ladybird/Libraries/LibJS/Runtime/Temporal/PlainTime.cpp

686 lines
30 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
* Copyright (c) 2021-2023, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2024-2025, Tim Flynn <trflynn89@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Temporal/Duration.h>
#include <LibJS/Runtime/Temporal/Instant.h>
#include <LibJS/Runtime/Temporal/PlainDateTime.h>
#include <LibJS/Runtime/Temporal/PlainTime.h>
#include <LibJS/Runtime/Temporal/PlainTimeConstructor.h>
#include <LibJS/Runtime/Temporal/TimeZone.h>
#include <LibJS/Runtime/Temporal/ZonedDateTime.h>
#include <math.h>
namespace JS::Temporal {
GC_DEFINE_ALLOCATOR(PlainTime);
// 4 Temporal.PlainTime Objects, https://tc39.es/proposal-temporal/#sec-temporal-plaintime-objects
PlainTime::PlainTime(Time const& time, Object& prototype)
: Object(ConstructWithPrototypeTag::Tag, prototype)
, m_time(time)
{
}
// 4.5.2 CreateTimeRecord ( hour, minute, second, millisecond, microsecond, nanosecond [ , deltaDays ] ), https://tc39.es/proposal-temporal/#sec-temporal-createtimerecord
Time create_time_record(double hour, double minute, double second, double millisecond, double microsecond, double nanosecond, double delta_days)
{
// 1. If deltaDays is not present, set deltaDays to 0.
// 2. Assert: IsValidTime(hour, minute, second, millisecond, microsecond, nanosecond).
VERIFY(is_valid_time(hour, minute, second, millisecond, microsecond, nanosecond));
// 3. Return Time Record { [[Days]]: deltaDays, [[Hour]]: hour, [[Minute]]: minute, [[Second]]: second, [[Millisecond]]: millisecond, [[Microsecond]]: microsecond, [[Nanosecond]]: nanosecond }.
return {
.days = delta_days,
.hour = static_cast<u8>(hour),
.minute = static_cast<u8>(minute),
.second = static_cast<u8>(second),
.millisecond = static_cast<u16>(millisecond),
.microsecond = static_cast<u16>(microsecond),
.nanosecond = static_cast<u16>(nanosecond),
};
}
// 4.5.3 MidnightTimeRecord ( ), https://tc39.es/proposal-temporal/#sec-temporal-midnighttimerecord
Time midnight_time_record()
{
// 1. Return Time Record { [[Days]]: 0, [[Hour]]: 0, [[Minute]]: 0, [[Second]]: 0, [[Millisecond]]: 0, [[Microsecond]]: 0, [[Nanosecond]]: 0 }.
return { .days = 0, .hour = 0, .minute = 0, .second = 0, .millisecond = 0, .microsecond = 0, .nanosecond = 0 };
}
// 4.5.4 NoonTimeRecord ( ), https://tc39.es/proposal-temporal/#sec-temporal-noontimerecord
Time noon_time_record()
{
// 1. Return Time Record { [[Days]]: 0, [[Hour]]: 12, [[Minute]]: 0, [[Second]]: 0, [[Millisecond]]: 0, [[Microsecond]]: 0, [[Nanosecond]]: 0 }.
return { .days = 0, .hour = 12, .minute = 0, .second = 0, .millisecond = 0, .microsecond = 0, .nanosecond = 0 };
}
// 4.5.5 DifferenceTime ( time1, time2 ), https://tc39.es/proposal-temporal/#sec-temporal-differencetime
TimeDuration difference_time(Time const& time1, Time const& time2)
{
// 1. Let hours be time2.[[Hour]] - time1.[[Hour]].
auto hours = static_cast<double>(time2.hour) - static_cast<double>(time1.hour);
// 2. Let minutes be time2.[[Minute]] - time1.[[Minute]].
auto minutes = static_cast<double>(time2.minute) - static_cast<double>(time1.minute);
// 3. Let seconds be time2.[[Second]] - time1.[[Second]].
