mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			740 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			740 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| 
 | |
| Copyright (c) 2023, Dominic Szablewski - https://phoboslab.org
 | |
| SPDX-License-Identifier: MIT
 | |
| 
 | |
| QOA - The "Quite OK Audio" format for fast, lossy audio compression
 | |
| 
 | |
| 
 | |
| -- Data Format
 | |
| 
 | |
| QOA encodes pulse-code modulated (PCM) audio data with up to 255 channels, 
 | |
| sample rates from 1 up to 16777215 hertz and a bit depth of 16 bits.
 | |
| 
 | |
| The compression method employed in QOA is lossy; it discards some information
 | |
| from the uncompressed PCM data. For many types of audio signals this compression
 | |
| is "transparent", i.e. the difference from the original file is often not
 | |
| audible.
 | |
| 
 | |
| QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A single
 | |
| sample therefore requires 3.2 bits of storage space, resulting in a 5x
 | |
| compression (16 / 3.2).
 | |
| 
 | |
| A QOA file consists of an 8 byte file header, followed by a number of frames.
 | |
| Each frame contains an 8 byte frame header, the current 16 byte en-/decoder
 | |
| state per channel and 256 slices per channel. Each slice is 8 bytes wide and
 | |
| encodes 20 samples of audio data.
 | |
| 
 | |
| All values, including the slices, are big endian. The file layout is as follows:
 | |
| 
 | |
| struct {
 | |
| 	struct {
 | |
| 		char     magic[4];         // magic bytes "qoaf"
 | |
| 		uint32_t samples;          // samples per channel in this file
 | |
| 	} file_header;             
 | |
| 
 | |
| 	struct {
 | |
| 		struct {
 | |
| 			uint8_t  num_channels; // no. of channels
 | |
| 			uint24_t samplerate;   // samplerate in hz
 | |
| 			uint16_t fsamples;     // samples per channel in this frame
 | |
| 			uint16_t fsize;        // frame size (includes this header)
 | |
| 		} frame_header;          
 | |
| 
 | |
| 		struct {
 | |
| 			int16_t history[4];    // most recent last
 | |
| 			int16_t weights[4];    // most recent last
 | |
| 		} lms_state[num_channels]; 
 | |
| 
 | |
| 		qoa_slice_t slices[256][num_channels];
 | |
| 
 | |
| 	} frames[ceil(samples / (256 * 20))];
 | |
| } qoa_file_t;
 | |
| 
 | |
| Each `qoa_slice_t` contains a quantized scalefactor `sf_quant` and 20 quantized
 | |
| residuals `qrNN`:
 | |
| 
 | |
| .- QOA_SLICE -- 64 bits, 20 samples --------------------------/  /------------.
 | |
| |        Byte[0]         |        Byte[1]         |  Byte[2]  \  \  Byte[7]   |
 | |
| | 7  6  5  4  3  2  1  0 | 7  6  5  4  3  2  1  0 | 7  6  5   /  /    2  1  0 |
 | |
| |------------+--------+--------+--------+---------+---------+-\  \--+---------|
 | |
| |  sf_quant  |  qr00  |  qr01  |  qr02  |  qr03   |  qr04   | /  /  |  qr19   |
 | |
| `-------------------------------------------------------------\  \------------`
 | |
| 
 | |
| Each frame except the last must contain exactly 256 slices per channel. The last
 | |
| frame may contain between 1 .. 256 (inclusive) slices per channel. The last
 | |
| slice (for each channel) in the last frame may contain less than 20 samples; the
 | |
| slice still must be 8 bytes wide, with the unused samples zeroed out.
 | |
| 
 | |
| Channels are interleaved per slice. E.g. for 2 channel stereo: 
 | |
| slice[0] = L, slice[1] = R, slice[2] = L, slice[3] = R ...
 | |
| 
 | |
| A valid QOA file or stream must have at least one frame. Each frame must contain
 | |
| at least one channel and one sample with a samplerate between 1 .. 16777215
 | |
| (inclusive).
 | |
| 
 | |
| If the total number of samples is not known by the encoder, the samples in the
 | |
| file header may be set to 0x00000000 to indicate that the encoder is 
 | |
| "streaming". In a streaming context, the samplerate and number of channels may
 | |
| differ from frame to frame. For static files (those with samples set to a
 | |
| non-zero value), each frame must have the same number of channels and same
 | |
| samplerate.
