ladybird/Userland/Libraries/LibJS/Heap/Heap.cpp

336 lines
10 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Badge.h>
#include <AK/Debug.h>
#include <AK/HashTable.h>
#include <AK/StackInfo.h>
#include <AK/TemporaryChange.h>
#include <LibCore/ElapsedTimer.h>
#include <LibJS/Heap/CellAllocator.h>
#include <LibJS/Heap/Handle.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Heap/HeapBlock.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/WeakContainer.h>
#include <setjmp.h>
#ifdef __serenity__
# include <serenity.h>
#endif
namespace JS {
#ifdef __serenity__
static int gc_perf_string_id;
#endif
Heap::Heap(VM& vm)
: m_vm(vm)
{
#ifdef __serenity__
auto gc_signpost_string = "Garbage collection"sv;
gc_perf_string_id = perf_register_string(gc_signpost_string.characters_without_null_termination(), gc_signpost_string.length());
#endif
if constexpr (HeapBlock::min_possible_cell_size <= 16) {
m_allocators.append(make<CellAllocator>(16));
}
static_assert(HeapBlock::min_possible_cell_size <= 24, "Heap Cell tracking uses too much data!");
m_allocators.append(make<CellAllocator>(32));
m_allocators.append(make<CellAllocator>(64));
m_allocators.append(make<CellAllocator>(96));
m_allocators.append(make<CellAllocator>(128));
m_allocators.append(make<CellAllocator>(256));
m_allocators.append(make<CellAllocator>(512));
m_allocators.append(make<CellAllocator>(1024));
m_allocators.append(make<CellAllocator>(3072));
}
Heap::~Heap()
{
vm().string_cache().clear();
collect_garbage(CollectionType::CollectEverything);
}
ALWAYS_INLINE CellAllocator& Heap::allocator_for_size(size_t cell_size)
{
for (auto& allocator : m_allocators) {
if (allocator->cell_size() >= cell_size)
return *allocator;
}
dbgln("Cannot get CellAllocator for cell size {}, largest available is {}!", cell_size, m_allocators.last()->cell_size());
VERIFY_NOT_REACHED();
}
Cell* Heap::allocate_cell(size_t size)
{
if (should_collect_on_every_allocation()) {
collect_garbage();
} else if (m_allocations_since_last_gc > m_max_allocations_between_gc) {
m_allocations_since_last_gc = 0;
collect_garbage();
} else {
++m_allocations_since_last_gc;
}
auto& allocator = allocator_for_size(size);
return allocator.allocate_cell(*this);
}
void Heap::collect_garbage(CollectionType collection_type, bool print_report)
{
VERIFY(!m_collecting_garbage);
TemporaryChange change(m_collecting_garbage, true);
#ifdef __serenity__
static size_t global_gc_counter = 0;
perf_event(PERF_EVENT_SIGNPOST, gc_perf_string_id, global_gc_counter++);
#endif
2021-09-12 08:51:44 -07:00
auto collection_measurement_timer = Core::ElapsedTimer::start_new();
if (collection_type == CollectionType::CollectGarbage) {
if (m_gc_deferrals) {
m_should_gc_when_deferral_ends = true;
return;
}
HashTable<Cell*> roots;
gather_roots(roots);
mark_live_cells(roots);
}
sweep_dead_cells(print_report, collection_measurement_timer);
}
void Heap::gather_roots(HashTable<Cell*>& roots)
{
vm().gather_roots(roots);
gather_conservative_roots(roots);
for (auto& handle : m_handles)
roots.set(handle.cell());
LibJS: Let MarkedVector<T> inherit from Vector and handle Cell* + Value Note: MarkedVector is still relatively new and has zero users right now, so these changes don't affect any code other than the class itself. Reasons for this are the rather limited API: - Despite the name and unlike MarkedValueList, MarkedVector isn't actually a Vector, it *wraps* a Vector. This means that plenty of convenient APIs are unavailable and have to be exported on the class separately and forwarded to the internal Vector, or need to go through the exposed Span - both not great options. - Exposing append(Cell*) and prepend(Cell*) on the base class means that it was possible to append any Cell type, not just T! All the strong typing guarantees are basically gone, and MarkedVector doesn't do much more than casting Cells to the appropriate type through the exposed Span. All of this combined means that MarkedVector - in its current form - doesn't provide much value over MarkedValueList, and that we have to maintain two separate, yet almost identical classes. Let's fix this! The updated MarkedVector steals various concepts from the existing MarkedValueList, especially the ability to copy. On the other hand, it remains generic enough to handle both Cell* and Value for T, making MarkedValueList effectively redundant :^) Additionally, by inheriting from Vector we get all the current and future APIs without having to select and expose them separately. MarkedVectorBase remains and takes care of communicating creation and destruction of the class to the heap. Visiting the contained values is handled via a pure virtual method gather_roots(), which is being called by the Heap's function of the same name; much like the VM has one. From there, values are added to the roots HashTable if they are cells for T = Value, and unconditionally for any other T. As a small additional improvement the template now also takes an inline_capacity parameter, defaulting to 32, and forwards it to the Vector template; allowing for possible future optimizations of current uses of MarkedValueList, which hard-codes it to 32.