auto seconds = static_cast<double>(time2.second) - static_cast<double>(time1.second);
// 4. Let milliseconds be time2.[[Millisecond]] - time1.[[Millisecond]].
auto milliseconds = static_cast<double>(time2.millisecond) - static_cast<double>(time1.millisecond);
// 5. Let microseconds be time2.[[Microsecond]] - time1.[[Microsecond]].
auto microseconds = static_cast<double>(time2.microsecond) - static_cast<double>(time1.microsecond);
// 6. Let nanoseconds be time2.[[Nanosecond]] - time1.[[Nanosecond]].
auto nanoseconds = static_cast<double>(time2.nanosecond) - static_cast<double>(time1.nanosecond);
// 7. Let timeDuration be TimeDurationFromComponents(hours, minutes, seconds, milliseconds, microseconds, nanoseconds).
auto time_duration = time_duration_from_components(hours, minutes, seconds, milliseconds, microseconds, nanoseconds);
// 8. Assert: abs(timeDuration) < nsPerDay.
VERIFY(time_duration.unsigned_value() < NANOSECONDS_PER_DAY);
// 9. Return timeDuration.
return time_duration;
}
// 4.5.6 ToTemporalTime ( item [ , options ] ), https://tc39.es/proposal-temporal/#sec-temporal-totemporaltime
ThrowCompletionOr<GC::Ref<PlainTime>> to_temporal_time(VM& vm, Value item, Value options)
{
// 1. If options is not present, set options to undefined.
Time time;
// 2. If item is an Object, then
if (item.is_object()) {
auto const& object = item.as_object();
// a. If item has an [[InitializedTemporalTime]] internal slot, then
if (is<PlainTime>(object)) {
auto const& plain_time = static_cast<PlainTime const&>(object);
// i. Let resolvedOptions be ? GetOptionsObject(options).
auto resolved_options = TRY(get_options_object(vm, options));
// ii. Perform ? GetTemporalOverflowOption(resolvedOptions).
TRY(get_temporal_overflow_option(vm, resolved_options));
// iii. Return ! CreateTemporalTime(item.[[Time]]).
return MUST(create_temporal_time(vm, plain_time.time()));
}
// b. If item has an [[InitializedTemporalDateTime]] internal slot, then
if (is<PlainDateTime>(object)) {
auto const& plain_date_time = static_cast<PlainDateTime const&>(object);
// i. Let resolvedOptions be ? GetOptionsObject(options).
auto resolved_options = TRY(get_options_object(vm, options));
// ii. Perform ? GetTemporalOverflowOption(resolvedOptions).
TRY(get_temporal_overflow_option(vm, resolved_options));
// iii. Return ! CreateTemporalTime(item.[[ISODateTime]].[[Time]]).
return MUST(create_temporal_time(vm, plain_date_time.iso_date_time().time));
}
// c. If item has an [[InitializedTemporalZonedDateTime]] internal slot, then
if (is<ZonedDateTime>(object)) {
auto const& zoned_date_time = static_cast<ZonedDateTime const&>(object);
// i. Let isoDateTime be GetISODateTimeFor(item.[[TimeZone]], item.[[EpochNanoseconds]]).
auto iso_date_time = get_iso_date_time_for(zoned_date_time.time_zone(), zoned_date_time.epoch_nanoseconds()->big_integer());
// ii. Let resolvedOptions be ? GetOptionsObject(options).
auto resolved_options = TRY(get_options_object(vm, options));
// iii. Perform ? GetTemporalOverflowOption(resolvedOptions).