 | |
| 
 | |
| Note that this implementation of QOA only handles files with a known total
 | |
| number of samples.
 | |
| 
 | |
| A decoder should support at least 8 channels. The channel layout for channel
 | |
| counts 1 .. 8 is:
 | |
| 
 | |
| 	1. Mono
 | |
| 	2. L, R
 | |
| 	3. L, R, C 
 | |
| 	4. FL, FR, B/SL, B/SR 
 | |
| 	5. FL, FR, C, B/SL, B/SR 
 | |
| 	6. FL, FR, C, LFE, B/SL, B/SR
 | |
| 	7. FL, FR, C, LFE, B, SL, SR 
 | |
| 	8. FL, FR, C, LFE, BL, BR, SL, SR
 | |
| 
 | |
| QOA predicts each audio sample based on the previously decoded ones using a
 | |
| "Sign-Sign Least Mean Squares Filter" (LMS). This prediction plus the 
 | |
| dequantized residual forms the final output sample.
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
| 	Header - Public functions */
 | |
| 
 | |
| #ifndef QOA_H
 | |
| #define QOA_H
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define QOA_MIN_FILESIZE 16
 | |
| #define QOA_MAX_CHANNELS 8
 | |
| 
 | |
| #define QOA_SLICE_LEN 20
 | |
| #define QOA_SLICES_PER_FRAME 256
 | |
| #define QOA_FRAME_LEN (QOA_SLICES_PER_FRAME * QOA_SLICE_LEN)
 | |
| #define QOA_LMS_LEN 4
 | |
| #define QOA_MAGIC 0x716f6166 /* 'qoaf' */
 | |
| 
 | |
| #define QOA_FRAME_SIZE(channels, slices) \
 | |
| 	(8 + QOA_LMS_LEN * 4 * channels + 8 * slices * channels)
 | |
| 
 | |
| typedef struct {
 | |
| 	int history[QOA_LMS_LEN];
 | |
| 	int weights[QOA_LMS_LEN];
 | |
| } qoa_lms_t;
 | |
| 
 | |
| typedef struct {
 | |
| 	unsigned int channels;
 | |
| 	unsigned int samplerate;
 | |
| 	unsigned int samples;
 | |
| 	qoa_lms_t lms[QOA_MAX_CHANNELS];
 | |
| 	#ifdef QOA_RECORD_TOTAL_ERROR
 | |
| 		double error;
 | |
| 	#endif
 | |
| } qoa_desc;
 | |
| 
 | |
| inline unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes);
 | |
| inline unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes);
 | |
| inline void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len);
 | |
| 
 | |
| inline unsigned int qoa_max_frame_size(qoa_desc *qoa);
 | |
| inline unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa);
 | |
| inline unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len);
 | |
| inline short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *file);
 | |
| 
 | |
| #ifndef QOA_NO_STDIO
 | |
| 
 | |
| int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa);
 | |
| void *qoa_read(const char *filename, qoa_desc *qoa);
 | |
| 
 | |
| #endif /* QOA_NO_STDIO */
 | |
| 
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| #endif /* QOA_H */
 | |
| 
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
| 	Implementation */
 | |
| 
 | |
| #ifdef QOA_IMPLEMENTATION
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #ifndef QOA_MALLOC
 | |
| 	#define QOA_MALLOC(sz) malloc(sz)
 | |
| 	#define QOA_FREE(p) free(p)
 | |
| #endif
 | |
| 
 | |
| typedef unsigned long long qoa_uint64_t;
 | |
| 
 | |
| 
 | |
| /* The quant_tab provides an index into the dequant_tab for residuals in the
 | |
| range of -8 .. 8. It maps this range to just 3bits and becomes less accurate at 
 | |
| the higher end. Note that the residual zero is identical to the lowest positive 
 | |
| value. This is mostly fine, since the qoa_div() function always rounds away 
 | |
| from zero. */
 | |
| 
 | |
| static const int qoa_quant_tab[17] = {
 | |
| 	7, 7, 7, 5, 5, 3, 3, 1, /* -8..-1 */
 | |
| 	0,                      /*  0     */
 | |
| 	0, 2, 2, 4, 4, 6, 6, 6  /*  1.. 8 */
 | |
| };
 | |
| 
 | |
| 
 | |
| /* We have 16 different scalefactors. Like the quantized residuals these become
 | |
| less accurate at the higher end. In theory, the highest scalefactor that we
 | |
| would need to encode the highest 16bit residual is (2**16)/8 = 8192. However we
 | |
| rely on the LMS filter to predict samples accurately enough that a maximum 
 | |
| residual of one quarter of the 16 bit range is sufficient. I.e. with the 
 | |
| scalefactor 2048 times the quant range of 8 we can encode residuals up to 2**14.