2022-02-09 09:40:49 +00:00
for (auto& vector : m_marked_vectors)
vector.gather_roots(roots);
if constexpr (HEAP_DEBUG) {
dbgln("gather_roots:");
for (auto* root : roots)
dbgln(" + {}", root);
}
}
__attribute__((no_sanitize("address"))) void Heap::gather_conservative_roots(HashTable<Cell*>& roots)
{
FlatPtr dummy;
2021-04-07 15:12:32 +02:00
dbgln_if(HEAP_DEBUG, "gather_conservative_roots:");
jmp_buf buf;
setjmp(buf);
HashTable<FlatPtr> possible_pointers;
auto* raw_jmp_buf = reinterpret_cast<FlatPtr const*>(buf);
for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); i += sizeof(FlatPtr))
possible_pointers.set(raw_jmp_buf[i]);
auto stack_reference = bit_cast<FlatPtr>(&dummy);
auto& stack_info = m_vm.stack_info();
for (FlatPtr stack_address = stack_reference; stack_address < stack_info.top(); stack_address += sizeof(FlatPtr)) {
auto data = *reinterpret_cast<FlatPtr*>(stack_address);
possible_pointers.set(data);
}
HashTable<HeapBlock*> all_live_heap_blocks;
for_each_block([&](auto& block) {
all_live_heap_blocks.set(&block);
return IterationDecision::Continue;
});
for (auto possible_pointer : possible_pointers) {
if (!possible_pointer)
continue;
2021-04-07 15:12:32 +02:00
dbgln_if(HEAP_DEBUG, " ? {}", (const void*)possible_pointer);
auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<const Cell*>(possible_pointer));
if (all_live_heap_blocks.contains(possible_heap_block)) {
if (auto* cell = possible_heap_block->cell_from_possible_pointer(possible_pointer)) {
if (cell->state() == Cell::State::Live) {
2021-04-07 15:12:32 +02:00
dbgln_if(HEAP_DEBUG, " ?-> {}", (const void*)cell);
roots.set(cell);
} else {
2021-04-07 15:12:32 +02:00
dbgln_if(HEAP_DEBUG, " #-> {}", (const void*)cell);
}
}
}
}
}
class MarkingVisitor final : public Cell::Visitor {
public:
MarkingVisitor() = default;
virtual void visit_impl(Cell& cell) override
{
if (cell.is_marked())
return;
2021-05-25 19:44:32 +02:00
dbgln_if(HEAP_DEBUG, " ! {}", &cell);
cell.set_marked(true);
cell.visit_edges(*this);
}
};
void Heap::mark_live_cells(const HashTable<Cell*>& roots)
{
2021-04-07 15:12:32 +02:00
dbgln_if(HEAP_DEBUG, "mark_live_cells:");
MarkingVisitor visitor;
for (auto* root : roots)
visitor.visit(root);
for (auto& inverse_root : m_uprooted_cells)
inverse_root->set_marked(false);
m_uprooted_cells.clear();
}
void Heap::sweep_dead_cells(bool print_report, const Core::ElapsedTimer& measurement_timer)
{
2021-04-07 15:12:32 +02:00
dbgln_if(HEAP_DEBUG, "sweep_dead_cells:");
Vector<HeapBlock*, 32> empty_blocks;
Vector<HeapBlock*, 32> full_blocks_that_became_usable;
size_t collected_cells = 0;
size_t live_cells = 0;
size_t collected_cell_bytes = 0;
size_t live_cell_bytes = 0;
for_each_block([&](auto& block) {
bool block_has_live_cells = false;
bool block_was_full = block.is_full();
block.template for_each_cell_in_state<Cell::State::Live>([&](Cell* cell) {
