mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3147 lines
		
	
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3147 lines
		
	
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Convection Texture Tools
 | |
| Copyright (c) 2018-2019 Eric Lasota
 | |
| 
 | |
| Permission is hereby granted, free of charge, to any person obtaining
 | |
| a copy of this software and associated documentation files (the
 | |
| "Software"), to deal in the Software without restriction, including
 | |
| without limitation the rights to use, copy, modify, merge, publish,
 | |
| distribute, sublicense, and/or sell copies of the Software, and to
 | |
| permit persons to whom the Software is furnished to do so, subject
 | |
| to the following conditions:
 | |
| 
 | |
| The above copyright notice and this permission notice shall be included
 | |
| in all copies or substantial portions of the Software.
 | |
| 
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 | |
| OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
| MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 | |
| IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 | |
| CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 | |
| TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 | |
| SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| 
 | |
| -------------------------------------------------------------------------------------
 | |
| 
 | |
| Portions based on DirectX Texture Library (DirectXTex)
 | |
| 
 | |
| Copyright (c) Microsoft Corporation. All rights reserved.
 | |
| Licensed under the MIT License.
 | |
| 
 | |
| http://go.microsoft.com/fwlink/?LinkId=248926
 | |
| */
 | |
| #include "ConvectionKernels_Config.h"
 | |
| 
 | |
| #if !defined(CVTT_SINGLE_FILE) || defined(CVTT_SINGLE_FILE_IMPL)
 | |
| 
 | |
| #include "ConvectionKernels.h"
 | |
| #include "ConvectionKernels_ETC.h"
 | |
| #include "ConvectionKernels_ETC1.h"
 | |
| #include "ConvectionKernels_ETC2.h"
 | |
| #include "ConvectionKernels_ETC2_Rounding.h"
 | |
| #include "ConvectionKernels_ParallelMath.h"
 | |
| #include "ConvectionKernels_FakeBT709_Rounding.h"
 | |
| 
 | |
| #include <cmath>
 | |
| 
 | |
| const int cvtt::Internal::ETCComputer::g_flipTables[2][2][8] =
 | |
| {
 | |
|     {
 | |
|         { 0, 1, 4, 5, 8, 9, 12, 13 },
 | |
|         { 2, 3, 6, 7, 10, 11, 14, 15 }
 | |
|     },
 | |
|     {
 | |
|         { 0, 1, 2, 3, 4, 5, 6, 7 },
 | |
|         { 8, 9, 10, 11, 12, 13, 14, 15 }
 | |
|     },
 | |
| };
 | |
| 
 | |
| cvtt::ParallelMath::Float cvtt::Internal::ETCComputer::ComputeErrorUniform(const MUInt15 pixelA[3], const MUInt15 pixelB[3])
 | |
| {
 | |
|     MSInt16 d0 = ParallelMath::LosslessCast<MSInt16>::Cast(pixelA[0]) - ParallelMath::LosslessCast<MSInt16>::Cast(pixelB[0]);
 | |
|     MFloat fd0 = ParallelMath::ToFloat(d0);
 | |
|     MFloat error = fd0 * fd0;
 | |
|     for (int ch = 1; ch < 3; ch++)
 | |
|     {
 | |
|         MSInt16 d = ParallelMath::LosslessCast<MSInt16>::Cast(pixelA[ch]) - ParallelMath::LosslessCast<MSInt16>::Cast(pixelB[ch]);
 | |
|         MFloat fd = ParallelMath::ToFloat(d);
 | |
|         error = error + fd * fd;
 | |
|     }
 | |
|     return error;
 | |
| }
 | |
| 
 | |
| cvtt::ParallelMath::Float cvtt::Internal::ETCComputer::ComputeErrorWeighted(const MUInt15 reconstructed[3], const MFloat preWeightedPixel[3], const Options options)
 | |
| {
 | |
|     MFloat dr = ParallelMath::ToFloat(reconstructed[0]) * options.redWeight - preWeightedPixel[0];
 | |
|     MFloat dg = ParallelMath::ToFloat(reconstructed[1]) * options.greenWeight - preWeightedPixel[1];
 | |
|     MFloat db = ParallelMath::ToFloat(reconstructed[2]) * options.blueWeight - preWeightedPixel[2];
 | |
| 
 | |
|     return dr * dr + dg * dg + db * db;
 | |
| }
 | |
| 
 | |
| cvtt::ParallelMath::Float cvtt::Internal::ETCComputer::ComputeErrorFakeBT709(const MUInt15 reconstructed[3], const MFloat preWeightedPixel[3])
 | |
| {
 | |
|     MFloat yuv[3];
 | |
|     ConvertToFakeBT709(yuv, reconstructed);
 | |
| 
 | |
|     MFloat dy = yuv[0] - preWeightedPixel[0];
 | |
|     MFloat du = yuv[1] - preWeightedPixel[1];
 | |
|     MFloat dv = yuv[2] - preWeightedPixel[2];
 | |
| 
 | |
|     return dy * dy + du * du + dv * dv;
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::TestHalfBlock(MFloat &outError, MUInt16 &outSelectors, MUInt15 quantizedPackedColor, const MUInt15 pixels[8][3], const MFloat preWeightedPixels[8][3], const MSInt16 modifiers[4], bool isDifferential, const Options &options)
 | |
| {
 | |
|     MUInt15 quantized[3];
 | |
|     MUInt15 unquantized[3];
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|     {
 | |
|         quantized[ch] = (ParallelMath::RightShift(quantizedPackedColor, (ch * 5)) & ParallelMath::MakeUInt15(31));
 | |
| 
 | |
|         if (isDifferential)
 | |
|             unquantized[ch] = (quantized[ch] << 3) | ParallelMath::RightShift(quantized[ch], 2);
 | |
|         else
 | |
|             unquantized[ch] = (quantized[ch] << 4) | quantized[ch];
 | |
|     }
 | |
| 
 | |
|     MUInt16 selectors = ParallelMath::MakeUInt16(0);
 | |
|     MFloat totalError = ParallelMath::MakeFloatZero();
 | |
| 
 | |
|     MUInt15 u15_255 = ParallelMath::MakeUInt15(255);
 | |
|     MSInt16 s16_zero = ParallelMath::MakeSInt16(0);
 | |
| 
 | |
|     MUInt15 unquantizedModified[4][3];
 | |
|     for (unsigned int s = 0; s < 4; s++)
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|             unquantizedModified[s][ch] = ParallelMath::Min(ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::ToSInt16(unquantized[ch]) + modifiers[s], s16_zero)), u15_255);
 | |
| 
 | |
|     bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
| 
 | |
|     for (int px = 0; px < 8; px++)
 | |
|     {
 | |
|         MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
 | |
|         MUInt16 bestSelector = ParallelMath::MakeUInt16(0);
 | |
| 
 | |
|         for (unsigned int s = 0; s < 4; s++)
 | |
|         {
 | |
|             MFloat error;
 | |
|             if (isFakeBT709)
 | |
|                 error = ComputeErrorFakeBT709(unquantizedModified[s], preWeightedPixels[px]);
 | |
|             else if (isUniform)
 | |
|                 error = ComputeErrorUniform(pixels[px], unquantizedModified[s]);
 | |
|             else
 | |
|                 error = ComputeErrorWeighted(unquantizedModified[s], preWeightedPixels[px], options);
 | |
| 
 | |
|             ParallelMath::FloatCompFlag errorBetter = ParallelMath::Less(error, bestError);
 | |
|             bestSelector = ParallelMath::Select(ParallelMath::FloatFlagToInt16(errorBetter), ParallelMath::MakeUInt16(s), bestSelector);
 | |
|             bestError = ParallelMath::Min(error, bestError);
 | |
|         }
 | |
| 
 | |
|         totalError = totalError + bestError;
 | |
|         selectors = selectors | (bestSelector << (px * 2));
 | |
|     }
 | |
| 
 | |
|     outError = totalError;
 | |
|     outSelectors = selectors;
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::TestHalfBlockPunchthrough(MFloat &outError, MUInt16 &outSelectors, MUInt15 quantizedPackedColor, const MUInt15 pixels[8][3], const MFloat preWeightedPixels[8][3], const ParallelMath::Int16CompFlag isTransparent[8], const MUInt15 modifier, const Options &options)
 | |
| {
 | |
|     MUInt15 quantized[3];
 | |
|     MUInt15 unquantized[3];
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|     {
 | |
|         quantized[ch] = (ParallelMath::RightShift(quantizedPackedColor, (ch * 5)) & ParallelMath::MakeUInt15(31));
 | |
|         unquantized[ch] = (quantized[ch] << 3) | ParallelMath::RightShift(quantized[ch], 2);
 | |
|     }
 | |
| 
 | |
|     MUInt16 selectors = ParallelMath::MakeUInt16(0);
 | |
|     MFloat totalError = ParallelMath::MakeFloatZero();
 | |
| 
 | |
|     MUInt15 u15_255 = ParallelMath::MakeUInt15(255);
 | |
|     MSInt16 s16_zero = ParallelMath::MakeSInt16(0);
 | |
| 
 | |
|     MUInt15 unquantizedModified[3][3];
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|     {
 | |
|         unquantizedModified[0][ch] = ParallelMath::Max(unquantized[ch], modifier) - modifier;
 | |
|         unquantizedModified[1][ch] = unquantized[ch];
 | |
|         unquantizedModified[2][ch] = ParallelMath::Min(unquantized[ch] + modifier, u15_255);
 | |
|     }
 | |
| 
 | |
|     bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
| 
 | |
|     for (int px = 0; px < 8; px++)
 | |
|     {
 | |
|         ParallelMath::FloatCompFlag isTransparentFloat = ParallelMath::Int16FlagToFloat(isTransparent[px]);
 | |
| 
 | |
|         MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
 | |
|         MUInt15 bestSelector = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|         for (unsigned int s = 0; s < 3; s++)
 | |
|         {
 | |
|             MFloat error;
 | |
|             if (isFakeBT709)
 | |
|                 error = ComputeErrorFakeBT709(unquantizedModified[s], preWeightedPixels[px]);
 | |
|             else if (isUniform)
 | |
|                 error = ComputeErrorUniform(pixels[px], unquantizedModified[s]);
 | |
|             else
 | |
|                 error = ComputeErrorWeighted(unquantizedModified[s], preWeightedPixels[px], options);
 | |
| 
 | |
|             ParallelMath::FloatCompFlag errorBetter = ParallelMath::Less(error, bestError);
 | |
|             bestSelector = ParallelMath::Select(ParallelMath::FloatFlagToInt16(errorBetter), ParallelMath::MakeUInt15(s), bestSelector);
 | |
|             bestError = ParallelMath::Min(error, bestError);
 | |
|         }
 | |
| 
 | |
|         // Annoying quirk: The ETC encoding machinery assumes that selectors are in the table order in the spec, which isn't
 | |
|         // the same as their encoding bits, so the transparent index is actually 1 and the valid indexes are 0, 2, and 3.
 | |
| 
 | |
|         // Remap selector 1 to 2, and 2 to 3
 | |
|         bestSelector = ParallelMath::Min(ParallelMath::MakeUInt15(3), bestSelector << 1);
 | |
| 
 | |
|         // Mark zero transparent as 
 | |
|         ParallelMath::ConditionalSet(bestError, isTransparentFloat, ParallelMath::MakeFloatZero());
 | |
|         ParallelMath::ConditionalSet(bestSelector, isTransparent[px], ParallelMath::MakeUInt15(1));
 | |
| 
 | |
|         totalError = totalError + bestError;
 | |
|         selectors = selectors | (ParallelMath::LosslessCast<MUInt16>::Cast(bestSelector) << (px * 2));
 | |
|     }
 | |
| 
 | |
|     outError = totalError;
 | |
|     outSelectors = selectors;
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::FindBestDifferentialCombination(int flip, int d, const ParallelMath::Int16CompFlag canIgnoreSector[2], ParallelMath::Int16CompFlag& bestIsThisMode, MFloat& bestTotalError, MUInt15& bestFlip, MUInt15& bestD, MUInt15 bestColors[2], MUInt16 bestSelectors[2], MUInt15 bestTables[2], DifferentialResolveStorage &drs)
 | |
| {
 | |
|     // We do this part scalar because most of the cost benefit of parallelization is in error evaluation,
 | |
|     // and this code has a LOT of early-outs and disjointed index lookups that vary heavily between blocks
 | |
|     // and save a lot of time.
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         bool canIgnore[2] = { ParallelMath::Extract(canIgnoreSector[0], block), ParallelMath::Extract(canIgnoreSector[1], block) };
 | |
|         bool canIgnoreEither = canIgnore[0] || canIgnore[1];
 | |
|         float blockBestTotalError = ParallelMath::Extract(bestTotalError, block);
 | |
|         float bestDiffErrors[2] = { FLT_MAX, FLT_MAX };
 | |
|         uint16_t bestDiffSelectors[2] = { 0, 0 };
 | |
|         uint16_t bestDiffColors[2] = { 0, 0 };
 | |
|         uint16_t bestDiffTables[2] = { 0, 0 };
 | |
|         for (int sector = 0; sector < 2; sector++)
 | |
|         {
 | |
|             unsigned int sectorNumAttempts = ParallelMath::Extract(drs.diffNumAttempts[sector], block);
 | |
|             for (unsigned int i = 0; i < sectorNumAttempts; i++)
 | |
|             {
 | |
|                 float error = ParallelMath::Extract(drs.diffErrors[sector][i], block);
 | |
|                 if (error < bestDiffErrors[sector])
 | |
|                 {
 | |
|                     bestDiffErrors[sector] = error;
 | |
|                     bestDiffSelectors[sector] = ParallelMath::Extract(drs.diffSelectors[sector][i], block);
 | |
|                     bestDiffColors[sector] = ParallelMath::Extract(drs.diffColors[sector][i], block);
 | |
|                     bestDiffTables[sector] = ParallelMath::Extract(drs.diffTables[sector][i], block);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (canIgnore[0])
 | |
|             bestDiffColors[0] = bestDiffColors[1];
 | |
|         else if (canIgnore[1])
 | |
|             bestDiffColors[1] = bestDiffColors[0];
 | |
| 
 | |
|         // The best differential possibilities must be better than the best total error
 | |
|         if (bestDiffErrors[0] + bestDiffErrors[1] < blockBestTotalError)
 | |
|         {
 | |
|             // Fast path if the best possible case is legal
 | |
|             if (canIgnoreEither || ETCDifferentialIsLegalScalar(bestDiffColors[0], bestDiffColors[1]))
 | |
|             {
 | |
|                 ParallelMath::PutBoolInt16(bestIsThisMode, block, true);
 | |
|                 ParallelMath::PutFloat(bestTotalError, block, bestDiffErrors[0] + bestDiffErrors[1]);
 | |
|                 ParallelMath::PutUInt15(bestFlip, block, flip);
 | |
|                 ParallelMath::PutUInt15(bestD, block, d);
 | |
|                 for (int sector = 0; sector < 2; sector++)
 | |
|                 {
 | |
|                     ParallelMath::PutUInt15(bestColors[sector], block, bestDiffColors[sector]);
 | |
|                     ParallelMath::PutUInt16(bestSelectors[sector], block, bestDiffSelectors[sector]);
 | |
|                     ParallelMath::PutUInt15(bestTables[sector], block, bestDiffTables[sector]);
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Slow path: Sort the possible cases by quality, and search valid combinations
 | |
|                 // TODO: Pre-flatten the error lists so this is nicer to cache
 | |
|                 unsigned int numSortIndexes[2] = { 0, 0 };
 | |
|                 for (int sector = 0; sector < 2; sector++)
 | |
|                 {
 | |
|                     unsigned int sectorNumAttempts = ParallelMath::Extract(drs.diffNumAttempts[sector], block);
 | |
| 
 | |
|                     for (unsigned int i = 0; i < sectorNumAttempts; i++)
 | |
|                     {
 | |
|                         if (ParallelMath::Extract(drs.diffErrors[sector][i], block) < blockBestTotalError)
 | |
|                             drs.attemptSortIndexes[sector][numSortIndexes[sector]++] = i;
 | |
|                     }
 | |
| 
 | |
|                     struct SortPredicate
 | |
|                     {
 | |
|                         const MFloat *diffErrors;
 | |
|                         int block;
 | |
| 
 | |
|                         bool operator()(uint16_t a, uint16_t b) const
 | |
|                         {
 | |
|                             float errorA = ParallelMath::Extract(diffErrors[a], block);
 | |
|                             float errorB = ParallelMath::Extract(diffErrors[b], block);
 | |
| 
 | |
|                             if (errorA < errorB)
 | |
|                                 return true;
 | |
|                             if (errorA > errorB)
 | |
|                                 return false;
 | |
| 
 | |
|                             return a < b;
 | |
|                         }
 | |
|                     };
 | |
| 
 | |
|                     SortPredicate sp;
 | |
|                     sp.diffErrors = drs.diffErrors[sector];
 | |
|                     sp.block = block;
 | |
| 
 | |
|                     std::sort<uint16_t*, const SortPredicate&>(drs.attemptSortIndexes[sector], drs.attemptSortIndexes[sector] + numSortIndexes[sector], sp);
 | |
|                 }
 | |
| 
 | |
|                 int scannedElements = 0;
 | |
|                 for (unsigned int i = 0; i < numSortIndexes[0]; i++)
 | |
|                 {
 | |
|                     unsigned int attemptIndex0 = drs.attemptSortIndexes[0][i];
 | |
|                     float error0 = ParallelMath::Extract(drs.diffErrors[0][attemptIndex0], block);
 | |
| 
 | |
|                     scannedElements++;
 | |
| 
 | |
|                     if (error0 >= blockBestTotalError)
 | |
|                         break;
 | |
| 
 | |
|                     float maxError1 = ParallelMath::Extract(bestTotalError, block) - error0;
 | |
|                     uint16_t diffColor0 = ParallelMath::Extract(drs.diffColors[0][attemptIndex0], block);
 | |
| 
 | |
|                     if (maxError1 < bestDiffErrors[1])
 | |
|                         break;
 | |
| 
 | |
|                     for (unsigned int j = 0; j < numSortIndexes[1]; j++)
 | |
|                     {
 | |
|                         unsigned int attemptIndex1 = drs.attemptSortIndexes[1][j];
 | |
|                         float error1 = ParallelMath::Extract(drs.diffErrors[1][attemptIndex1], block);
 | |
| 
 | |
|                         scannedElements++;
 | |
| 
 | |
|                         if (error1 >= maxError1)
 | |
|                             break;
 | |
| 
 | |
|                         uint16_t diffColor1 = ParallelMath::Extract(drs.diffColors[1][attemptIndex1], block);
 | |
| 
 | |
|                         if (ETCDifferentialIsLegalScalar(diffColor0, diffColor1))
 | |
|                         {
 | |
|                             blockBestTotalError = error0 + error1;
 | |
| 
 | |
|                             ParallelMath::PutBoolInt16(bestIsThisMode, block, true);
 | |
|                             ParallelMath::PutFloat(bestTotalError, block, blockBestTotalError);
 | |
|                             ParallelMath::PutUInt15(bestFlip, block, flip);
 | |
|                             ParallelMath::PutUInt15(bestD, block, d);
 | |
|                             ParallelMath::PutUInt15(bestColors[0], block, diffColor0);
 | |
|                             ParallelMath::PutUInt15(bestColors[1], block, diffColor1);
 | |
|                             ParallelMath::PutUInt16(bestSelectors[0], block, ParallelMath::Extract(drs.diffSelectors[0][attemptIndex0], block));
 | |
|                             ParallelMath::PutUInt16(bestSelectors[1], block, ParallelMath::Extract(drs.diffSelectors[1][attemptIndex1], block));
 | |
|                             ParallelMath::PutUInt15(bestTables[0], block, ParallelMath::Extract(drs.diffTables[0][attemptIndex0], block));
 | |
|                             ParallelMath::PutUInt15(bestTables[1], block, ParallelMath::Extract(drs.diffTables[1][attemptIndex1], block));
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| cvtt::ParallelMath::Int16CompFlag cvtt::Internal::ETCComputer::ETCDifferentialIsLegalForChannel(const MUInt15 &a, const MUInt15 &b)
 | |
| {
 | |
|     MSInt16 diff = ParallelMath::LosslessCast<MSInt16>::Cast(b) - ParallelMath::LosslessCast<MSInt16>::Cast(a);
 | |
| 
 | |
|     return ParallelMath::Less(ParallelMath::MakeSInt16(-5), diff) & ParallelMath::Less(diff, ParallelMath::MakeSInt16(4));
 | |
| }
 | |
| 
 | |
| cvtt::ParallelMath::Int16CompFlag cvtt::Internal::ETCComputer::ETCDifferentialIsLegal(const MUInt15 &a, const MUInt15 &b)
 | |
| {
 | |
|     MUInt15 mask = ParallelMath::MakeUInt15(31);
 | |
| 
 | |
|     return ETCDifferentialIsLegalForChannel(ParallelMath::RightShift(a, 10), ParallelMath::RightShift(b, 10))
 | |
|         & ETCDifferentialIsLegalForChannel(ParallelMath::RightShift(a, 5) & mask, ParallelMath::RightShift(b, 5) & mask)
 | |
|         & ETCDifferentialIsLegalForChannel(a & mask, b & mask);
 | |
| }
 | |
| 
 | |
| bool cvtt::Internal::ETCComputer::ETCDifferentialIsLegalForChannelScalar(const uint16_t &a, const uint16_t &b)
 | |
| {
 | |
|     int16_t diff = static_cast<int16_t>(b) - static_cast<int16_t>(a);
 | |
| 
 | |
|     return (-4 <= diff) && (diff <= 3);
 | |
| }
 | |
| 
 | |
| bool cvtt::Internal::ETCComputer::ETCDifferentialIsLegalScalar(const uint16_t &a, const uint16_t &b)
 | |
| {
 | |
|     MUInt15 mask = ParallelMath::MakeUInt15(31);
 | |
| 
 | |
|     return ETCDifferentialIsLegalForChannelScalar((a >> 10), (b >> 10))
 | |
|         & ETCDifferentialIsLegalForChannelScalar((a >> 5) & 31, (b >> 5) & 31)
 | |
|         & ETCDifferentialIsLegalForChannelScalar(a & 31, b & 31);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::EncodeTMode(uint8_t *outputBuffer, MFloat &bestError, const ParallelMath::Int16CompFlag isIsolated[16], const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], const Options &options)
 | |
| {
 | |
|     bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
| 
 | |
|     ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
 | |
| 
 | |
|     MUInt15 isolatedTotal[3] = { ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0) };
 | |
|     MUInt15 lineTotal[3] = { ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0) };
 | |
| 
 | |
|     MUInt15 numPixelsIsolated = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     // To speed this up, we compute line total as the sum, then subtract out isolated
 | |
|     for (unsigned int px = 0; px < 16; px++)
 | |
|     {
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             isolatedTotal[ch] = isolatedTotal[ch] + ParallelMath::SelectOrZero(isIsolated[px], pixels[px][ch]);
 | |
|             lineTotal[ch] = lineTotal[ch] + pixels[px][ch];
 | |
|         }
 | |
|         numPixelsIsolated = numPixelsIsolated + ParallelMath::SelectOrZero(isIsolated[px], ParallelMath::MakeUInt15(1));
 | |
|     }
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         lineTotal[ch] = lineTotal[ch] - isolatedTotal[ch];
 | |
| 
 | |
|     MUInt15 numPixelsLine = ParallelMath::MakeUInt15(16) - numPixelsIsolated;
 | |
| 
 | |
|     MUInt15 isolatedAverageQuantized[3];
 | |
|     MUInt15 isolatedAverageTargets[3];
 | |
|     {
 | |
|         int divisors[ParallelMath::ParallelSize];
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             divisors[block] = ParallelMath::Extract(numPixelsIsolated, block) * 34;
 | |
| 
 | |
|         MUInt15 addend = (numPixelsIsolated << 4) | numPixelsIsolated;
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             // isolatedAverageQuantized[ch] = (isolatedTotal[ch] * 2 + numPixelsIsolated * 17) / (numPixelsIsolated * 34);
 | |
| 
 | |
|             MUInt15 numerator = isolatedTotal[ch] + isolatedTotal[ch];
 | |
|             if (!isFakeBT709)
 | |
|                 numerator = numerator + addend;
 | |
| 
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             {
 | |
|                 int divisor = divisors[block];
 | |
|                 if (divisor == 0)
 | |
|                     ParallelMath::PutUInt15(isolatedAverageQuantized[ch], block, 0);
 | |
|                 else
 | |
|                     ParallelMath::PutUInt15(isolatedAverageQuantized[ch], block, ParallelMath::Extract(numerator, block) / divisor);
 | |
|             }
 | |
| 
 | |
|             isolatedAverageTargets[ch] = numerator;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (isFakeBT709)
 | |
|         ResolveTHFakeBT709Rounding(isolatedAverageQuantized, isolatedAverageTargets, numPixelsIsolated);
 | |
| 
 | |
|     MUInt15 isolatedColor[3];
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         isolatedColor[ch] = (isolatedAverageQuantized[ch]) | (isolatedAverageQuantized[ch] << 4);
 | |
| 
 | |
|     MFloat isolatedError[16];