 | |
| 
 | |
| The scalefactor values are computed as:
 | |
| scalefactor_tab[s] <- round(pow(s + 1, 2.75)) */
 | |
| 
 | |
| static const int qoa_scalefactor_tab[16] = {
 | |
| 	1, 7, 21, 45, 84, 138, 211, 304, 421, 562, 731, 928, 1157, 1419, 1715, 2048
 | |
| };
 | |
| 
 | |
| 
 | |
| /* The reciprocal_tab maps each of the 16 scalefactors to their rounded 
 | |
| reciprocals 1/scalefactor. This allows us to calculate the scaled residuals in 
 | |
| the encoder with just one multiplication instead of an expensive division. We 
 | |
| do this in .16 fixed point with integers, instead of floats.
 | |
| 
 | |
| The reciprocal_tab is computed as:
 | |
| reciprocal_tab[s] <- ((1<<16) + scalefactor_tab[s] - 1) / scalefactor_tab[s] */
 | |
| 
 | |
| static const int qoa_reciprocal_tab[16] = {
 | |
| 	65536, 9363, 3121, 1457, 781, 475, 311, 216, 156, 117, 90, 71, 57, 47, 39, 32
 | |
| };
 | |
| 
 | |
| 
 | |
| /* The dequant_tab maps each of the scalefactors and quantized residuals to 
 | |
| their unscaled & dequantized version.
 | |
| 
 | |
| Since qoa_div rounds away from the zero, the smallest entries are mapped to 3/4
 | |
| instead of 1. The dequant_tab assumes the following dequantized values for each 
 | |
| of the quant_tab indices and is computed as:
 | |
| float dqt[8] = {0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7};
 | |
| dequant_tab[s][q] <- round_ties_away_from_zero(scalefactor_tab[s] * dqt[q])
 | |
| 
 | |
| The rounding employed here is "to nearest, ties away from zero",  i.e. positive
 | |
| and negative values are treated symmetrically.
 | |
| */
 | |
| 
 | |
| static const int qoa_dequant_tab[16][8] = {
 | |
| 	{   1,    -1,    3,    -3,    5,    -5,     7,     -7},
 | |
| 	{   5,    -5,   18,   -18,   32,   -32,    49,    -49},
 | |
| 	{  16,   -16,   53,   -53,   95,   -95,   147,   -147},
 | |
| 	{  34,   -34,  113,  -113,  203,  -203,   315,   -315},
 | |
| 	{  63,   -63,  210,  -210,  378,  -378,   588,   -588},
 | |
| 	{ 104,  -104,  345,  -345,  621,  -621,   966,   -966},
 | |
| 	{ 158,  -158,  528,  -528,  950,  -950,  1477,  -1477},
 | |
| 	{ 228,  -228,  760,  -760, 1368, -1368,  2128,  -2128},
 | |
| 	{ 316,  -316, 1053, -1053, 1895, -1895,  2947,  -2947},
 | |
| 	{ 422,  -422, 1405, -1405, 2529, -2529,  3934,  -3934},
 | |
| 	{ 548,  -548, 1828, -1828, 3290, -3290,  5117,  -5117},
 | |
| 	{ 696,  -696, 2320, -2320, 4176, -4176,  6496,  -6496},
 | |
| 	{ 868,  -868, 2893, -2893, 5207, -5207,  8099,  -8099},
 | |
| 	{1064, -1064, 3548, -3548, 6386, -6386,  9933,  -9933},
 | |
| 	{1286, -1286, 4288, -4288, 7718, -7718, 12005, -12005},
 | |
| 	{1536, -1536, 5120, -5120, 9216, -9216, 14336, -14336},
 | |
| };
 | |
| 
 | |
| 
 | |
| /* The Least Mean Squares Filter is the heart of QOA. It predicts the next
 | |
| sample based on the previous 4 reconstructed samples. It does so by continuously
 | |
| adjusting 4 weights based on the residual of the previous prediction.
 | |
| 
 | |
| The next sample is predicted as the sum of (weight[i] * history[i]).