TRY(get_temporal_overflow_option(vm, resolved_options));
// iv. Return ! CreateTemporalTime(isoDateTime.[[Time]]).
return MUST(create_temporal_time(vm, iso_date_time.time));
}
// d. Let result be ? ToTemporalTimeRecord(item).
auto result = TRY(to_temporal_time_record(vm, object));
// e. Let resolvedOptions be ? GetOptionsObject(options).
auto resolved_options = TRY(get_options_object(vm, options));
// f. Let overflow be ? GetTemporalOverflowOption(resolvedOptions).
auto overflow = TRY(get_temporal_overflow_option(vm, resolved_options));
// g. Set result to ? RegulateTime(result.[[Hour]], result.[[Minute]], result.[[Second]], result.[[Millisecond]], result.[[Microsecond]], result.[[Nanosecond]], overflow).
time = TRY(regulate_time(vm, *result.hour, *result.minute, *result.second, *result.millisecond, *result.microsecond, *result.nanosecond, overflow));
}
// 3. Else,
else {
// a. If item is not a String, throw a TypeError exception.
if (!item.is_string())
return vm.throw_completion<TypeError>(ErrorType::TemporalInvalidPlainTime);
// b. Let parseResult be ? ParseISODateTime(item, « TemporalTimeString »).
auto parse_result = TRY(parse_iso_date_time(vm, item.as_string().utf8_string_view(), { { Production::TemporalTimeString } }));
// c. If ParseText(StringToCodePoints(item), AmbiguousTemporalTimeString) is a Parse Node, throw a RangeError exception.
if (parse_iso8601(Production::AmbiguousTemporalTimeString, item.as_string().utf8_string_view()).has_value())
return vm.throw_completion<RangeError>(ErrorType::TemporalInvalidPlainTime);
// d. Assert: parseResult.[[Time]] is not START-OF-DAY.
VERIFY(!parse_result.time.has<ParsedISODateTime::StartOfDay>());
// e. Set result to parseResult.[[Time]].
time = parse_result.time.get<Time>();
// f. Let resolvedOptions be ? GetOptionsObject(options).
auto resolved_options = TRY(get_options_object(vm, options));
// g. Perform ? GetTemporalOverflowOption(resolvedOptions).
TRY(get_temporal_overflow_option(vm, resolved_options));
}
// 4. Return ! CreateTemporalTime(result).
return MUST(create_temporal_time(vm, time));
}
// 4.5.7 ToTimeRecordOrMidnight ( item ), https://tc39.es/proposal-temporal/#sec-temporal-totimerecordormidnight
ThrowCompletionOr<Time> to_time_record_or_midnight(VM& vm, Value item)
{
// 1. If item is undefined, return MidnightTimeRecord().
if (item.is_undefined())
return midnight_time_record();
// 2. Let plainTime be ? ToTemporalTime(item).
auto plain_time = TRY(to_temporal_time(vm, item));
// 3. Return plainTime.[[Time]].
return plain_time->time();
}
// 4.5.8 RegulateTime ( hour, minute, second, millisecond, microsecond, nanosecond, overflow ), https://tc39.es/proposal-temporal/#sec-temporal-regulatetime
ThrowCompletionOr<Time> regulate_time(VM& vm, double hour, double minute, double second, double millisecond, double microsecond, double nanosecond, Overflow overflow)
{
switch (overflow) {
// 1. If overflow is CONSTRAIN, then
case Overflow::Constrain:
// a. Set hour to the result of clamping hour between 0 and 23.
hour = clamp(hour, 0, 23);
// b. Set minute to the result of clamping minute between 0 and 59.
minute = clamp(minute, 0, 59);
// c. Set second to the result of clamping second between 0 and 59.
second = clamp(second, 0, 59);
// d. Set millisecond to the result of clamping millisecond between 0 and 999.
millisecond = clamp(millisecond, 0, 999);
// e. Set microsecond to the result of clamping microsecond between 0 and 999.
microsecond = clamp(microsecond, 0, 999);
// f. Set nanosecond to the result of clamping nanosecond between 0 and 999.
nanosecond = clamp(nanosecond, 0, 999);
break;
// 2. Else,
case Overflow::Reject:
// a. Assert: overflow is REJECT.