if (!cell->is_marked()) {
dbgln_if(HEAP_DEBUG, " ~ {}", cell);
block.deallocate(cell);
++collected_cells;
collected_cell_bytes += block.cell_size();
} else {
cell->set_marked(false);
block_has_live_cells = true;
++live_cells;
live_cell_bytes += block.cell_size();
}
});
if (!block_has_live_cells)
empty_blocks.append(&block);
else if (block_was_full != block.is_full())
full_blocks_that_became_usable.append(&block);
return IterationDecision::Continue;
});
for (auto& weak_container : m_weak_containers)
weak_container.remove_dead_cells({});
for (auto* block : empty_blocks) {
2021-04-07 15:12:32 +02:00
dbgln_if(HEAP_DEBUG, " - HeapBlock empty @ {}: cell_size={}", block, block->cell_size());
allocator_for_size(block->cell_size()).block_did_become_empty({}, *block);
}
for (auto* block : full_blocks_that_became_usable) {
2021-04-07 15:12:32 +02:00
dbgln_if(HEAP_DEBUG, " - HeapBlock usable again @ {}: cell_size={}", block, block->cell_size());
allocator_for_size(block->cell_size()).block_did_become_usable({}, *block);
}
if constexpr (HEAP_DEBUG) {
for_each_block([&](auto& block) {
dbgln(" > Live HeapBlock @ {}: cell_size={}", &block, block.cell_size());
return IterationDecision::Continue;
});
}
int time_spent = measurement_timer.elapsed();
if (print_report) {
size_t live_block_count = 0;
for_each_block([&](auto&) {
++live_block_count;
return IterationDecision::Continue;
});
dbgln("Garbage collection report");
dbgln("=============================================");
dbgln(" Time spent: {} ms", time_spent);
dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
dbgln("=============================================");
}
}
void Heap::did_create_handle(Badge<HandleImpl>, HandleImpl& impl)
{
VERIFY(!m_handles.contains(impl));
m_handles.append(impl);
}
void Heap::did_destroy_handle(Badge<HandleImpl>, HandleImpl& impl)
{
VERIFY(m_handles.contains(impl));
m_handles.remove(impl);
}
void Heap::did_create_marked_vector(Badge<MarkedVectorBase>, MarkedVectorBase& vector)
{
VERIFY(!m_marked_vectors.contains(vector));
m_marked_vectors.append(vector);
}
void Heap::did_destroy_marked_vector(Badge<MarkedVectorBase>, MarkedVectorBase& vector)
{
VERIFY(m_marked_vectors.contains(vector));
m_marked_vectors.remove(vector);
}
void Heap::did_create_weak_container(Badge<WeakContainer>, WeakContainer& set)
{
VERIFY(!m_weak_containers.contains(set));
m_weak_containers.append(set);
}
void Heap::did_destroy_weak_container(Badge<WeakContainer>, WeakContainer& set)
{
VERIFY(m_weak_containers.contains(set));
m_weak_containers.remove(set);
}
void Heap::defer_gc(Badge<DeferGC>)
{
++m_gc_deferrals;
}
void Heap::undefer_gc(Badge<DeferGC>)
{
VERIFY(m_gc_deferrals > 0);
--m_gc_deferrals;
if (!m_gc_deferrals) {
if (m_should_gc_when_deferral_ends)
collect_garbage();
m_should_gc_when_deferral_ends = false;
}
}
void Heap::uproot_cell(Cell* cell)
{
m_uprooted_cells.append(cell);
}
}