 | |
| 
 | |
| The adjustment of the weights is done with a "Sign-Sign-LMS" that adds or
 | |
| subtracts the residual to each weight, based on the corresponding sample from 
 | |
| the history. This, surprisingly, is sufficient to get worthwhile predictions.
 | |
| 
 | |
| This is all done with fixed point integers. Hence the right-shifts when updating
 | |
| the weights and calculating the prediction. */
 | |
| 
 | |
| static int qoa_lms_predict(qoa_lms_t *lms) {
 | |
| 	int prediction = 0;
 | |
| 	for (int i = 0; i < QOA_LMS_LEN; i++) {
 | |
| 		prediction += lms->weights[i] * lms->history[i];
 | |
| 	}
 | |
| 	return prediction >> 13;
 | |
| }
 | |
| 
 | |
| static void qoa_lms_update(qoa_lms_t *lms, int sample, int residual) {
 | |
| 	int delta = residual >> 4;
 | |
| 	for (int i = 0; i < QOA_LMS_LEN; i++) {
 | |
| 		lms->weights[i] += lms->history[i] < 0 ? -delta : delta;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < QOA_LMS_LEN-1; i++) {
 | |
| 		lms->history[i] = lms->history[i+1];
 | |
| 	}
 | |
| 	lms->history[QOA_LMS_LEN-1] = sample;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* qoa_div() implements a rounding division, but avoids rounding to zero for 
 | |
| small numbers. E.g. 0.1 will be rounded to 1. Note that 0 itself still 
 | |
| returns as 0, which is handled in the qoa_quant_tab[].
 | |
| qoa_div() takes an index into the .16 fixed point qoa_reciprocal_tab as an
 | |
| argument, so it can do the division with a cheaper integer multiplication. */
 | |
| 
 | |
| static inline int qoa_div(int v, int scalefactor) {
 | |
| 	int reciprocal = qoa_reciprocal_tab[scalefactor];
 | |
| 	int n = (v * reciprocal + (1 << 15)) >> 16;
 | |
| 	n = n + ((v > 0) - (v < 0)) - ((n > 0) - (n < 0)); /* round away from 0 */
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static inline int qoa_clamp(int v, int min, int max) {
 | |
| 	if (v < min) { return min; }
 | |
| 	if (v > max) { return max; }
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /* This specialized clamp function for the signed 16 bit range improves decode
 | |
| performance quite a bit. The extra if() statement works nicely with the CPUs
 | |
| branch prediction as this branch is rarely taken. */
 | |
| 
 | |
| static inline int qoa_clamp_s16(int v) {
 | |
| 	if ((unsigned int)(v + 32768) > 65535) {
 | |
| 		if (v < -32768) { return -32768; }
 | |
| 		if (v >  32767) { return  32767; }
 | |
| 	}
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static inline qoa_uint64_t qoa_read_u64(const unsigned char *bytes, unsigned int *p) {
 | |
| 	bytes += *p;
 | |
| 	*p += 8;
 | |
| 	return 
 | |
| 		((qoa_uint64_t)(bytes[0]) << 56) | ((qoa_uint64_t)(bytes[1]) << 48) |
 | |
| 		((qoa_uint64_t)(bytes[2]) << 40) | ((qoa_uint64_t)(bytes[3]) << 32) |
 | |
| 		((qoa_uint64_t)(bytes[4]) << 24) | ((qoa_uint64_t)(bytes[5]) << 16) |
 | |
| 		((qoa_uint64_t)(bytes[6]) <<  8) | ((qoa_uint64_t)(bytes[7]) <<  0);
 | |
| }
 | |
| 
 | |
| static inline void qoa_write_u64(qoa_uint64_t v, unsigned char *bytes, unsigned int *p) {
 | |
| 	bytes += *p;
 | |
| 	*p += 8;
 | |
| 	bytes[0] = (v >> 56) & 0xff;
 | |
| 	bytes[1] = (v >> 48) & 0xff;
 | |
| 	bytes[2] = (v >> 40) & 0xff;
 | |
| 	bytes[3] = (v >> 32) & 0xff;
 | |
| 	bytes[4] = (v >> 24) & 0xff;
 | |
| 	bytes[5] = (v >> 16) & 0xff;
 | |
| 	bytes[6] = (v >>  8) & 0xff;
 | |
| 	bytes[7] = (v >>  0) & 0xff;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
| 	Encoder */
 | |
| 
 | |
| unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes) {
 | |
| 	unsigned int p = 0;
 | |
| 	qoa_write_u64(((qoa_uint64_t)QOA_MAGIC << 32) | qoa->samples, bytes, &p);
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes) {
 | |
| 	unsigned int channels = qoa->channels;
 | |
| 
 | |
| 	unsigned int p = 0;
 | |
| 	unsigned int slices = (frame_len + QOA_SLICE_LEN - 1) / QOA_SLICE_LEN;
 | |
| 	unsigned int frame_size = QOA_FRAME_SIZE(channels, slices);
 | |
| 	int prev_scalefactor[QOA_MAX_CHANNELS] = {0};
 | |
| 
 | |
| 	/* Write the frame header */
 | |
| 	qoa_write_u64((
 | |
| 		(qoa_uint64_t)qoa->channels   << 56 |
 | |
| 		(qoa_uint64_t)qoa->samplerate << 32 |
 | |
| 		(qoa_uint64_t)frame_len       << 16 |
 | |
| 		(qoa_uint64_t)frame_size
 | |
| 	), bytes, &p);
 | |
| 
 | |
| 	
 | |
| 	for (unsigned int c = 0; c < channels; c++) {
 | |
| 		/* Write the current LMS state */
 | |
| 		qoa_uint64_t weights = 0;
 | |
| 		qoa_uint64_t history = 0;
 | |
| 		for (int i = 0; i < QOA_LMS_LEN; i++) {
 | |
| 			history = (history << 16) | (qoa->lms[c].history[i] & 0xffff);
 | |
| 			weights = (weights << 16) | (qoa->lms[c].weights[i] & 0xffff);
 | |
| 		}
 | |
| 		qoa_write_u64(history, bytes, &p);
 | |
| 		qoa_write_u64(weights, bytes, &p);
 | |
| 	}
 | |
| 
 | |
| 	/* We encode all samples with the channels interleaved on a slice level.
 | |
| 	E.g. for stereo: (ch-0, slice 0), (ch 1, slice 0), (ch 0, slice 1), ...*/
 | |
| 	for (unsigned int sample_index = 0; sample_index < frame_len; sample_index += QOA_SLICE_LEN) {
 | |
| 
 | |
| 		for (unsigned int c = 0; c < channels; c++) {
 | |
| 			int slice_len = qoa_clamp(QOA_SLICE_LEN, 0, frame_len - sample_index);
 | |
| 			int slice_start = sample_index * channels + c;
 | |
| 			int slice_end = (sample_index + slice_len) * channels + c;			
 | |
| 
 | |
| 			/* Brute for search for the best scalefactor. Just go through all
 | |
| 			16 scalefactors, encode all samples for the current slice and 
 | |
| 			meassure the total squared error. */
 | |
| 			qoa_uint64_t best_rank = -1;
 | |
| 			#ifdef QOA_RECORD_TOTAL_ERROR
 | |
| 				qoa_uint64_t best_error = -1;
 | |
| 			#endif
 | |
| 			qoa_uint64_t best_slice = 0;
 | |
| 			qoa_lms_t best_lms = {};
 | |
| 			int best_scalefactor = 0;
 | |
| 
 | |
| 			for (int sfi = 0; sfi < 16; sfi++) {
 | |
| 				/* There is a strong correlation between the scalefactors of
 | |
| 				neighboring slices. As an optimization, start testing
 | |
| 				the best scalefactor of the previous slice first. */
 | |
| 				int scalefactor = (sfi + prev_scalefactor[c]) % 16;
 | |
| 
 | |
| 				/* We have to reset the LMS state to the last known good one
 | |
| 				before trying each scalefactor, as each pass updates the LMS
 | |
| 				state when encoding. */
 | |
| 				qoa_lms_t lms = qoa->lms[c];
 | |
| 				qoa_uint64_t slice = scalefactor;
 | |
| 				qoa_uint64_t current_rank = 0;
 | |
| 				#ifdef QOA_RECORD_TOTAL_ERROR
 | |
| 					qoa_uint64_t current_error = 0;
 | |
| 				#endif
 | |
| 
 | |
| 				for (int si = slice_start; si < slice_end; si += channels) {
 | |
| 					int sample = sample_data[si];
 | |
| 					int predicted = qoa_lms_predict(&lms);
 | |
| 
 | |
| 					int residual = sample - predicted;
 | |
| 					int scaled = qoa_div(residual, scalefactor);
 | |
| 					int clamped = qoa_clamp(scaled, -8, 8);
 | |
| 					int quantized = qoa_quant_tab[clamped + 8];
 | |
| 					int dequantized = qoa_dequant_tab[scalefactor][quantized];
 | |
| 					int reconstructed = qoa_clamp_s16(predicted + dequantized);