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         if (isFakeBT709)
 | |
|             isolatedError[px] = ComputeErrorFakeBT709(isolatedColor, preWeightedPixels[px]);
 | |
|         else if (isUniform)
 | |
|             isolatedError[px] = ComputeErrorUniform(pixels[px], isolatedColor);
 | |
|         else
 | |
|             isolatedError[px] = ComputeErrorWeighted(isolatedColor, preWeightedPixels[px], options);
 | |
|     }
 | |
| 
 | |
|     MSInt32 bestSelectors = ParallelMath::MakeSInt32(0);
 | |
|     MUInt15 bestTable = ParallelMath::MakeUInt15(0);
 | |
|     MUInt15 bestLineColor = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     MSInt16 maxLine = ParallelMath::LosslessCast<MSInt16>::Cast(numPixelsLine);
 | |
|     MSInt16 minLine = ParallelMath::MakeSInt16(0) - maxLine;
 | |
| 
 | |
|     int16_t clusterMaxLine = 0;
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         int16_t blockMaxLine = ParallelMath::Extract(maxLine, block);
 | |
|         if (blockMaxLine > clusterMaxLine)
 | |
|             clusterMaxLine = blockMaxLine;
 | |
|     }
 | |
| 
 | |
|     int16_t clusterMinLine = -clusterMaxLine;
 | |
| 
 | |
|     int lineDivisors[ParallelMath::ParallelSize];
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         lineDivisors[block] = ParallelMath::Extract(numPixelsLine, block) * 34;
 | |
| 
 | |
|     MUInt15 lineAddend = (numPixelsLine << 4) | numPixelsLine;
 | |
| 
 | |
|     for (int table = 0; table < 8; table++)
 | |
|     {
 | |
|         int numUniqueColors[ParallelMath::ParallelSize];
 | |
|         MUInt15 uniqueQuantizedColors[31];
 | |
| 
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             numUniqueColors[block] = 0;
 | |
| 
 | |
|         MUInt15 modifier = ParallelMath::MakeUInt15(cvtt::Tables::ETC2::g_thModifierTable[table]);
 | |
|         MUInt15 modifierOffset = (modifier + modifier);
 | |
| 
 | |
|         for (int16_t offsetPremultiplier = clusterMinLine; offsetPremultiplier <= clusterMaxLine; offsetPremultiplier++)
 | |
|         {
 | |
|             MSInt16 clampedOffsetPremultiplier = ParallelMath::Max(minLine, ParallelMath::Min(maxLine, ParallelMath::MakeSInt16(offsetPremultiplier)));
 | |
|             MSInt16 modifierAddend = ParallelMath::CompactMultiply(clampedOffsetPremultiplier, modifierOffset);
 | |
| 
 | |
|             MUInt15 quantized[3];
 | |
|             if (isFakeBT709)
 | |
|             {
 | |
|                 MUInt15 targets[3];
 | |
|                 for (int ch = 0; ch < 3; ch++)
 | |
|                 {
 | |
|                     //quantized[ch] = std::min<int16_t>(15, std::max(0, (lineTotal[ch] * 2 + modifierOffset * offsetPremultiplier)) / (numDAIILine * 34));
 | |
|                     MUInt15 numerator = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(lineTotal[ch] + lineTotal[ch]) + modifierAddend));
 | |
|                     MUInt15 divided = ParallelMath::MakeUInt15(0);
 | |
|                     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                     {
 | |
|                         int divisor = lineDivisors[block];
 | |
|                         if (divisor == 0)
 | |
|                             ParallelMath::PutUInt15(divided, block, 0);
 | |
|                         else
 | |
|                             ParallelMath::PutUInt15(divided, block, ParallelMath::Extract(numerator, block) / divisor);
 | |
|                     }
 | |
|                     quantized[ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), divided);
 | |
|                     targets[ch] = numerator;
 | |
|                 }
 | |
| 
 | |
|                 ResolveTHFakeBT709Rounding(quantized, targets, numPixelsLine);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 for (int ch = 0; ch < 3; ch++)
 | |
|                 {
 | |
|                     //quantized[ch] = std::min<int16_t>(15, std::max(0, (lineTotal[ch] * 2 + numDAIILine * 17 + modifierOffset * offsetPremultiplier)) / (numDAIILine * 34));
 | |
|                     MUInt15 numerator = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(lineTotal[ch] + lineTotal[ch] + lineAddend) + modifierAddend));
 | |
|                     MUInt15 divided = ParallelMath::MakeUInt15(0);
 | |
|                     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                     {
 | |
|                         int divisor = lineDivisors[block];
 | |
|                         if (divisor == 0)
 | |
|                             ParallelMath::PutUInt15(divided, block, 0);
 | |
|                         else
 | |
|                             ParallelMath::PutUInt15(divided, block, ParallelMath::Extract(numerator, block) / divisor);
 | |
|                     }
 | |
|                     quantized[ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), divided);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             MUInt15 packedColor = quantized[0] | (quantized[1] << 5) | (quantized[2] << 10);
 | |
| 
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             {
 | |
|                 uint16_t blockPackedColor = ParallelMath::Extract(packedColor, block);
 | |
|                 if (numUniqueColors[block] == 0 || blockPackedColor != ParallelMath::Extract(uniqueQuantizedColors[numUniqueColors[block] - 1], block))
 | |
|                     ParallelMath::PutUInt15(uniqueQuantizedColors[numUniqueColors[block]++], block, blockPackedColor);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Stripe unfilled unique colors
 | |
|         int maxUniqueColors = 0;
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         {
 | |
|             if (numUniqueColors[block] > maxUniqueColors)
 | |
|                 maxUniqueColors = numUniqueColors[block];
 | |
|         }
 | |
| 
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         {
 | |
|             uint16_t fillColor = ParallelMath::Extract(uniqueQuantizedColors[0], block);
 | |
| 
 | |
|             int numUnique = numUniqueColors[block];
 | |
|             for (int fill = numUnique + 1; fill < maxUniqueColors; fill++)
 | |
|                 ParallelMath::PutUInt15(uniqueQuantizedColors[fill], block, fillColor);
 | |
|         }
 | |
| 
 | |
|         for (int ci = 0; ci < maxUniqueColors; ci++)
 | |
|         {
 | |
|             MUInt15 lineColors[3][3];
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|             {
 | |
|                 MUInt15 quantizedChannel = (ParallelMath::RightShift(uniqueQuantizedColors[ci], (ch * 5)) & ParallelMath::MakeUInt15(15));
 | |
| 
 | |
|                 MUInt15 unquantizedColor = (quantizedChannel << 4) | quantizedChannel;
 | |
|                 lineColors[0][ch] = ParallelMath::Min(ParallelMath::MakeUInt15(255), unquantizedColor + modifier);
 | |
|                 lineColors[1][ch] = unquantizedColor;
 | |
|                 lineColors[2][ch] = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(unquantizedColor) - ParallelMath::LosslessCast<MSInt16>::Cast(modifier)));
 | |
|             }
 | |
| 
 | |
|             MSInt32 selectors = ParallelMath::MakeSInt32(0);
 | |
|             MFloat error = ParallelMath::MakeFloatZero();
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 MFloat pixelError = isolatedError[px];
 | |
| 
 | |
|                 MUInt15 pixelBestSelector = ParallelMath::MakeUInt15(0);
 | |
|                 for (int i = 0; i < 3; i++)
 | |
|                 {
 | |
|                     MFloat error = isUniform ? ComputeErrorUniform(lineColors[i], pixels[px]) : ComputeErrorWeighted(lineColors[i], preWeightedPixels[px], options);
 | |
|                     ParallelMath::FloatCompFlag errorBetter = ParallelMath::Less(error, pixelError);
 | |
|                     pixelError = ParallelMath::Min(error, pixelError);
 | |
|                     pixelBestSelector = ParallelMath::Select(ParallelMath::FloatFlagToInt16(errorBetter), ParallelMath::MakeUInt15(i + 1), pixelBestSelector);
 | |
|                 }
 | |
| 
 | |
|                 error = error + pixelError;
 | |
|                 selectors = selectors | (ParallelMath::ToInt32(pixelBestSelector) << (px * 2));
 | |
|             }
 | |
| 
 | |
|             ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestError));
 | |
|             bestError = ParallelMath::Min(error, bestError);
 | |
| 
 | |
|             if (ParallelMath::AnySet(errorBetter))
 | |
|             {
 | |
|                 ParallelMath::ConditionalSet(bestLineColor, errorBetter, uniqueQuantizedColors[ci]);
 | |
|                 ParallelMath::ConditionalSet(bestSelectors, errorBetter, selectors);
 | |
|                 ParallelMath::ConditionalSet(bestTable, errorBetter, ParallelMath::MakeUInt15(table));
 | |
|                 bestIsThisMode = bestIsThisMode | errorBetter;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         if (ParallelMath::Extract(bestIsThisMode, block))
 | |
|         {
 | |
|             uint32_t lowBits = 0;
 | |
|             uint32_t highBits = 0;
 | |
| 
 | |
|             uint16_t blockBestLineColor = ParallelMath::Extract(bestLineColor, block);
 | |
|             ParallelMath::ScalarUInt16 blockIsolatedAverageQuantized[3];
 | |
| 
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|                 blockIsolatedAverageQuantized[ch] = ParallelMath::Extract(isolatedAverageQuantized[ch], block);
 | |
| 
 | |
|             uint16_t blockBestTable = ParallelMath::Extract(bestTable, block);
 | |
|             int32_t blockBestSelectors = ParallelMath::Extract(bestSelectors, block);
 | |
| 
 | |
|             ParallelMath::ScalarUInt16 lineColor[3];
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|                 lineColor[ch] = (blockBestLineColor >> (ch * 5)) & 15;
 | |
| 
 | |
|             EmitTModeBlock(outputBuffer + block * 8, lineColor, blockIsolatedAverageQuantized, blockBestSelectors, blockBestTable, true);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::EncodeHMode(uint8_t *outputBuffer, MFloat &bestError, const ParallelMath::Int16CompFlag groupings[16], const MUInt15 pixels[16][3], HModeEval &he, const MFloat preWeightedPixels[16][3], const Options &options)
 | |
| {
 | |
|     bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
| 
 | |
|     MUInt15 zero15 = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     MUInt15 counts[2] = { zero15, zero15 };
 | |
| 
 | |
|     ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
 | |
| 
 | |
|     MUInt15 totals[2][3] =
 | |
|     {
 | |
|         { zero15, zero15, zero15 },
 | |
|         { zero15, zero15, zero15 }
 | |
|     };
 | |
| 
 | |
|     for (unsigned int px = 0; px < 16; px++)
 | |
|     {
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             totals[0][ch] = totals[0][ch] + pixels[px][ch];
 | |
|             totals[1][ch] = totals[1][ch] + ParallelMath::SelectOrZero(groupings[px], pixels[px][ch]);
 | |
|         }
 | |
|         counts[1] = counts[1] + ParallelMath::SelectOrZero(groupings[px], ParallelMath::MakeUInt15(1));
 | |
|     }
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         totals[0][ch] = totals[0][ch] - totals[1][ch];
 | |
|     counts[0] = ParallelMath::MakeUInt15(16) - counts[1];
 | |
| 
 | |
|     MUInt16 bestSectorBits = ParallelMath::MakeUInt16(0);
 | |
|     MUInt16 bestSignBits = ParallelMath::MakeUInt16(0);
 | |
|     MUInt15 bestColors[2] = { zero15, zero15 };
 | |
|     MUInt15 bestTable = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     for (int table = 0; table < 8; table++)
 | |
|     {
 | |
|         MUInt15 numUniqueColors = zero15;
 | |
| 
 | |
|         int modifier = cvtt::Tables::ETC1::g_thModifierTable[table];
 | |
| 
 | |
|         for (int sector = 0; sector < 2; sector++)
 | |
|         {
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             {
 | |
|                 int blockNumUniqueColors = 0;
 | |
|                 uint16_t blockUniqueQuantizedColors[31];
 | |
| 
 | |
|                 int maxOffsetMultiplier = ParallelMath::Extract(counts[sector], block);
 | |
|                 int minOffsetMultiplier = -maxOffsetMultiplier;
 | |
| 
 | |
|                 int modifierOffset = modifier * 2;
 | |
| 
 | |
|                 int blockSectorCounts = ParallelMath::Extract(counts[sector], block);
 | |
|                 int blockSectorTotals[3];
 | |
|                 for (int ch = 0; ch < 3; ch++)
 | |
|                     blockSectorTotals[ch] = ParallelMath::Extract(totals[sector][ch], block);
 | |
| 
 | |
|                 for (int offsetPremultiplier = minOffsetMultiplier; offsetPremultiplier <= maxOffsetMultiplier; offsetPremultiplier++)
 | |
|                 {
 | |
|                     // TODO: This isn't ideal for FakeBT709
 | |
|                     int16_t quantized[3];
 | |
|                     for (int ch = 0; ch < 3; ch++)
 | |
|                     {
 | |
|                         if (blockSectorCounts == 0)
 | |
|                             quantized[ch] = 0;
 | |
|                         else
 | |
|                             quantized[ch] = std::min<int16_t>(15, std::max<int16_t>(0, (blockSectorTotals[ch] * 2 + blockSectorCounts * 17 + modifierOffset * offsetPremultiplier)) / (blockSectorCounts * 34));
 | |
|                     }
 | |
| 
 | |
|                     uint16_t packedColor = (quantized[0] << 10) | (quantized[1] << 5) | quantized[2];
 | |
|                     if (blockNumUniqueColors == 0 || packedColor != blockUniqueQuantizedColors[blockNumUniqueColors - 1])
 | |
|                     {
 | |
|                         assert(blockNumUniqueColors < 32);
 | |
|                         blockUniqueQuantizedColors[blockNumUniqueColors++] = packedColor;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 ParallelMath::PutUInt15(he.numUniqueColors[sector], block, blockNumUniqueColors);
 | |
| 
 | |
|                 int baseIndex = 0;
 | |
|                 if (sector == 1)
 | |
|                     baseIndex = ParallelMath::Extract(he.numUniqueColors[0], block);
 | |
| 
 | |
|                 for (int i = 0; i < blockNumUniqueColors; i++)
 | |
|                     ParallelMath::PutUInt15(he.uniqueQuantizedColors[baseIndex + i], block, blockUniqueQuantizedColors[i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         MUInt15 totalColors = he.numUniqueColors[0] + he.numUniqueColors[1];
 | |
|         int maxErrorColors = 0;
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             maxErrorColors = std::max<int>(maxErrorColors, ParallelMath::Extract(totalColors, block));
 | |
| 
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         {
 | |
|             int lastColor = ParallelMath::Extract(totalColors, block);
 | |
|             uint16_t stripeColor = ParallelMath::Extract(he.uniqueQuantizedColors[0], block);
 | |
|             for (int i = lastColor; i < maxErrorColors; i++)
 | |
|                 ParallelMath::PutUInt15(he.uniqueQuantizedColors[i], block, stripeColor);
 | |
|         }
 | |
| 
 | |
|         for (int ci = 0; ci < maxErrorColors; ci++)
 | |
|         {
 | |
|             MUInt15 fifteen = ParallelMath::MakeUInt15(15);
 | |
|             MUInt15 twoFiftyFive = ParallelMath::MakeUInt15(255);
 | |
|             MSInt16 zeroS16 = ParallelMath::MakeSInt16(0);
 | |
| 
 | |
|             MUInt15 colors[2][3];
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|             {
 | |
|                 MUInt15 quantizedChannel = ParallelMath::RightShift(he.uniqueQuantizedColors[ci], ((2 - ch) * 5)) & fifteen;
 | |
| 
 | |
|                 MUInt15 unquantizedColor = (quantizedChannel << 4) | quantizedChannel;
 | |
|                 colors[0][ch] = ParallelMath::Min(twoFiftyFive, unquantizedColor + modifier);
 | |
|                 colors[1][ch] = ParallelMath::ToUInt15(ParallelMath::Max(zeroS16, ParallelMath::LosslessCast<MSInt16>::Cast(unquantizedColor) - ParallelMath::MakeSInt16(modifier)));
 | |
|             }
 | |
| 
 | |
|             MUInt16 signBits = ParallelMath::MakeUInt16(0);
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 MFloat errors[2];
 | |
|                 for (int i = 0; i < 2; i++)
 | |
|                 {
 | |
|                     if (isFakeBT709)
 | |
|                         errors[i] = ComputeErrorFakeBT709(colors[i], preWeightedPixels[px]);
 | |
|                     else if (isUniform)
 | |
|                         errors[i] = ComputeErrorUniform(colors[i], pixels[px]);
 | |
|                     else
 | |
|                         errors[i] = ComputeErrorWeighted(colors[i], preWeightedPixels[px], options);
 | |
|                 }
 | |
| 
 | |
|                 ParallelMath::Int16CompFlag errorOneLess = ParallelMath::FloatFlagToInt16(ParallelMath::Less(errors[1], errors[0]));
 | |
|                 he.errors[ci][px] = ParallelMath::Min(errors[0], errors[1]);
 | |
|                 signBits = signBits | ParallelMath::SelectOrZero(errorOneLess, ParallelMath::MakeUInt16(1 << px));
 | |
|             }
 | |
|             he.signBits[ci] = signBits;
 | |
|         }
 | |
| 
 | |
|         int maxUniqueColorCombos = 0;
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         {
 | |
|             int numUniqueColorCombos = ParallelMath::Extract(he.numUniqueColors[0], block) * ParallelMath::Extract(he.numUniqueColors[1], block);
 | |
|             if (numUniqueColorCombos > maxUniqueColorCombos)
 | |
|                 maxUniqueColorCombos = numUniqueColorCombos;
 | |
|         }
 | |
| 
 | |
|         MUInt15 indexes[2] = { zero15, zero15 };
 | |
|         MUInt15 maxIndex[2] = { he.numUniqueColors[0] - ParallelMath::MakeUInt15(1), he.numUniqueColors[1] - ParallelMath::MakeUInt15(1) };
 | |
| 
 | |
|         int block1Starts[ParallelMath::ParallelSize];
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             block1Starts[block] = ParallelMath::Extract(he.numUniqueColors[0], block);
 | |
| 
 | |
|         for (int combo = 0; combo < maxUniqueColorCombos; combo++)
 | |
|         {
 | |
|             MUInt15 index0 = indexes[0] + ParallelMath::MakeUInt15(1);
 | |
|             ParallelMath::Int16CompFlag index0Overflow = ParallelMath::Less(maxIndex[0], index0);
 | |
|             ParallelMath::ConditionalSet(index0, index0Overflow, ParallelMath::MakeUInt15(0));
 | |
| 
 | |
|             MUInt15 index1 = ParallelMath::Min(maxIndex[1], indexes[1] + ParallelMath::SelectOrZero(index0Overflow, ParallelMath::MakeUInt15(1)));
 | |
|             indexes[0] = index0;
 | |
|             indexes[1] = index1;
 | |
| 
 | |
|             int ci0[ParallelMath::ParallelSize];
 | |
|             int ci1[ParallelMath::ParallelSize];
 | |
|             MUInt15 color0;
 | |
|             MUInt15 color1;
 | |
| 
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             {
 | |
|                 ci0[block] = ParallelMath::Extract(index0, block);
 | |
|                 ci1[block] = ParallelMath::Extract(index1, block) + block1Starts[block];
 | |
|                 ParallelMath::PutUInt15(color0, block, ParallelMath::Extract(he.uniqueQuantizedColors[ci0[block]], block));
 | |
|                 ParallelMath::PutUInt15(color1, block, ParallelMath::Extract(he.uniqueQuantizedColors[ci1[block]], block));
 | |
|             }
 | |
| 
 | |
|             MFloat totalError = ParallelMath::MakeFloatZero();
 | |
|             MUInt16 sectorBits = ParallelMath::MakeUInt16(0);
 | |
|             MUInt16 signBits = ParallelMath::MakeUInt16(0);
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 MFloat errorCI0;
 | |
|                 MFloat errorCI1;
 | |
|                 MUInt16 signBits0;
 | |
|                 MUInt16 signBits1;
 | |
| 
 | |
|                 for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                 {
 | |
|                     ParallelMath::PutFloat(errorCI0, block, ParallelMath::Extract(he.errors[ci0[block]][px], block));
 | |
|                     ParallelMath::PutFloat(errorCI1, block, ParallelMath::Extract(he.errors[ci1[block]][px], block));
 | |
|                     ParallelMath::PutUInt16(signBits0, block, ParallelMath::Extract(he.signBits[ci0[block]], block));
 | |
|                     ParallelMath::PutUInt16(signBits1, block, ParallelMath::Extract(he.signBits[ci1[block]], block));
 | |
|                 }
 | |
| 
 | |
|                 totalError = totalError + ParallelMath::Min(errorCI0, errorCI1);
 | |
| 
 | |
|                 MUInt16 bitPosition = ParallelMath::MakeUInt16(1 << px);
 | |
| 
 | |
|                 ParallelMath::Int16CompFlag error1Better = ParallelMath::FloatFlagToInt16(ParallelMath::Less(errorCI1, errorCI0));
 | |
| 
 | |
|                 sectorBits = sectorBits | ParallelMath::SelectOrZero(error1Better, bitPosition);
 | |
|                 signBits = signBits | (bitPosition & ParallelMath::Select(error1Better, signBits1, signBits0));
 | |
|             }
 | |
| 
 | |
|             ParallelMath::FloatCompFlag totalErrorBetter = ParallelMath::Less(totalError, bestError);
 | |
|             ParallelMath::Int16CompFlag totalErrorBetter16 = ParallelMath::FloatFlagToInt16(totalErrorBetter);
 | |
|             if (ParallelMath::AnySet(totalErrorBetter16))
 | |
|             {
 | |
|                 bestIsThisMode = bestIsThisMode | totalErrorBetter16;
 | |
|                 ParallelMath::ConditionalSet(bestTable, totalErrorBetter16, ParallelMath::MakeUInt15(table));
 | |
|                 ParallelMath::ConditionalSet(bestColors[0], totalErrorBetter16, color0);
 | |
|                 ParallelMath::ConditionalSet(bestColors[1], totalErrorBetter16, color1);
 | |
|                 ParallelMath::ConditionalSet(bestSectorBits, totalErrorBetter16, sectorBits);
 | |
|                 ParallelMath::ConditionalSet(bestSignBits, totalErrorBetter16, signBits);
 | |
|                 bestError = ParallelMath::Min(totalError, bestError);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ParallelMath::AnySet(bestIsThisMode))
 | |
|     {
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         {
 | |
|             if (!ParallelMath::Extract(bestIsThisMode, block))
 | |
|                 continue;
 | |
| 
 | |
|             ParallelMath::ScalarUInt16 blockBestColors[2] = { ParallelMath::Extract(bestColors[0], block), ParallelMath::Extract(bestColors[1], block) };
 | |
|             ParallelMath::ScalarUInt16 blockBestSectorBits = ParallelMath::Extract(bestSectorBits, block);
 | |
|             ParallelMath::ScalarUInt16 blockBestSignBits = ParallelMath::Extract(bestSignBits, block);
 | |
|             ParallelMath::ScalarUInt16 blockBestTable = ParallelMath::Extract(bestTable, block);
 | |
| 
 | |
|             EmitHModeBlock(outputBuffer + block * 8, blockBestColors, blockBestSectorBits, blockBestSignBits, blockBestTable, true);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::EncodeVirtualTModePunchthrough(uint8_t *outputBuffer, MFloat &bestError, const ParallelMath::Int16CompFlag isIsolatedBase[16], const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], const ParallelMath::Int16CompFlag isTransparent[16], const ParallelMath::Int16CompFlag& anyTransparent, const ParallelMath::Int16CompFlag& allTransparent, const Options &options)
 | |
| {
 | |
|     // We treat T and H mode as the same mode ("Virtual T mode") with punchthrough, because of how the colors work:
 | |
|     //
 | |
|     // T mode: C1, C2+M, Transparent, C2-M
 | |
|     // H mode: C1+M, C1-M, Transparent, C2-M
 | |
|     //
 | |
|     // So in either case, we have 2 colors +/- a modifier, and a third unique color, which is basically T mode except without the middle color.
