mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			147 lines
		
	
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #pragma once
 | |
| #ifndef __CVTT_INDEXSELECTOR_H__
 | |
| #define __CVTT_INDEXSELECTOR_H__
 | |
| 
 | |
| #include "ConvectionKernels_ParallelMath.h"
 | |
| 
 | |
| namespace cvtt
 | |
| {
 | |
|     namespace Internal
 | |
|     {
 | |
|         extern const ParallelMath::UInt16 g_weightReciprocals[17];
 | |
| 
 | |
|         template<int TVectorSize>
 | |
|         class IndexSelector
 | |
|         {
 | |
|         public:
 | |
|             typedef ParallelMath::Float MFloat;
 | |
|             typedef ParallelMath::UInt16 MUInt16;
 | |
|             typedef ParallelMath::UInt15 MUInt15;
 | |
|             typedef ParallelMath::SInt16 MSInt16;
 | |
|             typedef ParallelMath::AInt16 MAInt16;
 | |
|             typedef ParallelMath::SInt32 MSInt32;
 | |
|             typedef ParallelMath::UInt31 MUInt31;
 | |
| 
 | |
| 
 | |
|             template<class TInterpolationEPType, class TColorEPType>
 | |
|             void Init(const float *channelWeights, const TInterpolationEPType interpolationEndPoints[2][TVectorSize], const TColorEPType colorSpaceEndpoints[2][TVectorSize], int range)
 | |
|             {
 | |
|                 // In BC6H, the interpolation endpoints are higher-precision than the endpoints in color space.
 | |
|                 // We need to select indexes using the color-space endpoints.
 | |
| 
 | |
|                 m_isUniform = true;
 | |
|                 for (int ch = 1; ch < TVectorSize; ch++)
 | |
|                 {
 | |
|                     if (channelWeights[ch] != channelWeights[0])
 | |
|                         m_isUniform = false;
 | |
|                 }
 | |
| 
 | |
|                 // To work with channel weights, we need something where:
 | |
|                 // pxDiff = px - ep[0]
 | |
|                 // epDiff = ep[1] - ep[0]
 | |
|                 //
 | |
|                 // weightedEPDiff = epDiff * channelWeights
 | |
|                 // normalizedWeightedAxis = weightedEPDiff / len(weightedEPDiff)
 | |
|                 // normalizedIndex = dot(pxDiff * channelWeights, normalizedWeightedAxis) / len(weightedEPDiff)
 | |
|                 // index = normalizedIndex * maxValue
 | |
|                 //
 | |
|                 // Equivalent to:
 | |
|                 // axis = channelWeights * maxValue * epDiff * channelWeights / lenSquared(epDiff * channelWeights)
 | |
|                 // index = dot(axis, pxDiff)
 | |
| 
 | |
|                 for (int ep = 0; ep < 2; ep++)
 | |
|                     for (int ch = 0; ch < TVectorSize; ch++)
 | |
|                         m_endPoint[ep][ch] = ParallelMath::LosslessCast<MAInt16>::Cast(interpolationEndPoints[ep][ch]);
 | |
| 
 | |
|                 m_range = range;
 | |
|                 m_maxValue = static_cast<float>(range - 1);
 | |
| 
 | |
|                 MFloat epDiffWeighted[TVectorSize];
 | |
|                 for (int ch = 0; ch < TVectorSize; ch++)
 | |
|                 {
 | |
|                     m_origin[ch] = ParallelMath::ToFloat(colorSpaceEndpoints[0][ch]);
 | |
|                     MFloat opposingOriginCh = ParallelMath::ToFloat(colorSpaceEndpoints[1][ch]);
 | |
|                     epDiffWeighted[ch] = (opposingOriginCh - m_origin[ch]) * channelWeights[ch];
 | |
|                 }
 | |
| 
 | |
|                 MFloat lenSquared = epDiffWeighted[0] * epDiffWeighted[0];
 | |
|                 for (int ch = 1; ch < TVectorSize; ch++)
 | |
|                     lenSquared = lenSquared + epDiffWeighted[ch] * epDiffWeighted[ch];
 | |
| 
 | |
|                 ParallelMath::MakeSafeDenominator(lenSquared);
 | |
| 
 | |
|                 MFloat maxValueDividedByLengthSquared = ParallelMath::MakeFloat(m_maxValue) / lenSquared;
 | |
| 
 | |
|                 for (int ch = 0; ch < TVectorSize; ch++)
 | |