 | |
| 
 | |
| 
 | |
| 					/* If the weights have grown too large, we introduce a penalty
 | |
| 					here. This prevents pops/clicks in certain problem cases */
 | |
| 					int weights_penalty = ((
 | |
| 						lms.weights[0] * lms.weights[0] + 
 | |
| 						lms.weights[1] * lms.weights[1] + 
 | |
| 						lms.weights[2] * lms.weights[2] + 
 | |
| 						lms.weights[3] * lms.weights[3]
 | |
| 					) >> 18) - 0x8ff;
 | |
| 					if (weights_penalty < 0) {
 | |
| 						weights_penalty = 0;
 | |
| 					}
 | |
| 
 | |
| 					long long error = (sample - reconstructed);
 | |
| 					qoa_uint64_t error_sq = error * error;
 | |
| 
 | |
| 					current_rank += error_sq + weights_penalty * weights_penalty;
 | |
| 					#ifdef QOA_RECORD_TOTAL_ERROR
 | |
| 						current_error += error_sq;
 | |
| 					#endif
 | |
| 					if (current_rank > best_rank) {
 | |
| 						break;
 | |
| 					}
 | |
| 
 | |
| 					qoa_lms_update(&lms, reconstructed, dequantized);
 | |
| 					slice = (slice << 3) | quantized;
 | |
| 				}
 | |
| 
 | |
| 				if (current_rank < best_rank) {
 | |
| 					best_rank = current_rank;
 | |
| 					#ifdef QOA_RECORD_TOTAL_ERROR
 | |
| 						best_error = current_error;
 | |
| 					#endif
 | |
| 					best_slice = slice;
 | |
| 					best_lms = lms;
 | |
| 					best_scalefactor = scalefactor;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			prev_scalefactor[c] = best_scalefactor;
 | |
| 
 | |
| 			qoa->lms[c] = best_lms;
 | |
| 			#ifdef QOA_RECORD_TOTAL_ERROR
 | |
| 				qoa->error += best_error;
 | |
| 			#endif
 | |
| 
 | |
| 			/* If this slice was shorter than QOA_SLICE_LEN, we have to left-
 | |
| 			shift all encoded data, to ensure the rightmost bits are the empty
 | |
| 			ones. This should only happen in the last frame of a file as all
 | |
| 			slices are completely filled otherwise. */
 | |
| 			best_slice <<= (QOA_SLICE_LEN - slice_len) * 3;
 | |
| 			qoa_write_u64(best_slice, bytes, &p);
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len) {
 | |
| 	if (
 | |
| 		qoa->samples == 0 || 
 | |
| 		qoa->samplerate == 0 || qoa->samplerate > 0xffffff ||
 | |
| 		qoa->channels == 0 || qoa->channels > QOA_MAX_CHANNELS
 | |
| 	) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the encoded size and allocate */
 | |
| 	unsigned int num_frames = (qoa->samples + QOA_FRAME_LEN-1) / QOA_FRAME_LEN;
 | |
| 	unsigned int num_slices = (qoa->samples + QOA_SLICE_LEN-1) / QOA_SLICE_LEN;
 | |
| 	unsigned int encoded_size = 8 +                    /* 8 byte file header */
 | |
| 		num_frames * 8 +                               /* 8 byte frame headers */
 | |
| 		num_frames * QOA_LMS_LEN * 4 * qoa->channels + /* 4 * 4 bytes lms state per channel */
 | |
| 		num_slices * 8 * qoa->channels;                /* 8 byte slices */
 | |
| 
 | |
| 	unsigned char *bytes = (unsigned char *)QOA_MALLOC(encoded_size);
 | |
| 
 | |
| 	for (unsigned int c = 0; c < qoa->channels; c++) {
 | |
| 		/* Set the initial LMS weights to {0, 0, -1, 2}. This helps with the 
 | |
| 		prediction of the first few ms of a file. */
 | |
| 		qoa->lms[c].weights[0] = 0;
 | |
| 		qoa->lms[c].weights[1] = 0;
 | |
| 		qoa->lms[c].weights[2] = -(1<<13);
 | |
| 		qoa->lms[c].weights[3] =  (1<<14);
 | |
| 
 | |
| 		/* Explicitly set the history samples to 0, as we might have some
 | |
| 		garbage in there. */
 | |
| 		for (int i = 0; i < QOA_LMS_LEN; i++) {
 | |
| 			qoa->lms[c].history[i] = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Encode the header and go through all frames */