 | |
|     // The only thing that matters is whether it's better to store the isolated color as T mode color 1, or store it offset in H mode color 2.
 | |
|     //
 | |
|     // Sometimes it won't even be possible to store it in H mode color 2 because the table low bit derives from a numeric comparison of the colors,
 | |
|     // but unlike opaque blocks, we can't flip them.
 | |
|     bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
| 
 | |
|     ParallelMath::FloatCompFlag isTransparentF[16];
 | |
|     for (int px = 0; px < 16; px++)
 | |
|         isTransparentF[px] = ParallelMath::Int16FlagToFloat(isTransparent[px]);
 | |
| 
 | |
|     ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
 | |
|     ParallelMath::Int16CompFlag bestIsHMode = ParallelMath::MakeBoolInt16(false);
 | |
| 
 | |
|     MUInt15 isolatedTotal[3] = { ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0) };
 | |
|     MUInt15 lineTotal[3] = { ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0) };
 | |
| 
 | |
|     MUInt15 numPixelsIsolated = ParallelMath::MakeUInt15(0);
 | |
|     MUInt15 numPixelsLine = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     ParallelMath::Int16CompFlag isIsolated[16];
 | |
|     ParallelMath::Int16CompFlag isLine[16];
 | |
| 
 | |
|     for (unsigned int px = 0; px < 16; px++)
 | |
|     {
 | |
|         ParallelMath::Int16CompFlag isOpaque = ParallelMath::Not(isTransparent[px]);
 | |
|         isIsolated[px] = isIsolatedBase[px] & isOpaque;
 | |
|         isLine[px] = ParallelMath::Not(isIsolatedBase[px]) & isOpaque;
 | |
|     }
 | |
| 
 | |
|     for (unsigned int px = 0; px < 16; px++)
 | |
|     {
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             isolatedTotal[ch] = isolatedTotal[ch] + ParallelMath::SelectOrZero(isIsolated[px], pixels[px][ch]);
 | |
|             lineTotal[ch] = lineTotal[ch] + ParallelMath::SelectOrZero(isLine[px], pixels[px][ch]);
 | |
|         }
 | |
|         numPixelsIsolated = numPixelsIsolated + ParallelMath::SelectOrZero(isIsolated[px], ParallelMath::MakeUInt15(1));
 | |
|         numPixelsLine = numPixelsLine + ParallelMath::SelectOrZero(isLine[px], ParallelMath::MakeUInt15(1));
 | |
|     }
 | |
| 
 | |
|     MUInt15 isolatedAverageQuantized[3];
 | |
|     MUInt15 hModeIsolatedQuantized[8][3];
 | |
|     MUInt15 isolatedAverageTargets[3];
 | |
|     {
 | |
|         int divisors[ParallelMath::ParallelSize];
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             divisors[block] = ParallelMath::Extract(numPixelsIsolated, block) * 34;
 | |
| 
 | |
|         MUInt15 addend = (numPixelsIsolated << 4) | numPixelsIsolated;
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             // isolatedAverageQuantized[ch] = (isolatedTotal[ch] * 2 + numPixelsIsolated * 17) / (numPixelsIsolated * 34);
 | |
| 
 | |
|             MUInt15 numerator = isolatedTotal[ch] + isolatedTotal[ch];
 | |
|             if (!isFakeBT709)
 | |
|                 numerator = numerator + addend;
 | |
| 
 | |
|             MUInt15 hModeIsolatedNumerators[8];
 | |
|             for (int table = 0; table < 8; table++)
 | |
|             {
 | |
|                 // FIXME: Handle fake BT.709 correctly
 | |
|                 MUInt15 offsetTotal = isolatedTotal[ch] + ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(ParallelMath::MakeUInt15(cvtt::Tables::ETC2::g_thModifierTable[table]), numPixelsIsolated));
 | |
| 
 | |
|                 hModeIsolatedNumerators[table] = (offsetTotal + offsetTotal) + addend;
 | |
|             }
 | |
| 
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             {
 | |
|                 int divisor = divisors[block];
 | |
|                 if (divisor == 0)
 | |
|                 {
 | |
|                     ParallelMath::PutUInt15(isolatedAverageQuantized[ch], block, 0);
 | |
|                     for (int table = 0; table < 8; table++)
 | |
|                         ParallelMath::PutUInt15(hModeIsolatedQuantized[table][ch], block, 0);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     ParallelMath::PutUInt15(isolatedAverageQuantized[ch], block, ParallelMath::Extract(numerator, block) / divisor);
 | |
|                     for (int table = 0; table < 8; table++)
 | |
|                         ParallelMath::PutUInt15(hModeIsolatedQuantized[table][ch], block, ParallelMath::Extract(hModeIsolatedNumerators[table], block) / divisor);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             isolatedAverageTargets[ch] = numerator;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (isFakeBT709)
 | |
|         ResolveTHFakeBT709Rounding(isolatedAverageQuantized, isolatedAverageTargets, numPixelsIsolated);
 | |
| 
 | |
|     for (int table = 0; table < 8; table++)
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|             hModeIsolatedQuantized[table][ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), hModeIsolatedQuantized[table][ch]);
 | |
| 
 | |
|     MUInt15 isolatedColor[3];
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         isolatedColor[ch] = (isolatedAverageQuantized[ch]) | (isolatedAverageQuantized[ch] << 4);
 | |
| 
 | |
|     MFloat isolatedError[16];
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         if (isFakeBT709)
 | |
|             isolatedError[px] = ComputeErrorFakeBT709(isolatedColor, preWeightedPixels[px]);
 | |
|         else if (isUniform)
 | |
|             isolatedError[px] = ComputeErrorUniform(pixels[px], isolatedColor);
 | |
|         else
 | |
|             isolatedError[px] = ComputeErrorWeighted(isolatedColor, preWeightedPixels[px], options);
 | |
| 
 | |
|         ParallelMath::ConditionalSet(isolatedError[px], isTransparentF[px], ParallelMath::MakeFloatZero());
 | |
|     }
 | |
| 
 | |
|     MSInt32 bestSelectors = ParallelMath::MakeSInt32(0);
 | |
|     MUInt15 bestTable = ParallelMath::MakeUInt15(0);
 | |
|     MUInt15 bestLineColor = ParallelMath::MakeUInt15(0);
 | |
|     MUInt15 bestIsolatedColor = ParallelMath::MakeUInt15(0);
 | |
|     MUInt15 bestHModeColor2 = ParallelMath::MakeUInt15(0);
 | |
|     ParallelMath::Int16CompFlag bestUseHMode = ParallelMath::MakeBoolInt16(false);
 | |
| 
 | |
|     MSInt16 maxLine = ParallelMath::LosslessCast<MSInt16>::Cast(numPixelsLine);
 | |
|     MSInt16 minLine = ParallelMath::MakeSInt16(0) - maxLine;
 | |
| 
 | |
|     int16_t clusterMaxLine = 0;
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         int16_t blockMaxLine = ParallelMath::Extract(maxLine, block);
 | |
|         if (blockMaxLine > clusterMaxLine)
 | |
|             clusterMaxLine = blockMaxLine;
 | |
|     }
 | |
| 
 | |
|     int16_t clusterMinLine = -clusterMaxLine;
 | |
| 
 | |
|     int lineDivisors[ParallelMath::ParallelSize];
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         lineDivisors[block] = ParallelMath::Extract(numPixelsLine, block) * 34;
 | |
| 
 | |
|     MUInt15 lineAddend = (numPixelsLine << 4) | numPixelsLine;
 | |
| 
 | |
|     for (int table = 0; table < 8; table++)
 | |
|     {
 | |
|         int numUniqueColors[ParallelMath::ParallelSize];
 | |
|         MUInt15 uniqueQuantizedColors[31];
 | |
| 
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             numUniqueColors[block] = 0;
 | |
| 
 | |
|         MUInt15 modifier = ParallelMath::MakeUInt15(cvtt::Tables::ETC2::g_thModifierTable[table]);
 | |
|         MUInt15 modifierOffset = (modifier + modifier);
 | |
| 
 | |
|         for (int16_t offsetPremultiplier = clusterMinLine; offsetPremultiplier <= clusterMaxLine; offsetPremultiplier += 2)
 | |
|         {
 | |
|             MSInt16 clampedOffsetPremultiplier = ParallelMath::Max(minLine, ParallelMath::Min(maxLine, ParallelMath::MakeSInt16(offsetPremultiplier)));
 | |
|             MSInt16 modifierAddend = ParallelMath::CompactMultiply(clampedOffsetPremultiplier, modifierOffset);
 | |
| 
 | |
|             MUInt15 quantized[3];
 | |
|             if (isFakeBT709)
 | |
|             {
 | |
|                 MUInt15 targets[3];
 | |
|                 for (int ch = 0; ch < 3; ch++)
 | |
|                 {
 | |
|                     //quantized[ch] = std::min<int16_t>(15, std::max(0, (lineTotal[ch] * 2 + modifierOffset * offsetPremultiplier)) / (numDAIILine * 34));
 | |
|                     MUInt15 numerator = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(lineTotal[ch] + lineTotal[ch]) + modifierAddend));
 | |
|                     MUInt15 divided = ParallelMath::MakeUInt15(0);
 | |
|                     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                     {
 | |
|                         int divisor = lineDivisors[block];
 | |
|                         if (divisor == 0)
 | |
|                             ParallelMath::PutUInt15(divided, block, 0);
 | |
|                         else
 | |
|                             ParallelMath::PutUInt15(divided, block, ParallelMath::Extract(numerator, block) / divisor);
 | |
|                     }
 | |
|                     quantized[ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), divided);
 | |
|                     targets[ch] = numerator;
 | |
|                 }
 | |
| 
 | |
|                 ResolveTHFakeBT709Rounding(quantized, targets, numPixelsLine);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 for (int ch = 0; ch < 3; ch++)
 | |
|                 {
 | |
|                     //quantized[ch] = std::min<int16_t>(15, std::max(0, (lineTotal[ch] * 2 + numDAIILine * 17 + modifierOffset * offsetPremultiplier)) / (numDAIILine * 34));
 | |
|                     MUInt15 numerator = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(lineTotal[ch] + lineTotal[ch] + lineAddend) + modifierAddend));
 | |
|                     MUInt15 divided = ParallelMath::MakeUInt15(0);
 | |
|                     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                     {
 | |
|                         int divisor = lineDivisors[block];
 | |
|                         if (divisor == 0)
 | |
|                             ParallelMath::PutUInt15(divided, block, 0);
 | |
|                         else
 | |
|                             ParallelMath::PutUInt15(divided, block, ParallelMath::Extract(numerator, block) / divisor);
 | |
|                     }
 | |
|                     quantized[ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), divided);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             MUInt15 packedColor = (quantized[0] << 10) | (quantized[1] << 5) | quantized[2];
 | |
| 
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             {
 | |
|                 uint16_t blockPackedColor = ParallelMath::Extract(packedColor, block);
 | |
|                 if (numUniqueColors[block] == 0 || blockPackedColor != ParallelMath::Extract(uniqueQuantizedColors[numUniqueColors[block] - 1], block))
 | |
|                     ParallelMath::PutUInt15(uniqueQuantizedColors[numUniqueColors[block]++], block, blockPackedColor);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Stripe unfilled unique colors
 | |
|         int maxUniqueColors = 0;
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         {
 | |
|             if (numUniqueColors[block] > maxUniqueColors)
 | |
|                 maxUniqueColors = numUniqueColors[block];
 | |
|         }
 | |
| 
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         {
 | |
|             uint16_t fillColor = ParallelMath::Extract(uniqueQuantizedColors[0], block);
 | |
| 
 | |
|             int numUnique = numUniqueColors[block];
 | |
|             for (int fill = numUnique + 1; fill < maxUniqueColors; fill++)
 | |
|                 ParallelMath::PutUInt15(uniqueQuantizedColors[fill], block, fillColor);
 | |
|         }
 | |
| 
 | |
|         MFloat hModeErrors[16];
 | |
|         MUInt15 hModeUnquantizedColor[3];
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             MUInt15 quantizedChannel = hModeIsolatedQuantized[table][ch];
 | |
| 
 | |
|             MUInt15 unquantizedCh = (quantizedChannel << 4) | quantizedChannel;
 | |
|             hModeUnquantizedColor[ch] = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(unquantizedCh) - ParallelMath::LosslessCast<MSInt16>::Cast(modifier)));
 | |
|         }
 | |
| 
 | |
|         for (int px = 0; px < 16; px++)
 | |
|         {
 | |
|             hModeErrors[px] = isUniform ? ComputeErrorUniform(hModeUnquantizedColor, pixels[px]) : ComputeErrorWeighted(hModeUnquantizedColor, preWeightedPixels[px], options);
 | |
|             ParallelMath::ConditionalSet(hModeErrors[px], isTransparentF[px], ParallelMath::MakeFloatZero());
 | |
|         }
 | |
| 
 | |
|         MUInt15 packedHModeColor2 = (hModeIsolatedQuantized[table][0] << 10) | (hModeIsolatedQuantized[table][1] << 5) | hModeIsolatedQuantized[table][2];
 | |
|         ParallelMath::Int16CompFlag tableLowBitIsZero = ((table & 1) == 0) ? ParallelMath::MakeBoolInt16(true) : ParallelMath::MakeBoolInt16(false);
 | |
| 
 | |
|         for (int ci = 0; ci < maxUniqueColors; ci++)
 | |
|         {
 | |
|             MUInt15 lineColors[2][3];
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|             {
 | |
|                 MUInt15 quantizedChannel = (ParallelMath::RightShift(uniqueQuantizedColors[ci], 10 - (ch * 5)) & ParallelMath::MakeUInt15(15));
 | |
| 
 | |
|                 MUInt15 unquantizedColor = (quantizedChannel << 4) | quantizedChannel;
 | |
|                 lineColors[0][ch] = ParallelMath::Min(ParallelMath::MakeUInt15(255), unquantizedColor + modifier);
 | |
|                 lineColors[1][ch] = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(unquantizedColor) - ParallelMath::LosslessCast<MSInt16>::Cast(modifier)));
 | |
|             }
 | |
| 
 | |
|             MUInt15 bestLineSelector[16];
 | |
|             MFloat bestLineError[16];
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 MFloat lineErrors[2];
 | |
|                 for (int i = 0; i < 2; i++)
 | |
|                     lineErrors[i] = isUniform ? ComputeErrorUniform(lineColors[i], pixels[px]) : ComputeErrorWeighted(lineColors[i], preWeightedPixels[px], options);
 | |
| 
 | |
|                 ParallelMath::Int16CompFlag firstIsBetter = ParallelMath::FloatFlagToInt16(ParallelMath::LessOrEqual(lineErrors[0], lineErrors[1]));
 | |
|                 bestLineSelector[px] = ParallelMath::Select(firstIsBetter, ParallelMath::MakeUInt15(1), ParallelMath::MakeUInt15(3));
 | |
|                 bestLineError[px] = ParallelMath::Min(lineErrors[0], lineErrors[1]);
 | |
| 
 | |
|                 ParallelMath::ConditionalSet(bestLineError[px], isTransparentF[px], ParallelMath::MakeFloatZero());
 | |
|             }
 | |
| 
 | |
|             // One case considered here was if it was possible to force H mode to be valid when the line color is unused.
 | |
|             // That case isn't actually useful because it's equivalent to the isolated color being unused at maximum offset,
 | |
|             // which is always checked after a swap.