// b. If IsValidTime(hour, minute, second, millisecond, microsecond, nanosecond) is false, throw a RangeError exception.
if (!is_valid_time(hour, minute, second, millisecond, microsecond, nanosecond))
return vm.throw_completion<RangeError>(ErrorType::TemporalInvalidPlainTime);
break;
}
// 3. Return CreateTimeRecord(hour, minute, second, millisecond, microsecond,nanosecond).
return create_time_record(hour, minute, second, millisecond, microsecond, nanosecond);
}
// 4.5.9 IsValidTime ( hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/proposal-temporal/#sec-temporal-isvalidtime
bool is_valid_time(double hour, double minute, double second, double millisecond, double microsecond, double nanosecond)
{
// 1. If hour < 0 or hour > 23, then
if (hour < 0 || hour > 23) {
// a. Return false.
return false;
}
// 2. If minute < 0 or minute > 59, then
if (minute < 0 || minute > 59) {
// a. Return false.
return false;
}
// 3. If second < 0 or second > 59, then
if (second < 0 || second > 59) {
// a. Return false.
return false;
}
// 4. If millisecond < 0 or millisecond > 999, then
if (millisecond < 0 || millisecond > 999) {
// a. Return false.
return false;
}
// 5. If microsecond < 0 or microsecond > 999, then
if (microsecond < 0 || microsecond > 999) {
// a. Return false.
return false;
}
// 6. If nanosecond < 0 or nanosecond > 999, then
if (nanosecond < 0 || nanosecond > 999) {
// a. Return false.
return false;
}
// 7. Return true.
return true;
}
// 4.5.10 BalanceTime ( hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/proposal-temporal/#sec-temporal-balancetime
Time balance_time(double hour, double minute, double second, double millisecond, double microsecond, double nanosecond)
{
// 1. Set microsecond to microsecond + floor(nanosecond / 1000).
microsecond += floor(nanosecond / 1000.0);
// 2. Set nanosecond to nanosecond modulo 1000.
nanosecond = modulo(nanosecond, 1000.0);
// 3. Set millisecond to millisecond + floor(microsecond / 1000).
millisecond += floor(microsecond / 1000.0);
// 4. Set microsecond to microsecond modulo 1000.
microsecond = modulo(microsecond, 1000.0);
// 5. Set second to second + floor(millisecond / 1000).
second += floor(millisecond / 1000.0);
// 6. Set millisecond to millisecond modulo 1000.
millisecond = modulo(millisecond, 1000.0);
// 7. Set minute to minute + floor(second / 60).
minute += floor(second / 60.0);
// 8. Set second to second modulo 60.
second = modulo(second, 60.0);
// 9. Set hour to hour + floor(minute / 60).
hour += floor(minute / 60.0);
// 10. Set minute to minute modulo 60.
minute = modulo(minute, 60.0);
// 11. Let deltaDays be floor(hour / 24).
auto delta_days = floor(hour / 24.0);
// 12. Set hour to hour modulo 24.
hour = modulo(hour, 24.0);
// 13. Return CreateTimeRecord(hour, minute, second, millisecond, microsecond, nanosecond, deltaDays).
return create_time_record(hour, minute, second, millisecond, microsecond, nanosecond, delta_days);
}
// 4.5.10 BalanceTime ( hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/proposal-temporal/#sec-temporal-balancetime
Time balance_time(double hour, double minute, double second, double millisecond, double microsecond, Crypto::SignedBigInteger const& nanosecond_value)
{
// 1. Set microsecond to microsecond + floor(nanosecond / 1000).
auto microsecond_value = Crypto::SignedBigInteger { microsecond }.plus(big_floor(nanosecond_value, NANOSECONDS_PER_MICROSECOND));
// 2. Set nanosecond to nanosecond modulo 1000.
auto nanosecond = modulo(nanosecond_value, NANOSECONDS_PER_MICROSECOND).to_double();
// 3. Set millisecond to millisecond + floor(microsecond / 1000).
auto millisecond_value = Crypto::SignedBigInteger { millisecond }.plus(big_floor(microsecond_value, MICROSECONDS_PER_MILLISECOND));
// 4. Set microsecond to microsecond modulo 1000.