 | |
| 	unsigned int p = qoa_encode_header(qoa, bytes);
 | |
| 	#ifdef QOA_RECORD_TOTAL_ERROR
 | |
| 		qoa->error = 0;
 | |
| 	#endif
 | |
| 
 | |
| 	int frame_len = QOA_FRAME_LEN;
 | |
| 	for (unsigned int sample_index = 0; sample_index < qoa->samples; sample_index += frame_len) {
 | |
| 		frame_len = qoa_clamp(QOA_FRAME_LEN, 0, qoa->samples - sample_index);		
 | |
| 		const short *frame_samples = sample_data + sample_index * qoa->channels;
 | |
| 		unsigned int frame_size = qoa_encode_frame(frame_samples, qoa, frame_len, bytes + p);
 | |
| 		p += frame_size;
 | |
| 	}
 | |
| 
 | |
| 	*out_len = p;
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
| 	Decoder */
 | |
| 
 | |
| unsigned int qoa_max_frame_size(qoa_desc *qoa) {
 | |
| 	return QOA_FRAME_SIZE(qoa->channels, QOA_SLICES_PER_FRAME);
 | |
| }
 | |
| 
 | |
| unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa) {
 | |
| 	unsigned int p = 0;
 | |
| 	if (size < QOA_MIN_FILESIZE) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Read the file header, verify the magic number ('qoaf') and read the 
 | |
| 	total number of samples. */
 | |
| 	qoa_uint64_t file_header = qoa_read_u64(bytes, &p);
 | |
| 
 | |
| 	if ((file_header >> 32) != QOA_MAGIC) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	qoa->samples = file_header & 0xffffffff;
 | |
| 	if (!qoa->samples) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Peek into the first frame header to get the number of channels and
 | |
| 	the samplerate. */
 | |
| 	qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
 | |
| 	qoa->channels   = (frame_header >> 56) & 0x0000ff;
 | |
| 	qoa->samplerate = (frame_header >> 32) & 0xffffff;
 | |
| 
 | |
| 	if (qoa->channels == 0 || qoa->samples == 0 || qoa->samplerate == 0) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 8;
 | |
| }
 | |
| 
 | |
| unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len) {
 | |
| 	unsigned int p = 0;
 | |
| 	*frame_len = 0;
 | |
| 
 | |
| 	if (size < 8 + QOA_LMS_LEN * 4 * qoa->channels) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Read and verify the frame header */
 | |
| 	qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
 | |
| 	unsigned int channels   = (frame_header >> 56) & 0x0000ff;
 | |
| 	unsigned int samplerate = (frame_header >> 32) & 0xffffff;
 | |
| 	unsigned int samples    = (frame_header >> 16) & 0x00ffff;
 | |
| 	unsigned int frame_size = (frame_header      ) & 0x00ffff;
 | |
| 
 | |
| 	unsigned int data_size = frame_size - 8 - QOA_LMS_LEN * 4 * channels;
 | |
| 	unsigned int num_slices = data_size / 8;
 | |
| 	unsigned int max_total_samples = num_slices * QOA_SLICE_LEN;
 | |
| 
 | |
| 	if (
 | |
| 		channels != qoa->channels || 
 | |
| 		samplerate != qoa->samplerate ||
 | |
| 		frame_size > size ||
 | |
| 		samples * channels > max_total_samples
 | |
| 	) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Read the LMS state: 4 x 2 bytes history, 4 x 2 bytes weights per channel */
 | |
| 	for (unsigned int c = 0; c < channels; c++) {
 | |
| 		qoa_uint64_t history = qoa_read_u64(bytes, &p);
 | |
| 		qoa_uint64_t weights = qoa_read_u64(bytes, &p);
 | |
| 		for (int i = 0; i < QOA_LMS_LEN; i++) {
 | |
| 			qoa->lms[c].history[i] = ((signed short)(history >> 48));
 | |
| 			history <<= 16;
 | |
| 			qoa->lms[c].weights[i] = ((signed short)(weights >> 48));
 | |
| 			weights <<= 16;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Decode all slices for all channels in this frame */