 | |
|             MFloat tModeError = ParallelMath::MakeFloatZero();
 | |
|             MFloat hModeError = ParallelMath::MakeFloatZero();
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 tModeError = tModeError + ParallelMath::Min(bestLineError[px], isolatedError[px]);
 | |
|                 hModeError = hModeError + ParallelMath::Min(bestLineError[px], hModeErrors[px]);
 | |
|             }
 | |
| 
 | |
|             ParallelMath::FloatCompFlag hLessError = ParallelMath::Less(hModeError, tModeError);
 | |
| 
 | |
|             MUInt15 packedHModeColor1 = uniqueQuantizedColors[ci];
 | |
| 
 | |
|             ParallelMath::Int16CompFlag hModeTableLowBitMustBeZero = ParallelMath::Less(packedHModeColor1, packedHModeColor2);
 | |
| 
 | |
|             ParallelMath::Int16CompFlag hModeIsLegal = ParallelMath::Equal(hModeTableLowBitMustBeZero, tableLowBitIsZero);
 | |
|             ParallelMath::Int16CompFlag useHMode = ParallelMath::FloatFlagToInt16(hLessError) & hModeIsLegal;
 | |
| 
 | |
|             MFloat roundBestError = tModeError;
 | |
|             ParallelMath::ConditionalSet(roundBestError, ParallelMath::Int16FlagToFloat(useHMode), hModeError);
 | |
| 
 | |
|             ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(roundBestError, bestError));
 | |
|             ParallelMath::FloatCompFlag useHModeF = ParallelMath::Int16FlagToFloat(useHMode);
 | |
| 
 | |
|             if (ParallelMath::AnySet(errorBetter))
 | |
|             {
 | |
|                 MSInt32 selectors = ParallelMath::MakeSInt32(0);
 | |
|                 for (int px = 0; px < 16; px++)
 | |
|                 {
 | |
|                     MUInt15 selector = bestLineSelector[px];
 | |
| 
 | |
|                     MFloat isolatedPixelError = ParallelMath::Select(useHModeF, hModeErrors[px], isolatedError[px]);
 | |
|                     ParallelMath::Int16CompFlag isolatedBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(isolatedPixelError, bestLineError[px]));
 | |
| 
 | |
|                     ParallelMath::ConditionalSet(selector, isolatedBetter, ParallelMath::MakeUInt15(0));
 | |
|                     ParallelMath::ConditionalSet(selector, isTransparent[px], ParallelMath::MakeUInt15(2));
 | |
|                     selectors = selectors | (ParallelMath::ToInt32(selector) << (px * 2));
 | |
|                 }
 | |
| 
 | |
|                 bestError = ParallelMath::Min(bestError, roundBestError);
 | |
|                 ParallelMath::ConditionalSet(bestLineColor, errorBetter, uniqueQuantizedColors[ci]);
 | |
|                 ParallelMath::ConditionalSet(bestSelectors, errorBetter, selectors);
 | |
|                 ParallelMath::ConditionalSet(bestTable, errorBetter, ParallelMath::MakeUInt15(table));
 | |
|                 ParallelMath::ConditionalSet(bestIsHMode, errorBetter, useHMode);
 | |
|                 ParallelMath::ConditionalSet(bestHModeColor2, errorBetter, packedHModeColor2);
 | |
|                 
 | |
|                 bestIsThisMode = bestIsThisMode | errorBetter;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         if (ParallelMath::Extract(bestIsThisMode, block))
 | |
|         {
 | |
|             uint32_t lowBits = 0;
 | |
|             uint32_t highBits = 0;
 | |
| 
 | |
|             uint16_t blockBestLineColor = ParallelMath::Extract(bestLineColor, block);
 | |
|             ParallelMath::ScalarUInt16 blockIsolatedAverageQuantized[3];
 | |
| 
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|                 blockIsolatedAverageQuantized[ch] = ParallelMath::Extract(isolatedAverageQuantized[ch], block);
 | |
| 
 | |
|             uint16_t blockBestTable = ParallelMath::Extract(bestTable, block);
 | |
|             int32_t blockBestSelectors = ParallelMath::Extract(bestSelectors, block);
 | |
| 
 | |
|             ParallelMath::ScalarUInt16 lineColor[3];
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|                 lineColor[ch] = (blockBestLineColor >> (10 - (ch * 5))) & 15;
 | |
| 
 | |
|             if (ParallelMath::Extract(bestIsHMode, block))
 | |
|             {
 | |
|                 // T mode: C1, C2+M, Transparent, C2-M
 | |
|                 // H mode: C1+M, C1-M, Transparent, C2-M
 | |
|                 static const ParallelMath::ScalarUInt16 selectorRemapSector[4] = { 1, 0, 1, 0 };
 | |
|                 static const ParallelMath::ScalarUInt16 selectorRemapSign[4] = { 1, 0, 0, 1 };
 | |
| 
 | |
|                 // Remap selectors
 | |
|                 ParallelMath::ScalarUInt16 signBits = 0;
 | |
|                 ParallelMath::ScalarUInt16 sectorBits = 0;
 | |
|                 int32_t blockBestSelectors = ParallelMath::Extract(bestSelectors, block);
 | |
|                 for (int px = 0; px < 16; px++)
 | |
|                 {
 | |
|                     int32_t selector = (blockBestSelectors >> (px * 2)) & 3;
 | |
|                     sectorBits |= (selectorRemapSector[selector] << px);
 | |
|                     signBits |= (selectorRemapSign[selector] << px);
 | |
|                 }
 | |
| 
 | |
|                 ParallelMath::ScalarUInt16 blockColors[2] = { blockBestLineColor, ParallelMath::Extract(bestHModeColor2, block) };
 | |
| 
 | |
|                 EmitHModeBlock(outputBuffer + block * 8, blockColors, sectorBits, signBits, blockBestTable, false);
 | |
|             }
 | |
|             else
 | |
|                 EmitTModeBlock(outputBuffer + block * 8, lineColor, blockIsolatedAverageQuantized, blockBestSelectors, blockBestTable, false);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| cvtt::ParallelMath::UInt15 cvtt::Internal::ETCComputer::DecodePlanarCoeff(const MUInt15 &coeff, int ch)
 | |
| {
 | |
|     if (ch == 1)
 | |
|         return (coeff << 1) | (ParallelMath::RightShift(coeff, 6));
 | |
|     else
 | |
|         return (coeff << 2) | (ParallelMath::RightShift(coeff, 4));
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::EncodePlanar(uint8_t *outputBuffer, MFloat &bestError, const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], const Options &options)
 | |
| {
 | |
|     // NOTE: If it's desired to do this in another color space, the best way to do it would probably be
 | |
|     // to do everything in that color space and then transform it back to RGB.
 | |
| 
 | |
|     // We compute H = (H-O)/4 and V= (V-O)/4 to simplify the math
 | |
| 
 | |
|     // error = (x*H + y*V + O - C)^2
 | |
|     MFloat h[3] = { ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero() };
 | |
|     MFloat v[3] = { ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero() };
 | |
|     MFloat o[3] = { ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero() };
 | |
| 
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
|     bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
 | |
| 
 | |
|     MFloat totalError = ParallelMath::MakeFloatZero();
 | |
|     MUInt15 bestCoeffs[3][3];	// [Channel][Coeff]
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|     {
 | |
|         float fhh = 0.f;
 | |
|         float fho = 0.f;
 | |
|         float fhv = 0.f;
 | |
|         float foo = 0.f;
 | |
|         float fov = 0.f;
 | |
|         float fvv = 0.f;
 | |
|         MFloat fc = ParallelMath::MakeFloatZero();
 | |
|         MFloat fh = ParallelMath::MakeFloatZero();
 | |
|         MFloat fv = ParallelMath::MakeFloatZero();
 | |
|         MFloat fo = ParallelMath::MakeFloatZero();
 | |
| 
 | |
|         float &foh = fho;
 | |
|         float &fvh = fhv;
 | |
|         float &fvo = fov;
 | |
| 
 | |
|         for (int px = 0; px < 16; px++)
 | |
|         {
 | |
|             float x = static_cast<float>(px % 4);
 | |
|             float y = static_cast<float>(px / 4);
 | |
|             MFloat c = isFakeBT709 ? preWeightedPixels[px][ch] : ParallelMath::ToFloat(pixels[px][ch]);
 | |
| 
 | |
|             // (x*H + y*V + O - C)^2
 | |
|             fhh += x * x;
 | |
|             fhv += x * y;
 | |
|             fho += x;
 | |
|             fh = fh - c * x;
 | |
| 
 | |
|             fvh += y * x;
 | |
|             fvv += y * y;
 | |
|             fvo += y;
 | |
|             fv = fv - c * y;
 | |
| 
 | |
|             foh += x;
 | |
|             fov += y;
 | |
|             foo += 1;
 | |
|             fo = fo - c;
 | |
| 
 | |
|             fh = fh - c * x;
 | |
|             fv = fv - c * y;
 | |
|             fo = fo - c;
 | |
|             fc = fc + c * c;
 | |
|         }
 | |
| 
 | |
|         //float totalError = fhh * h * h + fho * h*o + fhv * h*v + foo * o * o + fov * o*v + fvv * v * v + fh * h + fv * v + fo * o + fc;
 | |
| 
 | |
|         // error = fhh*h^2 + fho*h*o + fhv*h*v + foo*o^2 + fov*o*v + fvv*v^2 + fh*h + fv*v + fo*o + fc
 | |
|         // derror/dh = 2*fhh*h + fho*o + fhv*v + fh
 | |
|         // derror/dv = fhv*h + fov*o + 2*fvv*v + fv
 | |
|         // derror/do = fho*h + 2*foo*o + fov*v + fo
 | |
| 
 | |
|         // Solve system of equations
 | |
|         // h o v 1 = 0
 | |
|         // -------
 | |
|         // d e f g  R0
 | |
|         // i j k l  R1
 | |
|         // m n p q  R2
 | |
| 
 | |
|         float d = 2.0f * fhh;
 | |
|         float e = fho;
 | |
|         float f = fhv;
 | |
|         MFloat gD = fh;
 | |
| 
 | |
|         float i = fhv;
 | |
|         float j = fov;
 | |
|         float k = 2.0f * fvv;
 | |
|         MFloat lD = fv;
 | |
| 
 | |
|         float m = fho;
 | |
|         float n = 2.0f * foo;
 | |
|         float p = fov;
 | |
|         MFloat qD = fo;
 | |
| 
 | |
|         {
 | |
|             // Factor out first column from R1 and R2
 | |
|             float r0to1 = -i / d;
 | |
|             float r0to2 = -m / d;
 | |
| 
 | |
|             // 0 j1 k1 l1D
 | |
|             float j1 = j + r0to1 * e;
 | |
|             float k1 = k + r0to1 * f;
 | |
|             MFloat l1D = lD + gD * r0to1;
 | |
| 
 | |
|             // 0 n1 p1 q1D
 | |
|             float n1 = n + r0to2 * e;
 | |
|             float p1 = p + r0to2 * f;
 | |
|             MFloat q1D = qD + gD * r0to2;
 | |
| 
 | |
|             // Factor out third column from R2
 | |
|             float r1to2 = -p1 / k1;
 | |
| 
 | |
|             // 0 n2 0 q2D
 | |
|             float n2 = n1 + r1to2 * j1;
 | |
|             MFloat q2D = q1D + l1D * r1to2;
 | |
| 
 | |
|             o[ch] = -q2D / n2;
 | |
| 
 | |
|             // Factor out second column from R1
 | |
|             // 0 n2 0 q2D
 | |
| 
 | |
|             float r2to1 = -j1 / n2;
 | |
| 
 | |
|             // 0 0 k1 l2D
 | |
|             // 0 n2 0 q2D
 | |
|             MFloat l2D = l1D + q2D * r2to1;
 | |
| 
 | |
|             float elim2 = -f / k1;
 | |
|             float elim1 = -e / n2;
 | |
| 
 | |
|             // d 0 0 g2D
 | |
|             MFloat g2D = gD + l2D * elim2 + q2D * elim1;
 | |
| 
 | |
|             // n2*o + q2 = 0
 | |
|             // o = -q2 / n2
 | |
|             h[ch] = -g2D / d;
 | |
|             v[ch] = -l2D / k1;
 | |
|         }
 | |
| 
 | |
|         // Undo the local transformation
 | |
|         h[ch] = h[ch] * 4.0f + o[ch];
 | |
|         v[ch] = v[ch] * 4.0f + o[ch];
 | |
|     }
 | |
| 
 | |
|     if (isFakeBT709)
 | |
|     {
 | |
|         MFloat oRGB[3];
 | |
|         MFloat hRGB[3];
 | |
|         MFloat vRGB[3];
 | |
| 
 | |
|         ConvertFromFakeBT709(oRGB, o);
 | |
|         ConvertFromFakeBT709(hRGB, h);
 | |
|         ConvertFromFakeBT709(vRGB, v);
 | |
| 
 | |
|         // Twiddling in fake BT.607 is a mess, just round off for now (the precision is pretty good anyway)
 | |
|         {
 | |
|             ParallelMath::RoundTowardNearestForScope rtn;
 | |
| 
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|             {
 | |
|                 MFloat fcoeffs[3] = { oRGB[ch], hRGB[ch], vRGB[ch] };
 | |
| 
 | |
|                 for (int c = 0; c < 3; c++)
 | |
|                 {
 | |
|                     MFloat coeff = ParallelMath::Max(ParallelMath::MakeFloatZero(), fcoeffs[c]);
 | |
|                     if (ch == 1)
 | |
|                         coeff = ParallelMath::Min(ParallelMath::MakeFloat(127.0f), coeff * (127.0f / 255.0f));
 | |
|                     else
 | |
|                         coeff = ParallelMath::Min(ParallelMath::MakeFloat(63.0f), coeff * (63.0f / 255.0f));
 | |
|                     fcoeffs[c] = coeff;
 | |
|                 }
 | |
| 
 | |
|                 for (int c = 0; c < 3; c++)
 | |
|                     bestCoeffs[ch][c] = ParallelMath::RoundAndConvertToU15(fcoeffs[c], &rtn);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         MUInt15 reconstructed[16][3];
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             MUInt15 dO = DecodePlanarCoeff(bestCoeffs[ch][0], ch);
 | |
|             MUInt15 dH = DecodePlanarCoeff(bestCoeffs[ch][1], ch);
 | |
|             MUInt15 dV = DecodePlanarCoeff(bestCoeffs[ch][2], ch);
 | |
| 
 | |
|             MSInt16 hMinusO = ParallelMath::LosslessCast<MSInt16>::Cast(dH) - ParallelMath::LosslessCast<MSInt16>::Cast(dO);
 | |
|             MSInt16 vMinusO = ParallelMath::LosslessCast<MSInt16>::Cast(dV) - ParallelMath::LosslessCast<MSInt16>::Cast(dO);
 | |
| 
 | |
|             MFloat error = ParallelMath::MakeFloatZero();
 | |
| 
 | |
|             MSInt16 addend = ParallelMath::LosslessCast<MSInt16>::Cast(dO << 2) + 2;
 | |
| 
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 MUInt15 pxv = ParallelMath::MakeUInt15(px);
 | |
|                 MSInt16 x = ParallelMath::LosslessCast<MSInt16>::Cast(pxv & ParallelMath::MakeUInt15(3));
 | |
|                 MSInt16 y = ParallelMath::LosslessCast<MSInt16>::Cast(ParallelMath::RightShift(pxv, 2));
 | |
| 
 | |
|                 MSInt16 interpolated = ParallelMath::RightShift(ParallelMath::CompactMultiply(x, hMinusO) + ParallelMath::CompactMultiply(y, vMinusO) + addend, 2);
 | |
|                 MUInt15 clampedLow = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), interpolated));
 | |
|                 reconstructed[px][ch] = ParallelMath::Min(ParallelMath::MakeUInt15(255), clampedLow);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         totalError = ParallelMath::MakeFloatZero();
 | |
|         for (int px = 0; px < 16; px++)
 | |
|             totalError = totalError + ComputeErrorFakeBT709(reconstructed[px], preWeightedPixels[px]);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             MFloat fcoeffs[3] = { o[ch], h[ch], v[ch] };
 | |
|             MUInt15 coeffRanges[3][2];
 | |
| 
 | |
|             for (int c = 0; c < 3; c++)
 | |
|             {
 | |
|                 MFloat coeff = ParallelMath::Max(ParallelMath::MakeFloatZero(), fcoeffs[c]);
 | |
|                 if (ch == 1)
 | |
|                     coeff = ParallelMath::Min(ParallelMath::MakeFloat(127.0f), coeff * (127.0f / 255.0f));
 | |
|                 else
 | |
|                     coeff = ParallelMath::Min(ParallelMath::MakeFloat(63.0f), coeff * (63.0f / 255.0f));
 | |
|                 fcoeffs[c] = coeff;
 | |
|             }
 | |
| 
 | |
|             {
 | |
|                 ParallelMath::RoundDownForScope rd;
 | |
|                 for (int c = 0; c < 3; c++)
 | |
|                     coeffRanges[c][0] = ParallelMath::RoundAndConvertToU15(fcoeffs[c], &rd);
 | |
|             }
 | |
| 
 | |
|             {
 | |
|                 ParallelMath::RoundUpForScope ru;
 | |
|                 for (int c = 0; c < 3; c++)
 | |
|                     coeffRanges[c][1] = ParallelMath::RoundAndConvertToU15(fcoeffs[c], &ru);
 | |
|             }
 | |
| 
 | |
|             MFloat bestChannelError = ParallelMath::MakeFloat(FLT_MAX);
 | |
|             for (int io = 0; io < 2; io++)
 | |
|             {
 | |
|                 MUInt15 dO = DecodePlanarCoeff(coeffRanges[0][io], ch);
 | |
| 
 | |
|                 for (int ih = 0; ih < 2; ih++)
 | |
|                 {
 | |
|                     MUInt15 dH = DecodePlanarCoeff(coeffRanges[1][ih], ch);
 | |
|                     MSInt16 hMinusO = ParallelMath::LosslessCast<MSInt16>::Cast(dH) - ParallelMath::LosslessCast<MSInt16>::Cast(dO);
 | |
| 
 | |
|                     for (int iv = 0; iv < 2; iv++)
 | |
|                     {
 | |
|                         MUInt15 dV = DecodePlanarCoeff(coeffRanges[2][iv], ch);
 | |
|                         MSInt16 vMinusO = ParallelMath::LosslessCast<MSInt16>::Cast(dV) - ParallelMath::LosslessCast<MSInt16>::Cast(dO);
 | |
| 
 | |
|                         MFloat error = ParallelMath::MakeFloatZero();
 | |
| 
 | |
|                         MSInt16 addend = ParallelMath::LosslessCast<MSInt16>::Cast(dO << 2) + 2;
 | |
| 
 | |
|                         for (int px = 0; px < 16; px++)
 | |
|                         {
 | |
|                             MUInt15 pxv = ParallelMath::MakeUInt15(px);
 | |
|                             MSInt16 x = ParallelMath::LosslessCast<MSInt16>::Cast(pxv & ParallelMath::MakeUInt15(3));
 | |
|                             MSInt16 y = ParallelMath::LosslessCast<MSInt16>::Cast(ParallelMath::RightShift(pxv, 2));
 | |
| 
 | |
|                             MSInt16 interpolated = ParallelMath::RightShift(ParallelMath::CompactMultiply(x, hMinusO) + ParallelMath::CompactMultiply(y, vMinusO) + addend, 2);
 | |
|                             MUInt15 clampedLow = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), interpolated));
 | |
|                             MUInt15 dec = ParallelMath::Min(ParallelMath::MakeUInt15(255), clampedLow);
 | |
| 
 | |
|                             MSInt16 delta = ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][ch]) - ParallelMath::LosslessCast<MSInt16>::Cast(dec);
 | |
| 
 | |
|                             MFloat deltaF = ParallelMath::ToFloat(delta);
 | |
|                             error = error + deltaF * deltaF;
 | |
|                         }
 | |
| 
 | |
|                         ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestChannelError));
 | |
|                         if (ParallelMath::AnySet(errorBetter))
 | |
|                         {
 | |
|                             bestChannelError = ParallelMath::Min(error, bestChannelError);
 | |
|                             ParallelMath::ConditionalSet(bestCoeffs[ch][0], errorBetter, coeffRanges[0][io]);
 | |
|                             ParallelMath::ConditionalSet(bestCoeffs[ch][1], errorBetter, coeffRanges[1][ih]);
 | |
|                             ParallelMath::ConditionalSet(bestCoeffs[ch][2], errorBetter, coeffRanges[2][iv]);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!isUniform)
 | |
|             {
 | |
|                 switch (ch)
 | |
|                 {
 | |
|                 case 0:
 | |
|                     bestChannelError = bestChannelError * (options.redWeight * options.redWeight);
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     bestChannelError = bestChannelError * (options.greenWeight * options.greenWeight);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     bestChannelError = bestChannelError * (options.blueWeight * options.blueWeight);
 | |
|                     break;
 | |
|                 default:
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             totalError = totalError + bestChannelError;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(totalError, bestError));
 | |
|     if (ParallelMath::AnySet(errorBetter))