microsecond = modulo(microsecond_value, MICROSECONDS_PER_MILLISECOND).to_double();
// 5. Set second to second + floor(millisecond / 1000).
auto second_value = Crypto::SignedBigInteger { second }.plus(big_floor(millisecond_value, MILLISECONDS_PER_SECOND));
// 6. Set millisecond to millisecond modulo 1000.
millisecond = modulo(millisecond_value, MILLISECONDS_PER_SECOND).to_double();
// 7. Set minute to minute + floor(second / 60).
auto minute_value = Crypto::SignedBigInteger { minute }.plus(big_floor(second_value, SECONDS_PER_MINUTE));
// 8. Set second to second modulo 60.
second = modulo(second_value, SECONDS_PER_MINUTE).to_double();
// 9. Set hour to hour + floor(minute / 60).
auto hour_value = Crypto::SignedBigInteger { hour }.plus(big_floor(minute_value, MINUTES_PER_HOUR));
// 10. Set minute to minute modulo 60.
minute = modulo(minute_value, MINUTES_PER_HOUR).to_double();
// 11. Let deltaDays be floor(hour / 24).
auto delta_days = big_floor(hour_value, HOURS_PER_DAY).to_double();
// 12. Set hour to hour modulo 24.
hour = modulo(hour_value, HOURS_PER_DAY).to_double();
// 13. Return CreateTimeRecord(hour, minute, second, millisecond, microsecond, nanosecond, deltaDays).
return create_time_record(hour, minute, second, millisecond, microsecond, nanosecond, delta_days);
}
// 4.5.11 CreateTemporalTime ( time [ , newTarget ] ), https://tc39.es/proposal-temporal/#sec-temporal-createtemporaltime
ThrowCompletionOr<GC::Ref<PlainTime>> create_temporal_time(VM& vm, Time const& time, GC::Ptr<FunctionObject> new_target)
{
auto& realm = *vm.current_realm();
// 1. If newTarget is not present, set newTarget to %Temporal.PlainTime%.
if (!new_target)
new_target = realm.intrinsics().temporal_plain_time_constructor();
// 2. Let object be ? OrdinaryCreateFromConstructor(newTarget, "%Temporal.PlainTime.prototype%", « [[InitializedTemporalTime]], [[Time]] »).
// 3. Set object.[[Time]] to time.
auto object = TRY(ordinary_create_from_constructor<PlainTime>(vm, *new_target, &Intrinsics::temporal_plain_time_prototype, time));
// 4. Return object.
return object;
}
// 4.5.12 ToTemporalTimeRecord ( temporalTimeLike [ , completeness ] ), https://tc39.es/proposal-temporal/#sec-temporal-totemporaltimerecord
ThrowCompletionOr<TemporalTimeLike> to_temporal_time_record(VM& vm, Object const& temporal_time_like, Completeness completeness)
{
// 1. If completeness is not present, set completeness to COMPLETE.
TemporalTimeLike result;
// 2. If completeness is COMPLETE, then
if (completeness == Completeness::Complete) {
// a. Let result be a new TemporalTimeLike Record with each field set to 0.
result = TemporalTimeLike::zero();
}
// 3. Else,
else {
// a. Let result be a new TemporalTimeLike Record with each field set to UNSET.
}
// 4. Let any be false.
auto any = false;
auto apply_field = [&](auto const& key, auto& result_field) -> ThrowCompletionOr<void> {
auto field = TRY(temporal_time_like.get(key));
if (field.is_undefined())
return {};
result_field = TRY(to_integer_with_truncation(vm, field, ErrorType::TemporalInvalidTimeLikeField, field, key));
any = true;
return {};
};
// 5. Let hour be ? Get(temporalTimeLike, "hour").
// 6. If hour is not undefined, then
// a. Set result.[[Hour]] to ? ToIntegerWithTruncation(hour).
// b. Set any to true.
TRY(apply_field(vm.names.hour, result.hour));
// 7. Let microsecond be ? Get(temporalTimeLike, "microsecond").