 | |
| 	for (unsigned int sample_index = 0; sample_index < samples; sample_index += QOA_SLICE_LEN) {
 | |
| 		for (unsigned int c = 0; c < channels; c++) {
 | |
| 			qoa_uint64_t slice = qoa_read_u64(bytes, &p);
 | |
| 
 | |
| 			int scalefactor = (slice >> 60) & 0xf;
 | |
| 			int slice_start = sample_index * channels + c;
 | |
| 			int slice_end = qoa_clamp(sample_index + QOA_SLICE_LEN, 0, samples) * channels + c;
 | |
| 
 | |
| 			for (int si = slice_start; si < slice_end; si += channels) {
 | |
| 				int predicted = qoa_lms_predict(&qoa->lms[c]);
 | |
| 				int quantized = (slice >> 57) & 0x7;
 | |
| 				int dequantized = qoa_dequant_tab[scalefactor][quantized];
 | |
| 				int reconstructed = qoa_clamp_s16(predicted + dequantized);
 | |
| 				
 | |
| 				sample_data[si] = reconstructed;
 | |
| 				slice <<= 3;
 | |
| 
 | |
| 				qoa_lms_update(&qoa->lms[c], reconstructed, dequantized);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*frame_len = samples;
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *qoa) {
 | |
| 	unsigned int p = qoa_decode_header(bytes, size, qoa);
 | |
| 	if (!p) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the required size of the sample buffer and allocate */
 | |
| 	int total_samples = qoa->samples * qoa->channels;
 | |
| 	short *sample_data = (short *)QOA_MALLOC(total_samples * sizeof(short));
 | |
| 
 | |
| 	unsigned int sample_index = 0;
 | |
| 	unsigned int frame_len;
 | |
| 	unsigned int frame_size;
 | |
| 
 | |
| 	/* Decode all frames */
 | |
| 	do {
 | |
| 		short *sample_ptr = sample_data + sample_index * qoa->channels;
 | |
| 		frame_size = qoa_decode_frame(bytes + p, size - p, qoa, sample_ptr, &frame_len);
 | |
| 
 | |
| 		p += frame_size;
 | |
| 		sample_index += frame_len;
 | |
| 	} while (frame_size && sample_index < qoa->samples);
 | |
| 
 | |
| 	qoa->samples = sample_index;
 | |
| 	return sample_data;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* -----------------------------------------------------------------------------
 | |
| 	File read/write convenience functions */
 | |
| 
 | |
| #ifndef QOA_NO_STDIO
 | |
| #include <stdio.h>
 | |
| 
 | |
| int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa) {
 | |
| 	FILE *f = fopen(filename, "wb");
 | |
| 	unsigned int size;
 | |
| 	void *encoded;
 | |
| 
 | |
| 	if (!f) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	encoded = qoa_encode(sample_data, qoa, &size);
 | |
| 	if (!encoded) {
 | |
| 		fclose(f);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	fwrite(encoded, 1, size, f);
 | |
| 	fclose(f);
 | |
| 
 | |
| 	QOA_FREE(encoded);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| void *qoa_read(const char *filename, qoa_desc *qoa) {
 | |
| 	FILE *f = fopen(filename, "rb");
 | |
| 	int size, bytes_read;
 | |
| 	void *data;
 | |
| 	short *sample_data;
 | |
| 
 | |
| 	if (!f) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	fseek(f, 0, SEEK_END);
 | |
| 	size = ftell(f);
 | |
| 	if (size <= 0) {
 | |
| 		fclose(f);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	fseek(f, 0, SEEK_SET);
 | |
| 
 | |
| 	data = QOA_MALLOC(size);
 | |
| 	if (!data) {
 | |
| 		fclose(f);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	bytes_read = fread(data, 1, size, f);
 | |
| 	fclose(f);
 | |
| 
 | |
| 	sample_data = qoa_decode(data, bytes_read, qoa);
 | |
| 	QOA_FREE(data);
 | |
| 	return sample_data;
 | |
| }
 | |
| 
 | |
| #endif /* QOA_NO_STDIO */
 | |
| #endif /* QOA_IMPLEMENTATION */
 | 