 | |
|     {
 | |
|         bestError = ParallelMath::Min(bestError, totalError);
 | |
| 
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         {
 | |
|             if (!ParallelMath::Extract(errorBetter, block))
 | |
|                 continue;
 | |
| 
 | |
|             int ro = ParallelMath::Extract(bestCoeffs[0][0], block);
 | |
|             int rh = ParallelMath::Extract(bestCoeffs[0][1], block);
 | |
|             int rv = ParallelMath::Extract(bestCoeffs[0][2], block);
 | |
| 
 | |
|             int go = ParallelMath::Extract(bestCoeffs[1][0], block);
 | |
|             int gh = ParallelMath::Extract(bestCoeffs[1][1], block);
 | |
|             int gv = ParallelMath::Extract(bestCoeffs[1][2], block);
 | |
| 
 | |
|             int bo = ParallelMath::Extract(bestCoeffs[2][0], block);
 | |
|             int bh = ParallelMath::Extract(bestCoeffs[2][1], block);
 | |
|             int bv = ParallelMath::Extract(bestCoeffs[2][2], block);
 | |
| 
 | |
|             int go1 = go >> 6;
 | |
|             int go2 = go & 63;
 | |
| 
 | |
|             int bo1 = bo >> 5;
 | |
|             int bo2 = (bo >> 3) & 3;
 | |
|             int bo3 = bo & 7;
 | |
| 
 | |
|             int rh1 = (rh >> 1);
 | |
|             int rh2 = rh & 1;
 | |
| 
 | |
|             int fakeR = ro >> 2;
 | |
|             int fakeDR = go1 | ((ro & 3) << 1);
 | |
| 
 | |
|             int fakeG = (go2 >> 2);
 | |
|             int fakeDG = ((go2 & 3) << 1) | bo1;
 | |
| 
 | |
|             int fakeB = bo2;
 | |
|             int fakeDB = bo3 >> 1;
 | |
| 
 | |
|             uint32_t highBits = 0;
 | |
|             uint32_t lowBits = 0;
 | |
| 
 | |
|             // Avoid overflowing R
 | |
|             if ((fakeDR & 4) != 0 && fakeR + fakeDR < 8)
 | |
|                 highBits |= 1 << (63 - 32);
 | |
| 
 | |
|             // Avoid overflowing G
 | |
|             if ((fakeDG & 4) != 0 && fakeG + fakeDG < 8)
 | |
|                 highBits |= 1 << (55 - 32);
 | |
| 
 | |
|             // Overflow B
 | |
|             if (fakeB + fakeDB < 4)
 | |
|             {
 | |
|                 // Overflow low
 | |
|                 highBits |= 1 << (42 - 32);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Overflow high
 | |
|                 highBits |= 7 << (45 - 32);
 | |
|             }
 | |
| 
 | |
|             highBits |= ro << (57 - 32);
 | |
|             highBits |= go1 << (56 - 32);
 | |
|             highBits |= go2 << (49 - 32);
 | |
|             highBits |= bo1 << (48 - 32);
 | |
|             highBits |= bo2 << (43 - 32);
 | |
|             highBits |= bo3 << (39 - 32);
 | |
|             highBits |= rh1 << (34 - 32);
 | |
|             highBits |= 1 << (33 - 32);
 | |
|             highBits |= rh2 << (32 - 32);
 | |
| 
 | |
|             lowBits |= gh << 25;
 | |
|             lowBits |= bh << 19;
 | |
|             lowBits |= rv << 13;
 | |
|             lowBits |= gv << 6;
 | |
|             lowBits |= bv << 0;
 | |
| 
 | |
|             for (int i = 0; i < 4; i++)
 | |
|                 outputBuffer[block * 8 + i] = (highBits >> (24 - i * 8)) & 0xff;
 | |
|             for (int i = 0; i < 4; i++)
 | |
|                 outputBuffer[block * 8 + i + 4] = (lowBits >> (24 - i * 8)) & 0xff;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::CompressETC2Block(uint8_t *outputBuffer, const PixelBlockU8 *pixelBlocks, ETC2CompressionData *compressionData, const Options &options, bool punchthroughAlpha)
 | |
| {
 | |
|     ParallelMath::Int16CompFlag pixelIsTransparent[16];
 | |
|     ParallelMath::Int16CompFlag anyTransparent = ParallelMath::MakeBoolInt16(false);
 | |
|     ParallelMath::Int16CompFlag allTransparent = ParallelMath::MakeBoolInt16(true);
 | |
| 
 | |
|     if (punchthroughAlpha)
 | |
|     {
 | |
|         const float fThreshold = std::max<float>(std::min<float>(1.0f, options.threshold), 0.0f) * 255.0f;
 | |
| 
 | |
|         // +1.0f is intentional, we want to take the next valid integer (even if it's 256) since everything else lower is transparent
 | |
|         MUInt15 threshold = ParallelMath::MakeUInt15(static_cast<uint16_t>(std::floor(fThreshold + 1.0f)));
 | |
| 
 | |
|         for (int px = 0; px < 16; px++)
 | |
|         {
 | |
|             MUInt15 alpha;
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                 ParallelMath::PutUInt15(alpha, block, pixelBlocks[block].m_pixels[px][3]);
 | |
| 
 | |
|             ParallelMath::Int16CompFlag isTransparent = ParallelMath::Less(alpha, threshold);
 | |
|             anyTransparent = (anyTransparent | isTransparent);
 | |
|             allTransparent = (allTransparent & isTransparent);
 | |
|             pixelIsTransparent[px] = isTransparent;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for (int px = 0; px < 16; px++)
 | |
|             pixelIsTransparent[px] = ParallelMath::MakeBoolInt16(false);
 | |
| 
 | |
|         allTransparent = anyTransparent = ParallelMath::MakeBoolInt16(false);
 | |
|     }
 | |
| 
 | |
|     MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
 | |
| 
 | |
|     ETC2CompressionDataInternal* internalData = static_cast<ETC2CompressionDataInternal*>(compressionData);
 | |
| 
 | |
|     MUInt15 pixels[16][3];
 | |
|     MFloat preWeightedPixels[16][3];
 | |
|     ExtractBlocks(pixels, preWeightedPixels, pixelBlocks, options);
 | |
| 
 | |
|     if (ParallelMath::AnySet(anyTransparent))
 | |
|     {
 | |
|         for (int px = 0; px < 16; px++)
 | |
|         {
 | |
|             ParallelMath::Int16CompFlag flag = pixelIsTransparent[px];
 | |
|             ParallelMath::FloatCompFlag fflag = ParallelMath::Int16FlagToFloat(flag);
 | |
| 
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|             {
 | |
|                 ParallelMath::ConditionalSet(pixels[px][ch], flag, ParallelMath::MakeUInt15(0));
 | |
|                 ParallelMath::ConditionalSet(preWeightedPixels[px][ch], fflag, ParallelMath::MakeFloat(0.0f));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!ParallelMath::AllSet(allTransparent))
 | |
|         EncodePlanar(outputBuffer, bestError, pixels, preWeightedPixels, options);
 | |
| 
 | |
|     MFloat chromaDelta[16][2];
 | |
| 
 | |
|     MUInt15 numOpaque = ParallelMath::MakeUInt15(16);
 | |
|     for (int px = 0; px < 16; px++)
 | |
|         numOpaque = numOpaque - ParallelMath::SelectOrZero(pixelIsTransparent[px], ParallelMath::MakeUInt15(1));
 | |
| 
 | |
|     if (options.flags & cvtt::Flags::Uniform)
 | |
|     {
 | |
|         MSInt16 chromaCoordinates3[16][2];
 | |
|         for (int px = 0; px < 16; px++)
 | |
|         {
 | |
|             chromaCoordinates3[px][0] = ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][0]) - ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][2]);
 | |
|             chromaCoordinates3[px][1] = ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][0]) - ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][1] << 1) + ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][2]);
 | |
|         }
 | |
| 
 | |
|         MSInt16 chromaCoordinateCentroid[2] = { ParallelMath::MakeSInt16(0), ParallelMath::MakeSInt16(0) };
 | |
|         for (int px = 0; px < 16; px++)
 | |
|         {
 | |
|             for (int ch = 0; ch < 2; ch++)
 | |
|                 chromaCoordinateCentroid[ch] = chromaCoordinateCentroid[ch] + chromaCoordinates3[px][ch];
 | |
|         }
 | |
| 
 | |
|         if (punchthroughAlpha)
 | |
|         {
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 for (int ch = 0; ch < 2; ch++)
 | |
|                 {
 | |
|                     MUInt15 chromaCoordinateMultiplied = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(chromaCoordinates3[px][ch], numOpaque));
 | |
|                     MSInt16 delta = ParallelMath::LosslessCast<MSInt16>::Cast(chromaCoordinateMultiplied) - chromaCoordinateCentroid[ch];
 | |
|                     chromaDelta[px][ch] = ParallelMath::ToFloat(delta);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 for (int ch = 0; ch < 2; ch++)
 | |
|                     chromaDelta[px][ch] = ParallelMath::ToFloat((chromaCoordinates3[px][ch] << 4) - chromaCoordinateCentroid[ch]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const MFloat rcpSqrt3 = ParallelMath::MakeFloat(0.57735026918962576450914878050196f);
 | |
| 
 | |
|         for (int px = 0; px < 16; px++)
 | |
|             chromaDelta[px][1] = chromaDelta[px][1] * rcpSqrt3;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         const float chromaAxis0[3] = { internalData->m_chromaSideAxis0[0], internalData->m_chromaSideAxis0[1], internalData->m_chromaSideAxis0[2] };
 | |
|         const float chromaAxis1[3] = { internalData->m_chromaSideAxis1[0], internalData->m_chromaSideAxis1[1], internalData->m_chromaSideAxis1[2] };
 | |
| 
 | |
|         MFloat chromaCoordinates3[16][2];
 | |
|         for (int px = 0; px < 16; px++)
 | |
|         {
 | |
|             const MFloat &px0 = preWeightedPixels[px][0];
 | |
|             const MFloat &px1 = preWeightedPixels[px][1];
 | |
|             const MFloat &px2 = preWeightedPixels[px][2];
 | |
| 
 | |
|             chromaCoordinates3[px][0] = px0 * chromaAxis0[0] + px1 * chromaAxis0[1] + px2 * chromaAxis0[2];
 | |
|             chromaCoordinates3[px][1] = px0 * chromaAxis1[0] + px1 * chromaAxis1[1] + px2 * chromaAxis1[2];
 | |
|         }
 | |
| 
 | |
|         MFloat chromaCoordinateCentroid[2] = { ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero() };
 | |
|         for (int px = 0; px < 16; px++)
 | |
|         {
 | |
|             for (int ch = 0; ch < 2; ch++)
 | |
|                 chromaCoordinateCentroid[ch] = chromaCoordinateCentroid[ch] + chromaCoordinates3[px][ch];
 | |
|         }
 | |
| 
 | |
|         if (punchthroughAlpha)
 | |
|         {
 | |
|             const MFloat numOpaqueF = ParallelMath::ToFloat(numOpaque);
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 for (int ch = 0; ch < 2; ch++)
 | |
|                 {
 | |
|                     MFloat chromaCoordinateMultiplied = chromaCoordinates3[px][ch] * numOpaqueF;
 | |
|                     MFloat delta = chromaCoordinateMultiplied - chromaCoordinateCentroid[ch];
 | |
|                     chromaDelta[px][ch] = delta;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             for (int px = 0; px < 16; px++)
 | |
|             {
 | |
|                 for (int ch = 0; ch < 2; ch++)
 | |
|                     chromaDelta[px][ch] = chromaCoordinates3[px][ch] * 16.0f - chromaCoordinateCentroid[ch];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     MFloat covXX = ParallelMath::MakeFloatZero();
 | |
|     MFloat covYY = ParallelMath::MakeFloatZero();
 | |
|     MFloat covXY = ParallelMath::MakeFloatZero();
 | |
| 
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         MFloat nx = chromaDelta[px][0];
 | |
|         MFloat ny = chromaDelta[px][1];
 | |
| 
 | |
|         covXX = covXX + nx * nx;
 | |
|         covYY = covYY + ny * ny;
 | |
|         covXY = covXY + nx * ny;
 | |
|     }
 | |
| 
 | |
|     MFloat halfTrace = (covXX + covYY) * 0.5f;
 | |
|     MFloat det = covXX * covYY - covXY * covXY;
 | |
| 
 | |
|     MFloat mm = ParallelMath::Sqrt(ParallelMath::Max(ParallelMath::MakeFloatZero(), halfTrace * halfTrace - det));
 | |
| 
 | |
|     MFloat ev = halfTrace + mm;
 | |
| 
 | |
|     MFloat dx = (covYY - ev + covXY);
 | |
|     MFloat dy = -(covXX - ev + covXY);
 | |
| 
 | |
|     // If evenly distributed, pick an arbitrary plane
 | |
|     ParallelMath::FloatCompFlag allZero = ParallelMath::Equal(dx, ParallelMath::MakeFloatZero()) & ParallelMath::Equal(dy, ParallelMath::MakeFloatZero());
 | |
|     ParallelMath::ConditionalSet(dx, allZero, ParallelMath::MakeFloat(1.f));
 | |
| 
 | |
|     ParallelMath::Int16CompFlag sectorAssignments[16];
 | |
|     for (int px = 0; px < 16; px++)
 | |
|         sectorAssignments[px] = ParallelMath::FloatFlagToInt16(ParallelMath::Less(chromaDelta[px][0] * dx + chromaDelta[px][1] * dy, ParallelMath::MakeFloatZero()));
 | |
| 
 | |
|     if (!ParallelMath::AllSet(allTransparent))
 | |
|     {
 | |
|         EncodeTMode(outputBuffer, bestError, sectorAssignments, pixels, preWeightedPixels, options);
 | |
| 
 | |
|         // Flip sector assignments
 | |
|         for (int px = 0; px < 16; px++)
 | |
|             sectorAssignments[px] = ParallelMath::Not(sectorAssignments[px]);
 | |
| 
 | |
|         EncodeTMode(outputBuffer, bestError, sectorAssignments, pixels, preWeightedPixels, options);
 | |
| 
 | |
|         EncodeHMode(outputBuffer, bestError, sectorAssignments, pixels, internalData->m_h, preWeightedPixels, options);
 | |
| 
 | |
|         CompressETC1BlockInternal(bestError, outputBuffer, pixels, preWeightedPixels, internalData->m_drs, options, true);
 | |
|     }
 | |
| 
 | |
|     if (ParallelMath::AnySet(anyTransparent))
 | |
|     {
 | |
|         if (!ParallelMath::AllSet(allTransparent))
 | |
|         {
 | |
|             // Flip sector assignments
 | |
|             for (int px = 0; px < 16; px++)
 | |
|                 sectorAssignments[px] = ParallelMath::Not(sectorAssignments[px]);
 | |
|         }
 | |
| 
 | |
|         // Reset the error of any transparent blocks to max and retry with punchthrough modes
 | |
|         ParallelMath::ConditionalSet(bestError, ParallelMath::Int16FlagToFloat(anyTransparent), ParallelMath::MakeFloat(FLT_MAX));
 | |
| 
 | |
|         EncodeVirtualTModePunchthrough(outputBuffer, bestError, sectorAssignments, pixels, preWeightedPixels, pixelIsTransparent, anyTransparent, allTransparent, options);
 | |
| 
 | |
|         // Flip sector assignments
 | |
|         for (int px = 0; px < 16; px++)
 | |
|             sectorAssignments[px] = ParallelMath::Not(sectorAssignments[px]);
 | |
| 
 | |
|         EncodeVirtualTModePunchthrough(outputBuffer, bestError, sectorAssignments, pixels, preWeightedPixels, pixelIsTransparent, anyTransparent, allTransparent, options);
 | |
| 
 | |
|         CompressETC1PunchthroughBlockInternal(bestError, outputBuffer, pixels, preWeightedPixels, pixelIsTransparent, static_cast<ETC2CompressionDataInternal*>(compressionData)->m_drs, options);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::CompressETC2AlphaBlock(uint8_t *outputBuffer, const PixelBlockU8 *pixelBlocks, const Options &options)
 | |
| {
 | |
|     MUInt15 pixels[16];
 | |
| 
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             ParallelMath::PutUInt15(pixels[px], block, pixelBlocks[block].m_pixels[px][3]);
 | |
|     }
 | |
| 
 | |
|     CompressETC2AlphaBlockInternal(outputBuffer, pixels, false, false, options);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::CompressETC2AlphaBlockInternal(uint8_t *outputBuffer, const MUInt15 pixels[16], bool is11Bit, bool isSigned, const Options &options)
 | |
| {
 | |
|     MUInt15 minAlpha = ParallelMath::MakeUInt15(is11Bit ? 2047 : 255);
 | |
|     MUInt15 maxAlpha = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         minAlpha = ParallelMath::Min(minAlpha, pixels[px]);
 | |
|         maxAlpha = ParallelMath::Max(maxAlpha, pixels[px]);
 | |
|     }
 | |
| 
 | |
|     MUInt15 alphaSpan = maxAlpha - minAlpha;
 | |
|     MUInt15 alphaSpanMidpointTimes2 = maxAlpha + minAlpha;
 | |
| 
 | |
|     MUInt31 bestTotalError = ParallelMath::MakeUInt31(0x7fffffff);
 | |
|     MUInt15 bestTableIndex = ParallelMath::MakeUInt15(0);
 | |
|     MUInt15 bestBaseCodeword = ParallelMath::MakeUInt15(0);
 | |
|     MUInt15 bestMultiplier = ParallelMath::MakeUInt15(0);
 | |
|     MUInt15 bestIndexes[16];
 | |
| 
 | |
|     for (int px = 0; px < 16; px++)
 | |
|         bestIndexes[px] = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     const int numAlphaRanges = 10;
 | |
|     for (uint16_t tableIndex = 0; tableIndex < 16; tableIndex++)
 | |
|     {
 | |
|         for (int r = 0; r < numAlphaRanges; r++)
 | |
|         {
 | |
|             int subrange = r % 3;
 | |
|             int mainRange = r / 3;
 | |
| 
 | |
|             int16_t maxOffset = Tables::ETC2::g_alphaModifierTablePositive[tableIndex][3 - mainRange - (subrange & 1)];
 | |
|             int16_t minOffset = -Tables::ETC2::g_alphaModifierTablePositive[tableIndex][3 - mainRange - ((subrange >> 1) & 1)] - 1;
 | |
|             uint16_t offsetSpan = static_cast<uint16_t>(maxOffset - minOffset);
 | |
| 
 | |
|             MSInt16 vminOffset = ParallelMath::MakeSInt16(minOffset);
 | |
|             MUInt15 vmaxOffset = ParallelMath::MakeUInt15(maxOffset);
 | |
|             MUInt15 voffsetSpan = ParallelMath::MakeUInt15(offsetSpan);
 | |
| 
 | |
|             MUInt15 minMultiplier = ParallelMath::MakeUInt15(0);
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             {
 | |
|                 uint16_t singleAlphaSpan = ParallelMath::Extract(alphaSpan, block);
 | |
| 
 | |
|                 uint16_t lowMultiplier = singleAlphaSpan / offsetSpan;
 | |
|                 ParallelMath::PutUInt15(minMultiplier, block, lowMultiplier);
 | |
|             }
 | |
| 
 | |
|             if (is11Bit)
 | |
|             {
 | |
|                 // Clamps this to valid multipliers under 15 and rounds down to nearest multiple of 8
 | |
|                 minMultiplier = ParallelMath::Min(minMultiplier, ParallelMath::MakeUInt15(112)) & ParallelMath::MakeUInt15(120);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // We cap at 1 and 14 so both multipliers are valid and dividable
 | |
|                 // Cases where offset span is 0 should be caught by multiplier 1 of table 13
 | |
|                 minMultiplier = ParallelMath::Max(ParallelMath::Min(minMultiplier, ParallelMath::MakeUInt15(14)), ParallelMath::MakeUInt15(1));
 | |
|             }
 | |
| 
 | |
|             for (uint16_t multiplierOffset = 0; multiplierOffset < 2; multiplierOffset++)
 | |
|             {
 | |
|                 MUInt15 multiplier = minMultiplier;
 | |
| 
 | |
|                 if (is11Bit)
 | |
|                 {
 | |
|                     if (multiplierOffset == 1)
 | |
|                         multiplier = multiplier + ParallelMath::MakeUInt15(8);
 | |
|                     else
 | |
|                         multiplier = ParallelMath::Max(multiplier, ParallelMath::MakeUInt15(1));
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     if (multiplierOffset == 1)
 | |
|                         multiplier = multiplier + ParallelMath::MakeUInt15(1);
 | |
|                 }
 | |
| 
 | |
|                 MSInt16 multipliedMinOffset = ParallelMath::CompactMultiply(ParallelMath::LosslessCast<MSInt16>::Cast(multiplier), vminOffset);
 | |
|                 MUInt15 multipliedMaxOffset = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(multiplier, vmaxOffset));
 | |
| 
 | |
|                 // codeword = (maxOffset + minOffset + minAlpha + maxAlpha) / 2
 | |
|                 MSInt16 unclampedBaseAlphaTimes2 = ParallelMath::LosslessCast<MSInt16>::Cast(alphaSpanMidpointTimes2) - ParallelMath::LosslessCast<MSInt16>::Cast(multipliedMaxOffset) - multipliedMinOffset;
 | |
| 
 | |
|                 MUInt15 baseAlpha;
 | |
|                 if (is11Bit)
 | |
|                 {
 | |
|                     // In unsigned, 4 is added to the unquantized alpha, so compensating for that cancels the 4 we have to add to do rounding.