// 8. If microsecond is not undefined, then
// a. Set result.[[Microsecond]] to ? ToIntegerWithTruncation(microsecond).
// b. Set any to true.
TRY(apply_field(vm.names.microsecond, result.microsecond));
// 9. Let millisecond be ? Get(temporalTimeLike, "millisecond").
// 10. If millisecond is not undefined, then
// a. Set result.[[Millisecond]] to ? ToIntegerWithTruncation(millisecond).
// b. Set any to true.
TRY(apply_field(vm.names.millisecond, result.millisecond));
// 11. Let minute be ? Get(temporalTimeLike, "minute").
// 12. If minute is not undefined, then
// a. Set result.[[Minute]] to ? ToIntegerWithTruncation(minute).
// b. Set any to true.
TRY(apply_field(vm.names.minute, result.minute));
// 13. Let nanosecond be ? Get(temporalTimeLike, "nanosecond").
// 14. If nanosecond is not undefined, then
// a. Set result.[[Nanosecond]] to ? ToIntegerWithTruncation(nanosecond).
// b. Set any to true.
TRY(apply_field(vm.names.nanosecond, result.nanosecond));
// 15. Let second be ? Get(temporalTimeLike, "second").
// 16. If second is not undefined, then
// a. Set result.[[Second]] to ? ToIntegerWithTruncation(second).
// b. Set any to true.
TRY(apply_field(vm.names.second, result.second));
// 17. If any is false, throw a TypeError exception.
if (!any)
return vm.throw_completion<TypeError>(ErrorType::TemporalInvalidTime);
// 18. Return result.
return result;
}
// 4.5.13 TimeRecordToString ( time, precision ), https://tc39.es/proposal-temporal/#sec-temporal-timerecordtostring
String time_record_to_string(Time const& time, SecondsStringPrecision::Precision precision)
{
// 1. Let subSecondNanoseconds be time.[[Millisecond]] × 10**6 + time.[[Microsecond]] × 10**3 + time.[[Nanosecond]].
auto sub_second_nanoseconds = (static_cast<u64>(time.millisecond) * 1'000'000) + (static_cast<u64>(time.microsecond) * 1000) + static_cast<u64>(time.nanosecond);
// 2. Return FormatTimeString(time.[[Hour]], time.[[Minute]], time.[[Second]], subSecondNanoseconds, precision).
return format_time_string(time.hour, time.minute, time.second, sub_second_nanoseconds, precision);
}
// 4.5.14 CompareTimeRecord ( time1, time2 ), https://tc39.es/proposal-temporal/#sec-temporal-comparetimerecord
i8 compare_time_record(Time const& time1, Time const& time2)
{
// 1. If time1.[[Hour]] > time2.[[Hour]], return 1.
if (time1.hour > time2.hour)
return 1;
// 2. If time1.[[Hour]] < time2.[[Hour]], return -1.
if (time1.hour < time2.hour)
return -1;
// 3. If time1.[[Minute]] > time2.[[Minute]], return 1.
if (time1.minute > time2.minute)
return 1;
// 4. If time1.[[Minute]] < time2.[[Minute]], return -1.
if (time1.minute < time2.minute)
return -1;
// 5. If time1.[[Second]] > time2.[[Second]], return 1.
if (time1.second > time2.second)
return 1;
// 6. If time1.[[Second]] < time2.[[Second]], return -1.
if (time1.second < time2.second)
return -1;
// 7. If time1.[[Millisecond]] > time2.[[Millisecond]], return 1.
if (time1.millisecond > time2.millisecond)
return 1;
// 8. If time1.[[Millisecond]] < time2.[[Millisecond]], return -1.
if (time1.millisecond < time2.millisecond)
return -1;
// 9. If time1.[[Microsecond]] > time2.[[Microsecond]], return 1.
if (time1.microsecond > time2.microsecond)
return 1;
// 10. If time1.[[Microsecond]] < time2.[[Microsecond]], return -1.
if (time1.microsecond < time2.microsecond)
return -1;
// 11. If time1.[[Nanosecond]] > time2.[[Nanosecond]], return 1.