|                     m_axis[ch] = epDiffWeighted[ch] * channelWeights[ch] * maxValueDividedByLengthSquared;
 | |
|             }
 | |
| 
 | |
|             template<bool TSigned>
 | |
|             void Init(const float channelWeights[TVectorSize], const MUInt15 endPoints[2][TVectorSize], int range)
 | |
|             {
 | |
|                 MAInt16 converted[2][TVectorSize];
 | |
|                 for (int epi = 0; epi < 2; epi++)
 | |
|                     for (int ch = 0; ch < TVectorSize; ch++)
 | |
|                         converted[epi][ch] = ParallelMath::LosslessCast<MAInt16>::Cast(endPoints[epi][ch]);
 | |
| 
 | |
|                 Init<MUInt15, MUInt15>(channelWeights, endPoints, endPoints, range);
 | |
|             }
 | |
| 
 | |
|             void ReconstructLDR_BC7(const MUInt15 &index, MUInt15* pixel, int numRealChannels)
 | |
|             {
 | |
|                 MUInt15 weight = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::RightShift(ParallelMath::CompactMultiply(g_weightReciprocals[m_range], index) + 256, 9));
 | |
| 
 | |
|                 for (int ch = 0; ch < numRealChannels; ch++)
 | |
|                 {
 | |
|                     MUInt15 ep0f = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply((ParallelMath::MakeUInt15(64) - weight), ParallelMath::LosslessCast<MUInt15>::Cast(m_endPoint[0][ch])));
 | |
|                     MUInt15 ep1f = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(weight, ParallelMath::LosslessCast<MUInt15>::Cast(m_endPoint[1][ch])));
 | |
|                     pixel[ch] = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::RightShift(ep0f + ep1f + ParallelMath::MakeUInt15(32), 6));
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             void ReconstructLDRPrecise(const MUInt15 &index, MUInt15* pixel, int numRealChannels)
 | |
|             {
 | |
|                 MUInt15 weight = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::RightShift(ParallelMath::CompactMultiply(g_weightReciprocals[m_range], index) + 64, 7));
 | |
| 
 | |
|                 for (int ch = 0; ch < numRealChannels; ch++)
 | |
|                 {
 | |
|                     MUInt15 ep0f = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply((ParallelMath::MakeUInt15(256) - weight), ParallelMath::LosslessCast<MUInt15>::Cast(m_endPoint[0][ch])));
 | |
|                     MUInt15 ep1f = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(weight, ParallelMath::LosslessCast<MUInt15>::Cast(m_endPoint[1][ch])));
 | |
|                     pixel[ch] = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::RightShift(ep0f + ep1f + ParallelMath::MakeUInt15(128), 8));
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             void ReconstructLDR_BC7(const MUInt15 &index, MUInt15* pixel)
 | |
|             {
 | |
|                 ReconstructLDR_BC7(index, pixel, TVectorSize);
 | |
|             }
 | |
| 
 | |
|             void ReconstructLDRPrecise(const MUInt15 &index, MUInt15* pixel)
 | |
|             {
 | |
|                 ReconstructLDRPrecise(index, pixel, TVectorSize);
 | |
|             }
 | |
| 
 | |
|             MUInt15 SelectIndexLDR(const MFloat* pixel, const ParallelMath::RoundTowardNearestForScope* rtn) const
 | |
|             {
 | |
|                 MFloat dist = (pixel[0] - m_origin[0]) * m_axis[0];
 | |
|                 for (int ch = 1; ch < TVectorSize; ch++)
 | |
|                     dist = dist + (pixel[ch] - m_origin[ch]) * m_axis[ch];
 | |
| 
 | |
|                 return ParallelMath::RoundAndConvertToU15(ParallelMath::Clamp(dist, 0.0f, m_maxValue), rtn);
 | |
|             }
 | |
| 
 | |
|         protected:
 | |
|             MAInt16 m_endPoint[2][TVectorSize];
 | |
| 
 | |
|         private:
 | |
|             MFloat m_origin[TVectorSize];
 | |
|             MFloat m_axis[TVectorSize];
 | |
|             int m_range;
 | |
|             float m_maxValue;
 | |
|             bool m_isUniform;
 | |
|         };
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | 