 | |
|                     if (isSigned)
 | |
|                         unclampedBaseAlphaTimes2 = unclampedBaseAlphaTimes2 + ParallelMath::MakeSInt16(8);
 | |
| 
 | |
|                     // -128 is illegal for some reason
 | |
|                     MSInt16 minBaseAlphaTimes2 = isSigned ? ParallelMath::MakeSInt16(16) : ParallelMath::MakeSInt16(0);
 | |
| 
 | |
|                     MUInt15 clampedBaseAlphaTimes2 = ParallelMath::Min(ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(unclampedBaseAlphaTimes2, minBaseAlphaTimes2)), ParallelMath::MakeUInt15(4095));
 | |
|                     baseAlpha = ParallelMath::RightShift(clampedBaseAlphaTimes2, 1) & ParallelMath::MakeUInt15(2040);
 | |
| 
 | |
|                     if (!isSigned)
 | |
|                         baseAlpha = baseAlpha + ParallelMath::MakeUInt15(4);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     MUInt15 clampedBaseAlphaTimes2 = ParallelMath::Min(ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(unclampedBaseAlphaTimes2, ParallelMath::MakeSInt16(0))), ParallelMath::MakeUInt15(510));
 | |
|                     baseAlpha = ParallelMath::RightShift(clampedBaseAlphaTimes2 + ParallelMath::MakeUInt15(1), 1);
 | |
|                 }
 | |
| 
 | |
|                 MUInt15 indexes[16];
 | |
|                 MUInt31 totalError = ParallelMath::MakeUInt31(0);
 | |
|                 for (int px = 0; px < 16; px++)
 | |
|                 {
 | |
|                     MUInt15 quantizedValues;
 | |
|                     QuantizeETC2Alpha(tableIndex, pixels[px], baseAlpha, multiplier, is11Bit, isSigned, indexes[px], quantizedValues);
 | |
| 
 | |
|                     if (is11Bit)
 | |
|                     {
 | |
|                         MSInt16 delta = ParallelMath::LosslessCast<MSInt16>::Cast(quantizedValues) - ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px]);
 | |
|                         MSInt32 deltaSq = ParallelMath::XMultiply(delta, delta);
 | |
|                         totalError = totalError + ParallelMath::LosslessCast<MUInt31>::Cast(deltaSq);
 | |
|                     }
 | |
|                     else
 | |
|                         totalError = totalError + ParallelMath::ToUInt31(ParallelMath::SqDiffUInt8(quantizedValues, pixels[px]));
 | |
|                 }
 | |
| 
 | |
|                 ParallelMath::Int16CompFlag isBetter = ParallelMath::Int32FlagToInt16(ParallelMath::Less(totalError, bestTotalError));
 | |
|                 if (ParallelMath::AnySet(isBetter))
 | |
|                 {
 | |
|                     ParallelMath::ConditionalSet(bestTotalError, isBetter, totalError);
 | |
|                     ParallelMath::ConditionalSet(bestTableIndex, isBetter, ParallelMath::MakeUInt15(tableIndex));
 | |
|                     ParallelMath::ConditionalSet(bestBaseCodeword, isBetter, baseAlpha);
 | |
|                     ParallelMath::ConditionalSet(bestMultiplier, isBetter, multiplier);
 | |
| 
 | |
|                     for (int px = 0; px < 16; px++)
 | |
|                         ParallelMath::ConditionalSet(bestIndexes[px], isBetter, indexes[px]);
 | |
|                 }
 | |
| 
 | |
|                 // TODO: Do one refine pass
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (is11Bit)
 | |
|     {
 | |
|         bestMultiplier = ParallelMath::RightShift(bestMultiplier, 3);
 | |
| 
 | |
|         if (isSigned)
 | |
|             bestBaseCodeword = bestBaseCodeword ^ ParallelMath::MakeUInt15(0x80);
 | |
|     }
 | |
| 
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         uint8_t *output = outputBuffer + block * 8;
 | |
| 
 | |
|         output[0] = static_cast<uint8_t>(ParallelMath::Extract(bestBaseCodeword, block));
 | |
| 
 | |
|         ParallelMath::ScalarUInt16 multiplier = ParallelMath::Extract(bestMultiplier, block);
 | |
|         ParallelMath::ScalarUInt16 tableIndex = ParallelMath::Extract(bestTableIndex, block);
 | |
| 
 | |
|         output[1] = static_cast<uint8_t>((multiplier << 4) | tableIndex);
 | |
| 
 | |
|         static const int pixelSelectorOrder[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
 | |
| 
 | |
|         ParallelMath::ScalarUInt16 indexes[16];
 | |
|         for (int px = 0; px < 16; px++)
 | |
|             indexes[pixelSelectorOrder[px]] = ParallelMath::Extract(bestIndexes[px], block);
 | |
| 
 | |
|         int outputOffset = 2;
 | |
|         int outputBits = 0;
 | |
|         int numOutputBits = 0;
 | |
|         for (int s = 0; s < 16; s++)
 | |
|         {
 | |
|             outputBits = (outputBits << 3) | indexes[s];
 | |
|             numOutputBits += 3;
 | |
| 
 | |
|             if (numOutputBits >= 8)
 | |
|             {
 | |
|                 output[outputOffset++] = static_cast<uint8_t>(outputBits >> (numOutputBits - 8));
 | |
|                 numOutputBits -= 8;
 | |
| 
 | |
|                 outputBits &= ((1 << numOutputBits) - 1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         assert(outputOffset == 8 && numOutputBits == 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::CompressEACBlock(uint8_t *outputBuffer, const PixelBlockScalarS16 *inputBlocks, bool isSigned, const Options &options)
 | |
| {
 | |
|     MUInt15 pixels[16];
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         MSInt16 adjustedPixel;
 | |
|         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|             ParallelMath::PutSInt16(adjustedPixel, block, inputBlocks[block].m_pixels[px]);
 | |
| 
 | |
|         // We use a slightly shifted range here so we can keep the unquantized base color in a UInt15
 | |
|         // That is, signed range is 1..2047, and unsigned range is 0..2047
 | |
|         if (isSigned)
 | |
|         {
 | |
|             adjustedPixel = ParallelMath::Min(adjustedPixel, ParallelMath::MakeSInt16(1023)) + ParallelMath::MakeSInt16(1024);
 | |
|             adjustedPixel = ParallelMath::Max(ParallelMath::MakeSInt16(1), adjustedPixel);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             adjustedPixel = ParallelMath::Min(adjustedPixel, ParallelMath::MakeSInt16(2047));
 | |
|             adjustedPixel = ParallelMath::Max(ParallelMath::MakeSInt16(0), adjustedPixel);
 | |
|         }
 | |
| 
 | |
| 
 | |
|         pixels[px] = ParallelMath::LosslessCast<MUInt15>::Cast(adjustedPixel);
 | |
|     }
 | |
| 
 | |
|     CompressETC2AlphaBlockInternal(outputBuffer, pixels, true, isSigned, options);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::CompressETC1Block(uint8_t *outputBuffer, const PixelBlockU8 *inputBlocks, ETC1CompressionData *compressionData, const Options &options)
 | |
| {
 | |
|     DifferentialResolveStorage &drs = static_cast<ETC1CompressionDataInternal*>(compressionData)->m_drs;
 | |
|     MFloat bestTotalError = ParallelMath::MakeFloat(FLT_MAX);
 | |
| 
 | |
|     MUInt15 pixels[16][3];
 | |
|     MFloat preWeightedPixels[16][3];
 | |
|     ExtractBlocks(pixels, preWeightedPixels, inputBlocks, options);
 | |
| 
 | |
|     CompressETC1BlockInternal(bestTotalError, outputBuffer, pixels, preWeightedPixels, drs, options, false);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ExtractBlocks(MUInt15 pixels[16][3], MFloat preWeightedPixels[16][3], const PixelBlockU8 *inputBlocks, const Options &options)
 | |
| {
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
|     bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
 | |
| 
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|         {
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                 ParallelMath::PutUInt15(pixels[px][ch], block, inputBlocks[block].m_pixels[px][ch]);
 | |
|         }
 | |
| 
 | |
|         if (isFakeBT709)
 | |
|             ConvertToFakeBT709(preWeightedPixels[px], pixels[px]);
 | |
|         else if (isUniform)
 | |
|         {
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|                 preWeightedPixels[px][ch] = ParallelMath::ToFloat(pixels[px][ch]);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             preWeightedPixels[px][0] = ParallelMath::ToFloat(pixels[px][0]) * options.redWeight;
 | |
|             preWeightedPixels[px][1] = ParallelMath::ToFloat(pixels[px][1]) * options.greenWeight;
 | |
|             preWeightedPixels[px][2] = ParallelMath::ToFloat(pixels[px][2]) * options.blueWeight;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ResolveHalfBlockFakeBT709RoundingAccurate(MUInt15 quantized[3], const MUInt15 sectorCumulative[3], bool isDifferential)
 | |
| {
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|     {
 | |
|         const MUInt15& cu15 = sectorCumulative[ch];
 | |
| 
 | |
|         if (isDifferential)
 | |
|         {
 | |
|             //quantized[ch] = (cu * 31 + (cu >> 3)) >> 11;
 | |
|             quantized[ch] = ParallelMath::ToUInt15(
 | |
|                 ParallelMath::RightShift(
 | |
|                 (ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15) + ParallelMath::LosslessCast<MUInt16>::Cast(ParallelMath::RightShift(cu15, 3))
 | |
|                     , 11)
 | |
|             );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             //quantized[ch] = (cu * 30 + (cu >> 3)) >> 12;
 | |
|             quantized[ch] = ParallelMath::ToUInt15(
 | |
|                 ParallelMath::RightShift(
 | |
|                 (ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15 << 1) + ParallelMath::LosslessCast<MUInt16>::Cast(ParallelMath::RightShift(cu15, 3))
 | |
|                     , 12)
 | |
|             );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     MFloat lowOctantRGBFloat[3];
 | |
|     MFloat highOctantRGBFloat[3];
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|     {
 | |
|         MUInt15 unquantized;
 | |
|         MUInt15 unquantizedNext;
 | |
|         if (isDifferential)
 | |
|         {
 | |
|             unquantized = (quantized[ch] << 3) | ParallelMath::RightShift(quantized[ch], 2);
 | |
|             MUInt15 quantizedNext = ParallelMath::Min(ParallelMath::MakeUInt15(31), quantized[ch] + ParallelMath::MakeUInt15(1));
 | |
|             unquantizedNext = (quantizedNext << 3) | ParallelMath::RightShift(quantizedNext, 2);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             unquantized = (quantized[ch] << 4) | quantized[ch];
 | |
|             unquantizedNext = ParallelMath::Min(ParallelMath::MakeUInt15(255), unquantized + ParallelMath::MakeUInt15(17));
 | |
|         }
 | |
|         lowOctantRGBFloat[ch] = ParallelMath::ToFloat(unquantized << 3);
 | |
|         highOctantRGBFloat[ch] = ParallelMath::ToFloat(unquantizedNext << 3);
 | |
|     }
 | |
| 
 | |
|     MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
 | |
|     MUInt15 bestOctant = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     MFloat cumulativeYUV[3];
 | |
|     ConvertToFakeBT709(cumulativeYUV, sectorCumulative);
 | |
| 
 | |
|     for (uint16_t octant = 0; octant < 8; octant++)
 | |
|     {
 | |
|         const MFloat &r = (octant & 1) ? highOctantRGBFloat[0] : lowOctantRGBFloat[0];
 | |
|         const MFloat &g = (octant & 2) ? highOctantRGBFloat[1] : lowOctantRGBFloat[1];
 | |
|         const MFloat &b = (octant & 4) ? highOctantRGBFloat[2] : lowOctantRGBFloat[2];
 | |
| 
 | |
|         MFloat octantYUV[3];
 | |
|         ConvertToFakeBT709(octantYUV, r, g, b);
 | |
| 
 | |
|         MFloat delta[3];
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|             delta[ch] = octantYUV[ch] - cumulativeYUV[ch];
 | |
| 
 | |
|         MFloat error = delta[0] * delta[0] + delta[1] + delta[1] + delta[2] * delta[2];
 | |
|         ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestError));
 | |
|         ParallelMath::ConditionalSet(bestOctant, errorBetter, ParallelMath::MakeUInt15(octant));
 | |
|         bestError = ParallelMath::Min(error, bestError);
 | |
|     }
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         quantized[ch] = quantized[ch] + (ParallelMath::RightShift(bestOctant, ch) & ParallelMath::MakeUInt15(1));
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ResolveHalfBlockFakeBT709RoundingFast(MUInt15 quantized[3], const MUInt15 sectorCumulative[3], bool isDifferential)
 | |
| {
 | |
|     // sectorCumulative range is 0..2040 (11 bits)
 | |
|     MUInt15 roundingOffset = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     MUInt15 rOffset;
 | |
|     MUInt15 gOffset;
 | |
|     MUInt15 bOffset;
 | |
|     MUInt15 quantizedBase[3];
 | |
|     MUInt15 upperBound;
 | |
| 
 | |
|     MUInt15 sectorCumulativeFillIn[3];
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         sectorCumulativeFillIn[ch] = sectorCumulative[ch] + ParallelMath::RightShift(sectorCumulative[ch], 8);
 | |
| 
 | |
|     if (isDifferential)
 | |
|     {
 | |
|         rOffset = (sectorCumulativeFillIn[0] << 6) & ParallelMath::MakeUInt15(0xf00);
 | |
|         gOffset = (sectorCumulativeFillIn[1] << 4) & ParallelMath::MakeUInt15(0x0f0);
 | |
|         bOffset = ParallelMath::RightShift(sectorCumulativeFillIn[2], 2) & ParallelMath::MakeUInt15(0x00f);
 | |
| 
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|             quantizedBase[ch] = ParallelMath::RightShift(sectorCumulativeFillIn[ch], 6);
 | |
| 
 | |
|         upperBound = ParallelMath::MakeUInt15(31);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         rOffset = (sectorCumulativeFillIn[0] << 5) & ParallelMath::MakeUInt15(0xf00);
 | |
|         gOffset = (sectorCumulativeFillIn[1] << 1) & ParallelMath::MakeUInt15(0x0f0);
 | |
|         bOffset = ParallelMath::RightShift(sectorCumulativeFillIn[2], 3) & ParallelMath::MakeUInt15(0x00f);
 | |
| 
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|             quantizedBase[ch] = ParallelMath::RightShift(sectorCumulativeFillIn[ch], 7);
 | |
| 
 | |
|         upperBound = ParallelMath::MakeUInt15(15);
 | |
|     }
 | |
| 
 | |
|     MUInt15 lookupIndex = (rOffset | gOffset | bOffset);
 | |
| 
 | |
|     MUInt15 octant;
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|         ParallelMath::PutUInt15(octant, block, Tables::FakeBT709::g_rounding16[ParallelMath::Extract(lookupIndex, block)]);
 | |
| 
 | |
|     quantizedBase[0] = quantizedBase[0] + (octant & ParallelMath::MakeUInt15(1));
 | |
|     quantizedBase[1] = quantizedBase[1] + (ParallelMath::RightShift(octant, 1) & ParallelMath::MakeUInt15(1));
 | |
|     quantizedBase[2] = quantizedBase[2] + (ParallelMath::RightShift(octant, 2) & ParallelMath::MakeUInt15(1));
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         quantized[ch] = ParallelMath::Min(quantizedBase[ch], upperBound);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ResolveTHFakeBT709Rounding(MUInt15 quantized[3], const MUInt15 targets[3], const MUInt15 &granularity)
 | |
| {
 | |
|     MFloat lowOctantRGBFloat[3];
 | |
|     MFloat highOctantRGBFloat[3];
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|     {
 | |
|         MUInt15 unquantized = (quantized[ch] << 4) | quantized[ch];
 | |
|         MUInt15 unquantizedNext = ParallelMath::Min(ParallelMath::MakeUInt15(255), unquantized + ParallelMath::MakeUInt15(17));
 | |
| 
 | |
|         lowOctantRGBFloat[ch] = ParallelMath::ToFloat(ParallelMath::CompactMultiply(unquantized, granularity) << 1);
 | |
|         highOctantRGBFloat[ch] = ParallelMath::ToFloat(ParallelMath::CompactMultiply(unquantizedNext, granularity) << 1);
 | |
|     }
 | |
| 
 | |
|     MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
 | |
|     MUInt15 bestOctant = ParallelMath::MakeUInt15(0);
 | |
| 
 | |
|     MFloat cumulativeYUV[3];
 | |
|     ConvertToFakeBT709(cumulativeYUV, ParallelMath::ToFloat(targets[0]), ParallelMath::ToFloat(targets[1]), ParallelMath::ToFloat(targets[2]));
 | |
| 
 | |
|     for (uint16_t octant = 0; octant < 8; octant++)
 | |
|     {
 | |
|         const MFloat &r = (octant & 1) ? highOctantRGBFloat[0] : lowOctantRGBFloat[0];
 | |
|         const MFloat &g = (octant & 2) ? highOctantRGBFloat[1] : lowOctantRGBFloat[1];
 | |
|         const MFloat &b = (octant & 4) ? highOctantRGBFloat[2] : lowOctantRGBFloat[2];
 | |
| 
 | |
|         MFloat octantYUV[3];
 | |
|         ConvertToFakeBT709(octantYUV, r, g, b);
 | |
| 
 | |
|         MFloat delta[3];
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|             delta[ch] = octantYUV[ch] - cumulativeYUV[ch];
 | |
| 
 | |
|         MFloat error = delta[0] * delta[0] + delta[1] + delta[1] + delta[2] * delta[2];
 | |
|         ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestError));
 | |
|         ParallelMath::ConditionalSet(bestOctant, errorBetter, ParallelMath::MakeUInt15(octant));
 | |
|         bestError = ParallelMath::Min(error, bestError);
 | |
|     }
 | |
| 
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         quantized[ch] = quantized[ch] + (ParallelMath::RightShift(bestOctant, ch) & ParallelMath::MakeUInt15(1));
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ConvertToFakeBT709(MFloat yuv[3], const MUInt15 color[3])
 | |
| {
 | |
|     MFloat floatRGB[3];
 | |
|     for (int ch = 0; ch < 3; ch++)
 | |
|         floatRGB[ch] = ParallelMath::ToFloat(color[ch]);
 | |
| 
 | |
|     ConvertToFakeBT709(yuv, floatRGB);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ConvertToFakeBT709(MFloat yuv[3], const MFloat color[3])
 | |
| {
 | |
|     ConvertToFakeBT709(yuv, color[0], color[1], color[2]);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ConvertToFakeBT709(MFloat yuv[3], const MFloat &pr, const MFloat &pg, const MFloat &pb)
 | |
| {
 | |
|     MFloat r = pr;
 | |
|     MFloat g = pg;
 | |
|     MFloat b = pb;
 | |
| 
 | |
|     yuv[0] = r * 0.368233989135369f + g * 1.23876274963149f + b * 0.125054068802017f;
 | |
|     yuv[1] = r * 0.5f - g * 0.4541529f - b * 0.04584709f;
 | |
|     yuv[2] = r * -0.081014709086133f - g * 0.272538676238785f + b * 0.353553390593274f;
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ConvertFromFakeBT709(MFloat rgb[3], const MFloat yuv[3])
 | |
| {
 | |
|     MFloat yy = yuv[0] * 0.57735026466774571071f;
 | |
|     MFloat u = yuv[1];
 | |
|     MFloat v = yuv[2];
 | |
| 
 | |
|     rgb[0] = yy + u * 1.5748000207960953486f;
 | |
|     rgb[1] = yy - u * 0.46812425854364753669f - v * 0.26491652528157560861f;
 | |
|     rgb[2] = yy + v * 2.6242146882856944069f;
 | |
| }
 | |
| 
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::QuantizeETC2Alpha(int tableIndex, const MUInt15& value, const MUInt15& baseValue, const MUInt15& multiplier, bool is11Bit, bool isSigned, MUInt15& outIndexes, MUInt15& outQuantizedValues)
 | |
| {
 | |
|     MSInt16 offset = ParallelMath::LosslessCast<MSInt16>::Cast(value) - ParallelMath::LosslessCast<MSInt16>::Cast(baseValue);
 | |
|     MSInt16 offsetTimes2 = offset + offset;
 | |
| 
 | |
|     // ETC2's offset tables all have a reflect about 0.5*multiplier
 | |
|     MSInt16 offsetAboutReflectorTimes2 = offsetTimes2 + ParallelMath::LosslessCast<MSInt16>::Cast(multiplier);
 | |
| 
 | |
|     MUInt15 absOffsetAboutReflectorTimes2 = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Abs(offsetAboutReflectorTimes2));
 | |
|     MUInt15 lookupIndex = ParallelMath::RightShift(absOffsetAboutReflectorTimes2, 1);
 | |
| 
 | |
|     MUInt15 positiveIndex;
 | |
|     MUInt15 positiveOffsetUnmultiplied;
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         uint16_t blockLookupIndex = ParallelMath::Extract(lookupIndex, block) / ParallelMath::Extract(multiplier, block);
 | |
|         if (blockLookupIndex >= Tables::ETC2::g_alphaRoundingTableWidth)
 | |
|             blockLookupIndex = Tables::ETC2::g_alphaRoundingTableWidth - 1;
 | |
|         uint16_t index = Tables::ETC2::g_alphaRoundingTables[tableIndex][blockLookupIndex];
 | |
|         ParallelMath::PutUInt15(positiveIndex, block, index);
 | |
|         ParallelMath::PutUInt15(positiveOffsetUnmultiplied, block, Tables::ETC2::g_alphaModifierTablePositive[tableIndex][index]);
 | |
| 
 | |
|         // TODO: This is suboptimal when the offset is capped.  We should detect 0 and 255 values and always map them to the maximum offsets.
 | |
|         // Doing that will also affect refinement though.
