point;
 | |
| 					right_portal = apex_point;
 | |
| 
 | |
| 					path.push_back(apex_point);
 | |
| 					APPEND_METADATA(apex_poly->poly);
 | |
| 					skip = true;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(p_map_up) <= 0) {
 | |
| 				//process
 | |
| 				if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(p_map_up) < 0) {
 | |
| 					right_poly = p;
 | |
| 					right_portal = right;
 | |
| 				} else {
 | |
| 					clip_path(navigation_polys, path, apex_poly, left_portal, left_poly, r_path_types, r_path_rids, r_path_owners, p_map_up);
 | |
| 
 | |
| 					apex_point = left_portal;
 | |
| 					p = left_poly;
 | |
| 					right_poly = p;
 | |
| 					apex_poly = p;
 | |
| 					right_portal = apex_point;
 | |
| 					left_portal = apex_point;
 | |
| 
 | |
| 					path.push_back(apex_point);
 | |
| 					APPEND_METADATA(apex_poly->poly);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Go to the previous polygon.
 | |
| 			if (p->back_navigation_poly_id != -1) {
 | |
| 				p = &navigation_polys[p->back_navigation_poly_id];
 | |
| 			} else {
 | |
| 				// The end
 | |
| 				p = nullptr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// If the last point is not the begin point, add it to the list.
 | |
| 		if (path[path.size() - 1] != begin_point) {
 | |
| 			path.push_back(begin_point);
 | |
| 			APPEND_METADATA(begin_poly);
 | |
| 		}
 | |
| 
 | |
| 		path.reverse();
 | |
| 		if (r_path_types) {
 | |
| 			r_path_types->reverse();
 | |
| 		}
 | |
| 		if (r_path_rids) {
 | |
| 			r_path_rids->reverse();
 | |
| 		}
 | |
| 		if (r_path_owners) {
 | |
| 			r_path_owners->reverse();
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		path.push_back(end_point);
 | |
| 		APPEND_METADATA(end_poly);
 | |
| 
 | |
| 		// Add mid points
 | |
| 		int np_id = least_cost_id;
 | |
| 		while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
 | |
| 			if (navigation_polys[np_id].back_navigation_edge != -1) {
 | |
| 				int prev = navigation_polys[np_id].back_navigation_edge;
 | |
| 				int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
 | |
| 				Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
 | |
| 
 | |
| 				path.push_back(point);
 | |
| 				APPEND_METADATA(navigation_polys[np_id].poly);
 | |
| 			} else {
 | |
| 				path.push_back(navigation_polys[np_id].entry);
 | |
| 				APPEND_METADATA(navigation_polys[np_id].poly);
 | |
| 			}
 | |
| 
 | |
| 			np_id = navigation_polys[np_id].back_navigation_poly_id;
 | |
| 		}
 | |
| 
 | |
| 		path.push_back(begin_point);
 | |
| 		APPEND_METADATA(begin_poly);
 | |
| 
 | |
| 		path.reverse();
 | |
| 		if (r_path_types) {
 | |
| 			r_path_types->reverse();
 | |
| 		}
 | |
| 		if (r_path_rids) {
 | |
| 			r_path_rids->reverse();
 | |
| 		}
 | |
| 		if (r_path_owners) {
 | |
| 			r_path_owners->reverse();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Ensure post conditions (path arrays MUST match in size).
 | |
| 	CRASH_COND(r_path_types && path.size() != r_path_types->size());
 | |
| 	CRASH_COND(r_path_rids && path.size() != r_path_rids->size());
 | |
| 	CRASH_COND(r_path_owners && path.size() != r_path_owners->size());
 | |
| 
 | |
| 	return path;
 | |
| }
 | |
| 
 | |
| Vector3 NavMeshQueries3D::polygons_get_closest_point_to_segment(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) {
 | |
| 	bool use_collision = p_use_collision;
 | |
| 	Vector3 closest_point;
 | |
| 	real_t closest_point_distance = FLT_MAX;
 | |
| 
 | |
| 	for (const gd::Polygon &polygon : p_polygons) {
 | |
| 		// For each face check the distance to the segment.
 | |
| 		for (size_t point_id = 2; point_id < polygon.points.size(); point_id += 1) {
 | |
| 			const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos);
 | |
| 			Vector3 intersection_point;
 | |
| 			if (face.intersects_segment(p_from, p_to, &intersection_point)) {
 | |
| 				const real_t d = p_from.distance_to(intersection_point);
 | |
| 				if (!use_collision) {
 | |
| 					closest_point = intersection_point;
 | |
| 					use_collision = true;
 | |
| 					closest_point_distance = d;
 | |
| 				} else if (closest_point_distance > d) {
 | |
| 					closest_point = intersection_point;
 | |
| 					closest_point_distance = d;
 | |
| 				}
 | |
| 			}
 | |
| 			// If segment does not itersect face, check the distance from segment's endpoints.