if (time1.nanosecond > time2.nanosecond)
return 1;
// 12. If time1.[[Nanosecond]] < time2.[[Nanosecond]], return -1.
if (time1.nanosecond < time2.nanosecond)
return -1;
// 13. Return 0.
return 0;
}
// 4.5.15 AddTime ( time, timeDuration ), https://tc39.es/proposal-temporal/#sec-temporal-addtime
Time add_time(Time const& time, TimeDuration const& time_duration)
{
auto nanoseconds = time_duration.plus(TimeDuration { static_cast<i64>(time.nanosecond) });
// 1. Return BalanceTime(time.[[Hour]], time.[[Minute]], time.[[Second]], time.[[Millisecond]], time.[[Microsecond]], time.[[Nanosecond]] + timeDuration).
return balance_time(time.hour, time.minute, time.second, time.millisecond, time.microsecond, nanoseconds);
}
// 4.5.16 RoundTime ( time, increment, unit, roundingMode ), https://tc39.es/proposal-temporal/#sec-temporal-roundtime
Time round_time(Time const& time, u64 increment, Unit unit, RoundingMode rounding_mode)
{
double quantity = 0;
switch (unit) {
// 1. If unit is DAY or HOUR, then
case Unit::Day:
case Unit::Hour:
// a. Let quantity be ((((time.[[Hour]] × 60 + time.[[Minute]]) × 60 + time.[[Second]]) × 1000 + time.[[Millisecond]]) × 1000 + time.[[Microsecond]]) × 1000 + time.[[Nanosecond]].
quantity = ((((time.hour * 60.0 + time.minute) * 60.0 + time.second) * 1000.0 + time.millisecond) * 1000.0 + time.microsecond) * 1000.0 + time.nanosecond;
break;
// 2. Else if unit is MINUTE, then
case Unit::Minute:
// a. Let quantity be (((time.[[Minute]] × 60 + time.[[Second]]) × 1000 + time.[[Millisecond]]) × 1000 + time.[[Microsecond]]) × 1000 + time.[[Nanosecond]].
quantity = (((time.minute * 60.0 + time.second) * 1000.0 + time.millisecond) * 1000.0 + time.microsecond) * 1000.0 + time.nanosecond;
break;
// 3. Else if unit is SECOND, then
case Unit::Second:
// a. Let quantity be ((time.[[Second]] × 1000 + time.[[Millisecond]]) × 1000 + time.[[Microsecond]]) × 1000 + time.[[Nanosecond]].
quantity = ((time.second * 1000.0 + time.millisecond) * 1000.0 + time.microsecond) * 1000.0 + time.nanosecond;
break;
// 4. Else if unit is MILLISECOND, then
case Unit::Millisecond:
// a. Let quantity be (time.[[Millisecond]] × 1000 + time.[[Microsecond]]) × 1000 + time.[[Nanosecond]].
quantity = (time.millisecond * 1000.0 + time.microsecond) * 1000.0 + time.nanosecond;
break;
// 5. Else if unit is MICROSECOND, then
case Unit::Microsecond:
// a. Let quantity be time.[[Microsecond]] × 1000 + time.[[Nanosecond]].
quantity = time.microsecond * 1000.0 + time.nanosecond;
break;
// 6. Else,
case Unit::Nanosecond:
// a. Assert: unit is NANOSECOND.
// b. Let quantity be time.[[Nanosecond]].
quantity = time.nanosecond;
break;
default:
VERIFY_NOT_REACHED();
}
// 7. Let unitLength be the value in the "Length in Nanoseconds" column of the row of Table 21 whose "Value" column contains unit.
auto unit_length = temporal_unit_length_in_nanoseconds(unit).to_u64();
// 8. Let result be RoundNumberToIncrement(quantity, increment × unitLength, roundingMode) / unitLength.
auto result = round_number_to_increment(quantity, increment * unit_length, rounding_mode) / static_cast<double>(unit_length);
switch (unit) {
// 9. If unit is DAY, then
case Unit::Day:
// a. Return CreateTimeRecord(0, 0, 0, 0, 0, 0, result).