 | |
|     }
 | |
| 
 | |
|     MSInt16 signBits = ParallelMath::RightShift(offsetAboutReflectorTimes2, 15);
 | |
|     MSInt16 offsetUnmultiplied = ParallelMath::LosslessCast<MSInt16>::Cast(positiveOffsetUnmultiplied) ^ signBits;
 | |
|     MSInt16 quantizedOffset = ParallelMath::CompactMultiply(offsetUnmultiplied, multiplier);
 | |
| 
 | |
|     MSInt16 offsetValue = ParallelMath::LosslessCast<MSInt16>::Cast(baseValue) + quantizedOffset;
 | |
| 
 | |
|     if (is11Bit)
 | |
|     {
 | |
|         if (isSigned)
 | |
|             outQuantizedValues = ParallelMath::Min(ParallelMath::MakeUInt15(2047), ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(1), offsetValue)));
 | |
|         else
 | |
|             outQuantizedValues = ParallelMath::Min(ParallelMath::MakeUInt15(2047), ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), offsetValue)));
 | |
|     }
 | |
|     else
 | |
|         outQuantizedValues = ParallelMath::Min(ParallelMath::MakeUInt15(255), ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), offsetValue)));
 | |
| 
 | |
|     MUInt15 indexSub = ParallelMath::LosslessCast<MUInt15>::Cast(signBits) & ParallelMath::MakeUInt15(4);
 | |
| 
 | |
|     outIndexes = positiveIndex + ParallelMath::MakeUInt15(4) - indexSub;
 | |
| }
 | |
| 
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::EmitTModeBlock(uint8_t *outputBuffer, const ParallelMath::ScalarUInt16 lineColor[3], const ParallelMath::ScalarUInt16 isolatedColor[3], int32_t packedSelectors, ParallelMath::ScalarUInt16 table, bool opaque)
 | |
| {
 | |
|     static const int selectorOrder[] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
 | |
| 
 | |
|     uint32_t lowBits = 0;
 | |
|     uint32_t highBits = 0;
 | |
| 
 | |
|     int rh = ((isolatedColor[0] >> 2) & 3);
 | |
|     int rl = (isolatedColor[0] & 3);
 | |
| 
 | |
|     if (rh + rl < 4)
 | |
|     {
 | |
|         // Overflow low
 | |
|         highBits |= 1 << (58 - 32);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Overflow high
 | |
|         highBits |= 7 << (61 - 32);
 | |
|     }
 | |
| 
 | |
|     highBits |= rh << (59 - 32);
 | |
|     highBits |= rl << (56 - 32);
 | |
|     highBits |= isolatedColor[1] << (52 - 32);
 | |
|     highBits |= isolatedColor[2] << (48 - 32);
 | |
|     highBits |= lineColor[0] << (44 - 32);
 | |
|     highBits |= lineColor[1] << (40 - 32);
 | |
|     highBits |= lineColor[2] << (36 - 32);
 | |
|     highBits |= ((table >> 1) & 3) << (34 - 32);
 | |
|     if (opaque)
 | |
|         highBits |= 1 << (33 - 32);
 | |
|     highBits |= (table & 1) << (32 - 32);
 | |
| 
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         int sel = (packedSelectors >> (2 * selectorOrder[px])) & 3;
 | |
|         if ((sel & 0x1) != 0)
 | |
|             lowBits |= (1 << px);
 | |
|         if ((sel & 0x2) != 0)
 | |
|             lowBits |= (1 << (16 + px));
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         outputBuffer[i] = (highBits >> (24 - i * 8)) & 0xff;
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         outputBuffer[i + 4] = (lowBits >> (24 - i * 8)) & 0xff;
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::EmitHModeBlock(uint8_t *outputBuffer, const ParallelMath::ScalarUInt16 blockColors[2], ParallelMath::ScalarUInt16 sectorBits, ParallelMath::ScalarUInt16 signBits, ParallelMath::ScalarUInt16 table, bool opaque)
 | |
| {
 | |
|     if (blockColors[0] == blockColors[1])
 | |
|     {
 | |
|         // Base colors are the same.
 | |
|         // If the table low bit isn't 1, then we can't encode this, because swapping the block colors will have no effect
 | |
|         // on their order.
 | |
|         // Instead, we encode this as T mode where all of the indexes are on the line.
 | |
| 
 | |
|         ParallelMath::ScalarUInt16 lineColor[3];
 | |
|         ParallelMath::ScalarUInt16 isolatedColor[3];
 | |
| 
 | |
|         lineColor[0] = isolatedColor[0] = (blockColors[0] >> 10) & 0x1f;
 | |
|         lineColor[1] = isolatedColor[1] = (blockColors[0] >> 5) & 0x1f;
 | |
|         lineColor[2] = isolatedColor[2] = (blockColors[0] >> 0) & 0x1f;
 | |
| 
 | |
|         int32_t packedSelectors = 0x55555555;
 | |
|         for (int px = 0; px < 16; px++)
 | |
|             packedSelectors |= ((signBits >> px) & 1) << ((px * 2) + 1);
 | |
| 
 | |
|         EmitTModeBlock(outputBuffer, lineColor, isolatedColor, packedSelectors, table, opaque);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     static const int selectorOrder[] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
 | |
| 
 | |
|     int16_t colors[2][3];
 | |
|     for (int sector = 0; sector < 2; sector++)
 | |
|     {
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|             colors[sector][ch] = (blockColors[sector] >> ((2 - ch) * 5)) & 15;
 | |
|     }
 | |
| 
 | |
|     uint32_t lowBits = 0;
 | |
|     uint32_t highBits = 0;
 | |
| 
 | |
|     if (((table & 1) == 1) != (blockColors[0] > blockColors[1]))
 | |
|     {
 | |
|         for (int ch = 0; ch < 3; ch++)
 | |
|             std::swap(colors[0][ch], colors[1][ch]);
 | |
|         sectorBits ^= 0xffff;
 | |
|     }
 | |
| 
 | |
|     int r1 = colors[0][0];
 | |
|     int g1a = colors[0][1] >> 1;
 | |
|     int g1b = (colors[0][1] & 1);
 | |
|     int b1a = colors[0][2] >> 3;
 | |
|     int b1b = colors[0][2] & 7;
 | |
|     int r2 = colors[1][0];
 | |
|     int g2 = colors[1][1];
 | |
|     int b2 = colors[1][2];
 | |
| 
 | |
|     // Avoid overflowing R
 | |
|     if ((g1a & 4) != 0 && r1 + g1a < 8)
 | |
|         highBits |= 1 << (63 - 32);
 | |
| 
 | |
|     int fakeDG = b1b >> 1;
 | |
|     int fakeG = b1a | (g1b << 1);
 | |
| 
 | |
|     if (fakeG + fakeDG < 4)
 | |
|     {
 | |
|         // Overflow low
 | |
|         highBits |= 1 << (50 - 32);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Overflow high
 | |
|         highBits |= 7 << (53 - 32);
 | |
|     }
 | |
| 
 | |
|     int da = (table >> 2) & 1;
 | |
|     int db = (table >> 1) & 1;
 | |
| 
 | |
|     highBits |= r1 << (59 - 32);
 | |
|     highBits |= g1a << (56 - 32);
 | |
|     highBits |= g1b << (52 - 32);
 | |
|     highBits |= b1a << (51 - 32);
 | |
|     highBits |= b1b << (47 - 32);
 | |
|     highBits |= r2 << (43 - 32);
 | |
|     highBits |= g2 << (39 - 32);
 | |
|     highBits |= b2 << (35 - 32);
 | |
|     highBits |= da << (34 - 32);
 | |
|     if (opaque)
 | |
|         highBits |= 1 << (33 - 32);
 | |
|     highBits |= db << (32 - 32);
 | |
| 
 | |
|     for (int px = 0; px < 16; px++)
 | |
|     {
 | |
|         int sectorBit = (sectorBits >> selectorOrder[px]) & 1;
 | |
|         int signBit = (signBits >> selectorOrder[px]) & 1;
 | |
| 
 | |
|         lowBits |= (signBit << px);
 | |
|         lowBits |= (sectorBit << (16 + px));
 | |
|     }
 | |
| 
 | |
|     uint8_t *output = outputBuffer;
 | |
| 
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         output[i] = (highBits >> (24 - i * 8)) & 0xff;
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         output[i + 4] = (lowBits >> (24 - i * 8)) & 0xff;
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::EmitETC1Block(uint8_t *outputBuffer, int blockBestFlip, int blockBestD, const int blockBestColors[2][3], const int blockBestTables[2], const ParallelMath::ScalarUInt16 blockBestSelectors[2], bool transparent)
 | |
| {
 | |
|     uint32_t highBits = 0;
 | |
|     uint32_t lowBits = 0;
 | |
| 
 | |
|     if (blockBestD == 0)
 | |
|     {
 | |
|         highBits |= blockBestColors[0][0] << 28;
 | |
|         highBits |= blockBestColors[1][0] << 24;
 | |
|         highBits |= blockBestColors[0][1] << 20;
 | |
|         highBits |= blockBestColors[1][1] << 16;
 | |
|         highBits |= blockBestColors[0][2] << 12;
 | |
|         highBits |= blockBestColors[1][2] << 8;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         highBits |= blockBestColors[0][0] << 27;
 | |
|         highBits |= ((blockBestColors[1][0] - blockBestColors[0][0]) & 7) << 24;
 | |
|         highBits |= blockBestColors[0][1] << 19;
 | |
|         highBits |= ((blockBestColors[1][1] - blockBestColors[0][1]) & 7) << 16;
 | |
|         highBits |= blockBestColors[0][2] << 11;
 | |
|         highBits |= ((blockBestColors[1][2] - blockBestColors[0][2]) & 7) << 8;
 | |
|     }
 | |
| 
 | |
|     highBits |= (blockBestTables[0] << 5);
 | |
|     highBits |= (blockBestTables[1] << 2);
 | |
|     if (!transparent)
 | |
|         highBits |= (blockBestD << 1);
 | |
|     highBits |= blockBestFlip;
 | |
| 
 | |
|     const uint8_t modifierCodes[4] = { 3, 2, 0, 1 };
 | |
| 
 | |
|     uint8_t unpackedSelectors[16];
 | |
|     uint8_t unpackedSelectorCodes[16];
 | |
|     for (int sector = 0; sector < 2; sector++)
 | |
|     {
 | |
|         int blockSectorBestSelectors = blockBestSelectors[sector];
 | |
| 
 | |
|         for (int px = 0; px < 8; px++)
 | |
|         {
 | |
|             int selector = (blockSectorBestSelectors >> (2 * px)) & 3;
 | |
|             unpackedSelectorCodes[g_flipTables[blockBestFlip][sector][px]] = modifierCodes[selector];
 | |
|             unpackedSelectors[g_flipTables[blockBestFlip][sector][px]] = selector;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const int pixelSelectorOrder[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
 | |
| 
 | |
|     int lowBitOffset = 0;
 | |
|     for (int sb = 0; sb < 2; sb++)
 | |
|         for (int px = 0; px < 16; px++)
 | |
|             lowBits |= ((unpackedSelectorCodes[pixelSelectorOrder[px]] >> sb) & 1) << (px + sb * 16);
 | |
| 
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         outputBuffer[i] = (highBits >> (24 - i * 8)) & 0xff;
 | |
|     for (int i = 0; i < 4; i++)
 | |
|         outputBuffer[i + 4] = (lowBits >> (24 - i * 8)) & 0xff;
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::CompressETC1BlockInternal(MFloat &bestTotalError, uint8_t *outputBuffer, const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], DifferentialResolveStorage &drs, const Options &options, bool punchthrough)
 | |
| {
 | |
| 	int numTries = 0;
 | |
| 
 | |
|     MUInt15 zeroU15 = ParallelMath::MakeUInt15(0);
 | |
|     MUInt16 zeroU16 = ParallelMath::MakeUInt16(0);
 | |
| 
 | |
|     MUInt15 bestColors[2] = { zeroU15, zeroU15 };
 | |
|     MUInt16 bestSelectors[2] = { zeroU16, zeroU16 };
 | |
|     MUInt15 bestTables[2] = { zeroU15, zeroU15 };
 | |
|     MUInt15 bestFlip = zeroU15;
 | |
|     MUInt15 bestD = zeroU15;
 | |
| 
 | |
|     MUInt15 sectorPixels[2][2][8][3];
 | |
|     MFloat sectorPreWeightedPixels[2][2][8][3];
 | |
|     MUInt15 sectorCumulative[2][2][3];
 | |
| 
 | |
|     ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
 | |
| 
 | |
|     for (int flip = 0; flip < 2; flip++)
 | |
| 	{
 | |
| 		for (int sector = 0; sector < 2; sector++)
 | |
| 		{
 | |
| 			for (int ch = 0; ch < 3; ch++)
 | |
| 				sectorCumulative[flip][sector][ch] = zeroU15;
 | |
| 
 | |
| 			for (int px = 0; px < 8; px++)
 | |
| 			{
 | |
| 				for (int ch = 0; ch < 3; ch++)
 | |
| 				{
 | |
| 					MUInt15 pixelChannelValue = pixels[g_flipTables[flip][sector][px]][ch];
 | |
| 					sectorPixels[flip][sector][px][ch] = pixelChannelValue;
 | |
|                     sectorPreWeightedPixels[flip][sector][px][ch] = preWeightedPixels[g_flipTables[flip][sector][px]][ch];
 | |
| 					sectorCumulative[flip][sector][ch] = sectorCumulative[flip][sector][ch] + pixelChannelValue;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	static const MSInt16 modifierTables[8][4] =
 | |
| 	{
 | |
| 		{ ParallelMath::MakeSInt16(-8), ParallelMath::MakeSInt16(-2), ParallelMath::MakeSInt16(2), ParallelMath::MakeSInt16(8) },
 | |
| 		{ ParallelMath::MakeSInt16(-17), ParallelMath::MakeSInt16(-5), ParallelMath::MakeSInt16(5), ParallelMath::MakeSInt16(17) },
 | |
| 		{ ParallelMath::MakeSInt16(-29), ParallelMath::MakeSInt16(-9), ParallelMath::MakeSInt16(9), ParallelMath::MakeSInt16(29) },
 | |
| 		{ ParallelMath::MakeSInt16(-42), ParallelMath::MakeSInt16(-13), ParallelMath::MakeSInt16(13), ParallelMath::MakeSInt16(42) },
 | |
| 		{ ParallelMath::MakeSInt16(-60), ParallelMath::MakeSInt16(-18), ParallelMath::MakeSInt16(18), ParallelMath::MakeSInt16(60) },
 | |
| 		{ ParallelMath::MakeSInt16(-80), ParallelMath::MakeSInt16(-24), ParallelMath::MakeSInt16(24), ParallelMath::MakeSInt16(80) },
 | |
| 		{ ParallelMath::MakeSInt16(-106), ParallelMath::MakeSInt16(-33), ParallelMath::MakeSInt16(33), ParallelMath::MakeSInt16(106) },
 | |
| 		{ ParallelMath::MakeSInt16(-183), ParallelMath::MakeSInt16(-47), ParallelMath::MakeSInt16(47), ParallelMath::MakeSInt16(183) },
 | |
| 	};
 | |
| 
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
| 
 | |
|     int minD = punchthrough ? 1 : 0;
 | |
| 
 | |
| 	for (int flip = 0; flip < 2; flip++)
 | |
| 	{
 | |
| 		drs.diffNumAttempts[0] = drs.diffNumAttempts[1] = zeroU15;
 | |
| 
 | |
| 		MFloat bestIndError[2] = { ParallelMath::MakeFloat(FLT_MAX), ParallelMath::MakeFloat(FLT_MAX) };
 | |
| 		MUInt16 bestIndSelectors[2] = { ParallelMath::MakeUInt16(0), ParallelMath::MakeUInt16(0) };
 | |
| 		MUInt15 bestIndColors[2] = { zeroU15, zeroU15 };
 | |
| 		MUInt15 bestIndTable[2] = { zeroU15, zeroU15 };
 | |
| 
 | |
| 		for (int d = minD; d < 2; d++)
 | |
| 		{
 | |
| 			for (int sector = 0; sector < 2; sector++)
 | |
| 			{
 | |
| 				const int16_t *potentialOffsets = cvtt::Tables::ETC1::g_potentialOffsets4;
 | |
| 
 | |
| 				for (int table = 0; table < 8; table++)
 | |
| 				{
 | |
| 					int16_t numOffsets = *potentialOffsets++;
 | |
| 
 | |
| 					MUInt15 possibleColors[cvtt::Tables::ETC1::g_maxPotentialOffsets];
 | |
| 
 | |
|                     MUInt15 quantized[3];
 | |
|                     for (int oi = 0; oi < numOffsets; oi++)
 | |
|                     {
 | |
|                         if (!isFakeBT709)
 | |
|                         {
 | |
| 						    for (int ch = 0; ch < 3; ch++)
 | |
| 						    {
 | |
|                                 // cu is in range 0..2040
 | |
|                                 MUInt15 cu15 = ParallelMath::Min(
 | |
|                                     ParallelMath::MakeUInt15(2040),
 | |
|                                     ParallelMath::ToUInt15(
 | |
|                                         ParallelMath::Max(
 | |
|                                             ParallelMath::MakeSInt16(0),
 | |
|                                             ParallelMath::LosslessCast<MSInt16>::Cast(sectorCumulative[flip][sector][ch]) + ParallelMath::MakeSInt16(potentialOffsets[oi])
 | |
|                                         )
 | |
|                                     )
 | |
|                                 );
 | |
| 
 | |
|                                 if (d == 1)
 | |
|                                 {
 | |
|                                     //quantized[ch] = (cu * 31 + (cu >> 3) + 1024) >> 11;
 | |
|                                     quantized[ch] = ParallelMath::ToUInt15(
 | |
|                                         ParallelMath::RightShift(
 | |
|                                             (ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15) + ParallelMath::LosslessCast<MUInt16>::Cast(ParallelMath::RightShift(cu15, 3)) + ParallelMath::MakeUInt16(1024)
 | |
|                                             , 11)
 | |
|                                         );
 | |
|                                 }
 | |
|                                 else
 | |
|                                 {
 | |
|                                     //quantized[ch] = (cu * 30 + (cu >> 3) + 2048) >> 12;
 | |
|                                     quantized[ch] = ParallelMath::ToUInt15(
 | |
|                                         ParallelMath::RightShift(
 | |
|                                         (ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15 << 1) + ParallelMath::LosslessCast<MUInt16>::Cast(ParallelMath::RightShift(cu15, 3)) + ParallelMath::MakeUInt16(2048)
 | |
|                                             , 12)
 | |
|                                     );
 | |
|                                 }
 | |
| 						    }
 | |
|                         }
 | |
|                         else
 | |
|                         {
 | |
|                             MUInt15 offsetCumulative[3];
 | |
| 						    for (int ch = 0; ch < 3; ch++)
 | |
| 						    {
 | |
|                                 // cu is in range 0..2040
 | |
|                                 MUInt15 cu15 = ParallelMath::Min(
 | |
|                                     ParallelMath::MakeUInt15(2040),
 | |
|                                     ParallelMath::ToUInt15(
 | |
|                                         ParallelMath::Max(
 | |
|                                             ParallelMath::MakeSInt16(0),
 | |
|                                             ParallelMath::LosslessCast<MSInt16>::Cast(sectorCumulative[flip][sector][ch]) + ParallelMath::MakeSInt16(potentialOffsets[oi])
 | |
|                                         )
 | |
|                                     )
 | |
|                                 );
 | |
| 
 | |
|                                 offsetCumulative[ch] = cu15;
 | |
| 						    }
 | |
| 
 | |
|                             if ((options.flags & cvtt::Flags::ETC_FakeBT709Accurate) != 0)
 | |
|                                 ResolveHalfBlockFakeBT709RoundingAccurate(quantized, offsetCumulative, d == 1);
 | |
|                             else
 | |
|                                 ResolveHalfBlockFakeBT709RoundingFast(quantized, offsetCumulative, d == 1);
 | |
|                         }
 | |
| 
 | |
| 						possibleColors[oi] = quantized[0] | (quantized[1] << 5) | (quantized[2] << 10);
 | |
| 					}
 | |
| 
 | |
| 					potentialOffsets += numOffsets;
 | |
| 
 | |
|                     ParallelMath::UInt15 numUniqueColors;
 | |
|                     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                     {
 | |
|                         uint16_t blockNumUniqueColors = 1;
 | |
|                         for (int i = 1; i < numOffsets; i++)
 | |
|                         {
 | |
|                             uint16_t color = ParallelMath::Extract(possibleColors[i], block);
 | |
|                             if (color != ParallelMath::Extract(possibleColors[blockNumUniqueColors - 1], block))
 | |
|                                 ParallelMath::PutUInt15(possibleColors[blockNumUniqueColors++], block, color);
 | |
|                         }
 | |
| 
 | |
|                         ParallelMath::PutUInt15(numUniqueColors, block, blockNumUniqueColors);
 | |
|                     }
 | |
| 
 | |
|                     int maxUniqueColors = ParallelMath::Extract(numUniqueColors, 0);
 | |
|                     for (int block = 1; block < ParallelMath::ParallelSize; block++)
 | |
|                         maxUniqueColors = std::max<int>(maxUniqueColors, ParallelMath::Extract(numUniqueColors, block));
 | |
| 
 | |
|                     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                     {
 | |
|                         uint16_t fillColor = ParallelMath::Extract(possibleColors[0], block);
 | |
|                         for (int i = ParallelMath::Extract(numUniqueColors, block); i < maxUniqueColors; i++)
 | |
|                             ParallelMath::PutUInt15(possibleColors[i], block, fillColor);
 | |
|                     }
 | |
| 
 | |
| 					for (int i = 0; i < maxUniqueColors; i++)
 | |
| 					{
 | |
| 						MFloat error = ParallelMath::MakeFloatZero();
 | |
| 						MUInt16 selectors = ParallelMath::MakeUInt16(0);