 | |
| 			else if (!use_collision) {
 | |
| 				const Vector3 p_from_closest = face.get_closest_point_to(p_from);
 | |
| 				const real_t d_p_from = p_from.distance_to(p_from_closest);
 | |
| 				if (closest_point_distance > d_p_from) {
 | |
| 					closest_point = p_from_closest;
 | |
| 					closest_point_distance = d_p_from;
 | |
| 				}
 | |
| 
 | |
| 				const Vector3 p_to_closest = face.get_closest_point_to(p_to);
 | |
| 				const real_t d_p_to = p_to.distance_to(p_to_closest);
 | |
| 				if (closest_point_distance > d_p_to) {
 | |
| 					closest_point = p_to_closest;
 | |
| 					closest_point_distance = d_p_to;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		// Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment.
 | |
| 		if (!use_collision) {
 | |
| 			for (size_t point_id = 0; point_id < polygon.points.size(); point_id += 1) {
 | |
| 				Vector3 a, b;
 | |
| 
 | |
| 				Geometry3D::get_closest_points_between_segments(
 | |
| 						p_from,
 | |
| 						p_to,
 | |
| 						polygon.points[point_id].pos,
 | |
| 						polygon.points[(point_id + 1) % polygon.points.size()].pos,
 | |
| 						a,
 | |
| 						b);
 | |
| 
 | |
| 				const real_t d = a.distance_to(b);
 | |
| 				if (d < closest_point_distance) {
 | |
| 					closest_point_distance = d;
 | |
| 					closest_point = b;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return closest_point;
 | |
| }
 | |
| 
 | |
| Vector3 NavMeshQueries3D::polygons_get_closest_point(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
 | |
| 	gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
 | |
| 	return cp.point;
 | |
| }
 | |
| 
 | |
| Vector3 NavMeshQueries3D::polygons_get_closest_point_normal(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
 | |
| 	gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
 | |
| 	return cp.normal;
 | |
| }
 | |
| 
 | |
| gd::ClosestPointQueryResult NavMeshQueries3D::polygons_get_closest_point_info(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
 | |
| 	gd::ClosestPointQueryResult result;
 | |
| 	real_t closest_point_distance_squared = FLT_MAX;
 | |
| 
 | |
| 	for (const gd::Polygon &polygon : p_polygons) {
 | |
| 		for (size_t point_id = 2; point_id < polygon.points.size(); point_id += 1) {
 | |
| 			const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos);
 | |
| 			const Vector3 closest_point_on_face = face.get_closest_point_to(p_point);
 | |
| 			const real_t distance_squared_to_point = closest_point_on_face.distance_squared_to(p_point);
 | |
| 			if (distance_squared_to_point < closest_point_distance_squared) {
 | |
| 				result.point = closest_point_on_face;
 | |
| 				result.normal = face.get_plane().normal;
 | |
| 				result.owner = polygon.owner->get_self();
 | |
| 				closest_point_distance_squared = distance_squared_to_point;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| RID NavMeshQueries3D::polygons_get_closest_point_owner(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
 | |
| 	gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
 | |
| 	return cp.owner;
 | |
| }
 | |
| 
 | |
| void NavMeshQueries3D::clip_path(const LocalVector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners, const Vector3 &p_map_up) {
 | |
| 	Vector3 from = path[path.size() - 1];
 | |
| 
 | |
| 	if (from.is_equal_approx(p_to_point)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	Plane cut_plane;
 | |
| 	cut_plane.normal = (from - p_to_point).cross(p_map_up);
 | |
| 	if (cut_plane.normal == Vector3()) {
 | |
| 		return;
 | |
| 	}
 | |
| 	cut_plane.normal.normalize();
 | |
| 	cut_plane.d = cut_plane.normal.dot(from);
 | |
| 
 | |
| 	while (from_poly != p_to_poly) {
 | |
| 		Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
 | |
| 		Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
 | |
| 
 | |
| 		ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
 | |
| 		from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
 | |
| 
 | |
| 		if (!pathway_start.is_equal_approx(pathway_end)) {
 | |
| 			Vector3 inters;
 | |
| 			if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
 | |
| 				if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
 | |
| 					path.push_back(inters);
 | |
| 					APPEND_METADATA(from_poly->poly);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif // _3D_DISABLED
 |