 | |
|                         MUInt15 quantized = possibleColors[i];
 | |
| 						TestHalfBlock(error, selectors, quantized, sectorPixels[flip][sector], sectorPreWeightedPixels[flip][sector], modifierTables[table], d == 1, options);
 | |
| 
 | |
| 						if (d == 0)
 | |
| 						{
 | |
|                             ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestIndError[sector]));
 | |
| 							if (ParallelMath::AnySet(errorBetter))
 | |
| 							{
 | |
| 								bestIndError[sector] = ParallelMath::Min(error, bestIndError[sector]);
 | |
| 								ParallelMath::ConditionalSet(bestIndSelectors[sector], errorBetter, selectors);
 | |
|                                 ParallelMath::ConditionalSet(bestIndColors[sector], errorBetter, quantized);
 | |
|                                 ParallelMath::ConditionalSet(bestIndTable[sector], errorBetter, ParallelMath::MakeUInt15(table));
 | |
| 							}
 | |
| 						}
 | |
| 						else
 | |
| 						{
 | |
|                             ParallelMath::Int16CompFlag isInBounds = ParallelMath::Less(ParallelMath::MakeUInt15(i), numUniqueColors);
 | |
| 
 | |
| 							MUInt15 storageIndexes = drs.diffNumAttempts[sector];
 | |
|                             drs.diffNumAttempts[sector] = drs.diffNumAttempts[sector] + ParallelMath::SelectOrZero(isInBounds, ParallelMath::MakeUInt15(1));
 | |
| 
 | |
|                             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                             {
 | |
|                                 int storageIndex = ParallelMath::Extract(storageIndexes, block);
 | |
| 
 | |
|                                 ParallelMath::PutFloat(drs.diffErrors[sector][storageIndex], block, ParallelMath::Extract(error, block));
 | |
|                                 ParallelMath::PutUInt16(drs.diffSelectors[sector][storageIndex], block, ParallelMath::Extract(selectors, block));
 | |
|                                 ParallelMath::PutUInt15(drs.diffColors[sector][storageIndex], block, ParallelMath::Extract(quantized, block));
 | |
|                                 ParallelMath::PutUInt15(drs.diffTables[sector][storageIndex], block, table);
 | |
|                             }
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (d == 0)
 | |
| 			{
 | |
| 				MFloat bestIndErrorTotal = bestIndError[0] + bestIndError[1];
 | |
|                 ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(bestIndErrorTotal, bestTotalError));
 | |
| 				if (ParallelMath::AnySet(errorBetter))
 | |
| 				{
 | |
|                     bestIsThisMode = bestIsThisMode | errorBetter;
 | |
| 
 | |
| 					bestTotalError = ParallelMath::Min(bestTotalError, bestIndErrorTotal);
 | |
| 					ParallelMath::ConditionalSet(bestFlip, errorBetter, ParallelMath::MakeUInt15(flip));
 | |
|                     ParallelMath::ConditionalSet(bestD, errorBetter, ParallelMath::MakeUInt15(d));
 | |
| 					for (int sector = 0; sector < 2; sector++)
 | |
| 					{
 | |
|                         ParallelMath::ConditionalSet(bestColors[sector], errorBetter, bestIndColors[sector]);
 | |
|                         ParallelMath::ConditionalSet(bestSelectors[sector], errorBetter, bestIndSelectors[sector]);
 | |
|                         ParallelMath::ConditionalSet(bestTables[sector], errorBetter, bestIndTable[sector]);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
|                 ParallelMath::Int16CompFlag canIgnoreSector[2] = { ParallelMath::MakeBoolInt16(false), ParallelMath::MakeBoolInt16(false) };
 | |
|                 FindBestDifferentialCombination(flip, d, canIgnoreSector, bestIsThisMode, bestTotalError, bestFlip, bestD, bestColors, bestSelectors, bestTables, drs);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         if (!ParallelMath::Extract(bestIsThisMode, block))
 | |
|             continue;
 | |
| 
 | |
|         uint32_t highBits = 0;
 | |
|         uint32_t lowBits = 0;
 | |
| 
 | |
|         int blockBestFlip = ParallelMath::Extract(bestFlip, block);
 | |
|         int blockBestD = ParallelMath::Extract(bestD, block);
 | |
|         int blockBestTables[2] = { ParallelMath::Extract(bestTables[0], block), ParallelMath::Extract(bestTables[1], block) };
 | |
|         ParallelMath::ScalarUInt16 blockBestSelectors[2] = { ParallelMath::Extract(bestSelectors[0], block), ParallelMath::Extract(bestSelectors[1], block) };
 | |
| 
 | |
|         int colors[2][3];
 | |
|         for (int sector = 0; sector < 2; sector++)
 | |
|         {
 | |
|             int sectorColor = ParallelMath::Extract(bestColors[sector], block);
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|                 colors[sector][ch] = (sectorColor >> (ch * 5)) & 31;
 | |
|         }
 | |
| 
 | |
|         EmitETC1Block(outputBuffer + block * 8, blockBestFlip, blockBestD, colors, blockBestTables, blockBestSelectors, false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::CompressETC1PunchthroughBlockInternal(MFloat &bestTotalError, uint8_t *outputBuffer, const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], const ParallelMath::Int16CompFlag isTransparent[16], DifferentialResolveStorage &drs, const Options &options)
 | |
| {
 | |
| 	int numTries = 0;
 | |
| 
 | |
|     MUInt15 zeroU15 = ParallelMath::MakeUInt15(0);
 | |
|     MUInt16 zeroU16 = ParallelMath::MakeUInt16(0);
 | |
| 
 | |
|     MUInt15 bestColors[2] = { zeroU15, zeroU15 };
 | |
|     MUInt16 bestSelectors[2] = { zeroU16, zeroU16 };
 | |
|     MUInt15 bestTables[2] = { zeroU15, zeroU15 };
 | |
|     MUInt15 bestFlip = zeroU15;
 | |
| 
 | |
|     MUInt15 sectorPixels[2][2][8][3];
 | |
|     ParallelMath::Int16CompFlag sectorTransparent[2][2][8];
 | |
|     MFloat sectorPreWeightedPixels[2][2][8][3];
 | |
|     MUInt15 sectorCumulative[2][2][3];
 | |
| 
 | |
|     ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
 | |
| 
 | |
|     for (int flip = 0; flip < 2; flip++)
 | |
| 	{
 | |
| 		for (int sector = 0; sector < 2; sector++)
 | |
| 		{
 | |
| 			for (int ch = 0; ch < 3; ch++)
 | |
| 				sectorCumulative[flip][sector][ch] = zeroU15;
 | |
| 
 | |
| 			for (int px = 0; px < 8; px++)
 | |
| 			{
 | |
| 				for (int ch = 0; ch < 3; ch++)
 | |
| 				{
 | |
| 					MUInt15 pixelChannelValue = pixels[g_flipTables[flip][sector][px]][ch];
 | |
| 					sectorPixels[flip][sector][px][ch] = pixelChannelValue;
 | |
|                     sectorPreWeightedPixels[flip][sector][px][ch] = preWeightedPixels[g_flipTables[flip][sector][px]][ch];
 | |
| 					sectorCumulative[flip][sector][ch] = sectorCumulative[flip][sector][ch] + pixelChannelValue;
 | |
| 				}
 | |
| 
 | |
|                 sectorTransparent[flip][sector][px] = isTransparent[g_flipTables[flip][sector][px]];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	static const MUInt15 modifiers[8] =
 | |
| 	{
 | |
| 		ParallelMath::MakeUInt15(8),
 | |
| 		ParallelMath::MakeUInt15(17),
 | |
| 		ParallelMath::MakeUInt15(29),
 | |
| 		ParallelMath::MakeUInt15(42),
 | |
| 		ParallelMath::MakeUInt15(60),
 | |
| 		ParallelMath::MakeUInt15(80),
 | |
| 		ParallelMath::MakeUInt15(106),
 | |
| 		ParallelMath::MakeUInt15(183),
 | |
| 	};
 | |
| 
 | |
|     bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
 | |
| 
 | |
|     const int maxSectorCumulativeOffsets = 17;
 | |
| 
 | |
| 	for (int flip = 0; flip < 2; flip++)
 | |
| 	{
 | |
|         ParallelMath::Int16CompFlag canIgnoreSector[2] = { ParallelMath::MakeBoolInt16(true), ParallelMath::MakeBoolInt16(false) };
 | |
| 
 | |
|         for (int sector = 0; sector < 2; sector++)
 | |
|             for (int px = 0; px < 8; px++)
 | |
|                 canIgnoreSector[sector] = canIgnoreSector[sector] & sectorTransparent[flip][sector][px];
 | |
| 
 | |
| 		drs.diffNumAttempts[0] = drs.diffNumAttempts[1] = zeroU15;
 | |
| 
 | |
| 		for (int sector = 0; sector < 2; sector++)
 | |
| 		{
 | |
|             MUInt15 sectorNumOpaque = ParallelMath::MakeUInt15(0);
 | |
|             for (int px = 0; px < 8; px++)
 | |
|                 sectorNumOpaque = sectorNumOpaque + ParallelMath::SelectOrZero(sectorTransparent[flip][sector][px], ParallelMath::MakeUInt15(1));
 | |
| 
 | |
|             int sectorMaxOpaque = 0;
 | |
|             for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                 sectorMaxOpaque = std::max<int>(sectorMaxOpaque, ParallelMath::Extract(sectorNumOpaque, block));
 | |
| 
 | |
|             int sectorNumOpaqueMultipliers = sectorMaxOpaque * 2 + 1;
 | |
| 
 | |
|             MUInt15 sectorNumOpaqueDenominator = ParallelMath::Max(ParallelMath::MakeUInt15(1), sectorNumOpaque) << 8;
 | |
|             MUInt15 sectorNumOpaqueAddend = sectorNumOpaque << 7;
 | |
| 
 | |
|             MSInt16 sectorNumOpaqueSigned = ParallelMath::LosslessCast<MSInt16>::Cast(sectorNumOpaque);
 | |
|             MSInt16 negSectorNumOpaqueSigned = ParallelMath::MakeSInt16(0) - sectorNumOpaqueSigned;
 | |
| 
 | |
|             MUInt15 sectorCumulativeMax = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(ParallelMath::MakeUInt15(255), sectorNumOpaque));
 | |
| 
 | |
| 			for (int table = 0; table < 8; table++)
 | |
| 			{
 | |
| 				MUInt15 possibleColors[maxSectorCumulativeOffsets];
 | |
| 
 | |
|                 MUInt15 quantized[3];
 | |
|                 for (int om = -sectorMaxOpaque; om <= sectorMaxOpaque; om++)
 | |
|                 {
 | |
|                     MSInt16 clampedOffsetMult = ParallelMath::Max(ParallelMath::Min(ParallelMath::MakeSInt16(om), sectorNumOpaqueSigned), negSectorNumOpaqueSigned);
 | |
|                     MSInt16 offset = ParallelMath::CompactMultiply(clampedOffsetMult, modifiers[table]);
 | |
| 
 | |
|                     for (int ch = 0; ch < 3; ch++)
 | |
|                     {
 | |
|                         // cu is in range 0..255*numOpaque (at most 0..2040)
 | |
|                         MUInt15 cu15 = ParallelMath::Min(
 | |
|                             sectorCumulativeMax,
 | |
|                             ParallelMath::ToUInt15(
 | |
|                                 ParallelMath::Max(
 | |
|                                     ParallelMath::MakeSInt16(0),
 | |
|                                     ParallelMath::LosslessCast<MSInt16>::Cast(sectorCumulative[flip][sector][ch]) + offset
 | |
|                                 )
 | |
|                             )
 | |
|                         );
 | |
| 
 | |
|                         //quantized[ch] = (cu * 31 + (cu >> 3) + (numOpaque * 128)) / (numOpaque * 256)
 | |
|                         MUInt16 cuTimes31 = (ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15);
 | |
|                         MUInt15 cuDiv8 = ParallelMath::RightShift(cu15, 3);
 | |
|                         MUInt16 numerator = cuTimes31 + ParallelMath::LosslessCast<MUInt16>::Cast(cuDiv8 + sectorNumOpaqueAddend);
 | |
|                         for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                             ParallelMath::PutUInt15(quantized[ch], block, ParallelMath::Extract(numerator, block) / ParallelMath::Extract(sectorNumOpaqueDenominator, block));
 | |
|                     }
 | |
| 
 | |
| 					possibleColors[om + sectorMaxOpaque] = quantized[0] | (quantized[1] << 5) | (quantized[2] << 10);
 | |
| 				}
 | |
| 
 | |
|                 ParallelMath::UInt15 numUniqueColors;
 | |
|                 for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                 {
 | |
|                     uint16_t blockNumUniqueColors = 1;
 | |
|                     for (int i = 1; i < sectorNumOpaqueMultipliers; i++)
 | |
|                     {
 | |
|                         uint16_t color = ParallelMath::Extract(possibleColors[i], block);
 | |
|                         if (color != ParallelMath::Extract(possibleColors[blockNumUniqueColors - 1], block))
 | |
|                             ParallelMath::PutUInt15(possibleColors[blockNumUniqueColors++], block, color);
 | |
|                     }
 | |
| 
 | |
|                     ParallelMath::PutUInt15(numUniqueColors, block, blockNumUniqueColors);
 | |
|                 }
 | |
| 
 | |
|                 int maxUniqueColors = ParallelMath::Extract(numUniqueColors, 0);
 | |
|                 for (int block = 1; block < ParallelMath::ParallelSize; block++)
 | |
|                     maxUniqueColors = std::max<int>(maxUniqueColors, ParallelMath::Extract(numUniqueColors, block));
 | |
| 
 | |
|                 for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                 {
 | |
|                     uint16_t fillColor = ParallelMath::Extract(possibleColors[0], block);
 | |
|                     for (int i = ParallelMath::Extract(numUniqueColors, block); i < maxUniqueColors; i++)
 | |
|                         ParallelMath::PutUInt15(possibleColors[i], block, fillColor);
 | |
|                 }
 | |
| 
 | |
| 				for (int i = 0; i < maxUniqueColors; i++)
 | |
| 				{
 | |
| 					MFloat error = ParallelMath::MakeFloatZero();
 | |
| 					MUInt16 selectors = ParallelMath::MakeUInt16(0);
 | |
|                     MUInt15 quantized = possibleColors[i];
 | |
| 					TestHalfBlockPunchthrough(error, selectors, quantized, sectorPixels[flip][sector], sectorPreWeightedPixels[flip][sector], sectorTransparent[flip][sector], modifiers[table], options);
 | |
| 
 | |
|                     ParallelMath::Int16CompFlag isInBounds = ParallelMath::Less(ParallelMath::MakeUInt15(i), numUniqueColors);
 | |
| 
 | |
| 					MUInt15 storageIndexes = drs.diffNumAttempts[sector];
 | |
|                     drs.diffNumAttempts[sector] = drs.diffNumAttempts[sector] + ParallelMath::SelectOrZero(isInBounds, ParallelMath::MakeUInt15(1));
 | |
| 
 | |
|                     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|                     {
 | |
|                         int storageIndex = ParallelMath::Extract(storageIndexes, block);
 | |
| 
 | |
|                         ParallelMath::PutFloat(drs.diffErrors[sector][storageIndex], block, ParallelMath::Extract(error, block));
 | |
|                         ParallelMath::PutUInt16(drs.diffSelectors[sector][storageIndex], block, ParallelMath::Extract(selectors, block));
 | |
|                         ParallelMath::PutUInt15(drs.diffColors[sector][storageIndex], block, ParallelMath::Extract(quantized, block));
 | |
|                         ParallelMath::PutUInt15(drs.diffTables[sector][storageIndex], block, table);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         MUInt15 bestDDummy = ParallelMath::MakeUInt15(0);
 | |
|         FindBestDifferentialCombination(flip, 1, canIgnoreSector, bestIsThisMode, bestTotalError, bestFlip, bestDDummy, bestColors, bestSelectors, bestTables, drs);
 | |
| 	}
 | |
| 
 | |
|     for (int block = 0; block < ParallelMath::ParallelSize; block++)
 | |
|     {
 | |
|         if (!ParallelMath::Extract(bestIsThisMode, block))
 | |
|             continue;
 | |
| 
 | |
|         int blockBestColors[2][3];
 | |
|         int blockBestTables[2];
 | |
|         ParallelMath::ScalarUInt16 blockBestSelectors[2];
 | |
|         for (int sector = 0; sector < 2; sector++)
 | |
|         {
 | |
|             int sectorColor = ParallelMath::Extract(bestColors[sector], block);
 | |
|             for (int ch = 0; ch < 3; ch++)
 | |
|                 blockBestColors[sector][ch] = (sectorColor >> (ch * 5)) & 31;
 | |
| 
 | |
|             blockBestTables[sector] = ParallelMath::Extract(bestTables[sector], block);
 | |
|             blockBestSelectors[sector] = ParallelMath::Extract(bestSelectors[sector], block);
 | |
|         }
 | |
| 
 | |
|         EmitETC1Block(outputBuffer + block * 8, ParallelMath::Extract(bestFlip, block), 1, blockBestColors, blockBestTables, blockBestSelectors, true);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| cvtt::ETC1CompressionData *cvtt::Internal::ETCComputer::AllocETC1Data(cvtt::Kernels::allocFunc_t allocFunc, void *context)
 | |
| {
 | |
|     void *buffer = allocFunc(context, sizeof(cvtt::Internal::ETCComputer::ETC1CompressionDataInternal));
 | |
|     if (!buffer)
 | |
|         return NULL;
 | |
|     new (buffer) cvtt::Internal::ETCComputer::ETC1CompressionDataInternal(context);
 | |
|     return static_cast<ETC1CompressionData*>(buffer);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ReleaseETC1Data(ETC1CompressionData *compressionData, cvtt::Kernels::freeFunc_t freeFunc)
 | |
| {
 | |
|     cvtt::Internal::ETCComputer::ETC1CompressionDataInternal* internalData = static_cast<cvtt::Internal::ETCComputer::ETC1CompressionDataInternal*>(compressionData);
 | |
|     void *context = internalData->m_context;
 | |
|     internalData->~ETC1CompressionDataInternal();
 | |
|     freeFunc(context, compressionData, sizeof(cvtt::Internal::ETCComputer::ETC1CompressionDataInternal));
 | |
| }
 | |
| 
 | |
| cvtt::ETC2CompressionData *cvtt::Internal::ETCComputer::AllocETC2Data(cvtt::Kernels::allocFunc_t allocFunc, void *context, const cvtt::Options &options)
 | |
| {
 | |
|     void *buffer = allocFunc(context, sizeof(cvtt::Internal::ETCComputer::ETC2CompressionDataInternal));
 | |
|     if (!buffer)
 | |
|         return NULL;
 | |
|     new (buffer) cvtt::Internal::ETCComputer::ETC2CompressionDataInternal(context, options);
 | |
|     return static_cast<ETC2CompressionData*>(buffer);
 | |
| }
 | |
| 
 | |
| void cvtt::Internal::ETCComputer::ReleaseETC2Data(ETC2CompressionData *compressionData, cvtt::Kernels::freeFunc_t freeFunc)
 | |
| {
 | |
|     cvtt::Internal::ETCComputer::ETC2CompressionDataInternal* internalData = static_cast<cvtt::Internal::ETCComputer::ETC2CompressionDataInternal*>(compressionData);
 | |
|     void *context = internalData->m_context;
 | |
|     internalData->~ETC2CompressionDataInternal();
 | |
|     freeFunc(context, compressionData, sizeof(cvtt::Internal::ETCComputer::ETC2CompressionDataInternal));
 | |
| }
 | |
| 
 | |
| cvtt::Internal::ETCComputer::ETC2CompressionDataInternal::ETC2CompressionDataInternal(void *context, const cvtt::Options &options)
 | |
|     : m_context(context)
 | |
| {
 | |
|     const float cd[3] = { options.redWeight, options.greenWeight, options.blueWeight };
 | |
|     const float rotCD[3] = { cd[1], cd[2], cd[0] };
 | |
| 
 | |
|     const float offs = -(rotCD[0] * cd[0] + rotCD[1] * cd[1] + rotCD[2] * cd[2]) / (cd[0] * cd[0] + cd[1] * cd[1] + cd[2] * cd[2]);
 | |
| 
 | |
|     const float chromaAxis0[3] = { rotCD[0] + cd[0] * offs, rotCD[1] + cd[1] * offs, rotCD[2] + cd[2] * offs };
 | |
| 
 | |
|     const float chromaAxis1Unnormalized[3] =
 | |
|     {
 | |
|         chromaAxis0[1] * cd[2] - chromaAxis0[2] * cd[1],
 | |
|         chromaAxis0[2] * cd[0] - chromaAxis0[0] * cd[2],
 | |
|         chromaAxis0[0] * cd[1] - chromaAxis0[1] * cd[0]
 | |
|     };
 | |
| 
 | |
|     const float ca0LengthSq = (chromaAxis0[0] * chromaAxis0[0] + chromaAxis0[1] * chromaAxis0[1] + chromaAxis0[2] * chromaAxis0[2]);
 | |
|     const float ca1UNLengthSq = (chromaAxis1Unnormalized[0] * chromaAxis1Unnormalized[0] + chromaAxis1Unnormalized[1] * chromaAxis1Unnormalized[1] + chromaAxis1Unnormalized[2] * chromaAxis1Unnormalized[2]);
 | |
|     const float lengthRatio = static_cast<float>(std::sqrt(ca0LengthSq / ca1UNLengthSq));
 | |
| 
 | |
|     const float chromaAxis1[3] = { chromaAxis1Unnormalized[0] * lengthRatio, chromaAxis1Unnormalized[1] * lengthRatio, chromaAxis1Unnormalized[2] * lengthRatio };
 | |
| 
 | |
|     for (int i = 0; i < 3; i++)
 | |
|     {
 | |
|         m_chromaSideAxis0[i] = chromaAxis0[i];
 | |
|         m_chromaSideAxis1[i] = chromaAxis1[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | 