return create_time_record(0, 0, 0, 0, 0, 0, result);
// 10. If unit is HOUR, then
case Unit::Hour:
// a. Return BalanceTime(result, 0, 0, 0, 0, 0).
return balance_time(result, 0, 0, 0, 0, 0);
// 11. If unit is MINUTE, then
case Unit::Minute:
// a. Return BalanceTime(time.[[Hour]], result, 0, 0, 0, 0).
return balance_time(time.hour, result, 0, 0, 0, 0);
// 12. If unit is SECOND, then
case Unit::Second:
// a. Return BalanceTime(time.[[Hour]], time.[[Minute]], result, 0, 0, 0).
return balance_time(time.hour, time.minute, result, 0, 0, 0);
// 13. If unit is MILLISECOND, then
case Unit::Millisecond:
// a. Return BalanceTime(time.[[Hour]], time.[[Minute]], time.[[Second]], result, 0, 0).
return balance_time(time.hour, time.minute, time.second, result, 0, 0);
// 14. If unit is MICROSECOND, then
case Unit::Microsecond:
// a. Return BalanceTime(time.[[Hour]], time.[[Minute]], time.[[Second]], time.[[Millisecond]], result, 0).
return balance_time(time.hour, time.minute, time.second, time.millisecond, result, 0);
// 15. Assert: unit is NANOSECOND.
case Unit::Nanosecond:
// 16. Return BalanceTime(time.[[Hour]], time.[[Minute]], time.[[Second]], time.[[Millisecond]], time.[[Microsecond]], result).
return balance_time(time.hour, time.minute, time.second, time.millisecond, time.microsecond, result);
default:
break;
}
VERIFY_NOT_REACHED();
}
// 4.5.17 DifferenceTemporalPlainTime ( operation, temporalTime, other, options ), https://tc39.es/proposal-temporal/#sec-temporal-differencetemporalplaintime
ThrowCompletionOr<GC::Ref<Duration>> difference_temporal_plain_time(VM& vm, DurationOperation operation, PlainTime const& temporal_time, Value other_value, Value options)
{
// 1. Set other to ? ToTemporalTime(other).
auto other = TRY(to_temporal_time(vm, other_value));
// 2. Let resolvedOptions be ? GetOptionsObject(options).
auto resolved_options = TRY(get_options_object(vm, options));
// 3. Let settings be ? GetDifferenceSettings(operation, resolvedOptions, TIME, « », NANOSECOND, HOUR).
auto settings = TRY(get_difference_settings(vm, operation, resolved_options, UnitGroup::Time, {}, Unit::Nanosecond, Unit::Hour));
// 4. Let timeDuration be DifferenceTime(temporalTime.[[Time]], other.[[Time]]).
auto time_duration = difference_time(temporal_time.time(), other->time());
// 5. Set timeDuration to ! RoundTimeDuration(timeDuration, settings.[[RoundingIncrement]], settings.[[SmallestUnit]], settings.[[RoundingMode]]).
time_duration = MUST(round_time_duration(vm, time_duration, Crypto::UnsignedBigInteger { settings.rounding_increment }, settings.smallest_unit, settings.rounding_mode));
// 6. Let duration be CombineDateAndTimeDuration(ZeroDateDuration(), timeDuration).
auto duration = combine_date_and_time_duration(zero_date_duration(vm), move(time_duration));
// 7. Let result be ! TemporalDurationFromInternal(duration, settings.[[LargestUnit]]).
auto result = MUST(temporal_duration_from_internal(vm, duration, settings.largest_unit));
// 8. If operation is SINCE, set result to CreateNegatedTemporalDuration(result).
if (operation == DurationOperation::Since)
result = create_negated_temporal_duration(vm, result);
// 9. Return result.
return result;
}
// 4.5.18 AddDurationToTime ( operation, temporalTime, temporalDurationLike ), https://tc39.es/proposal-temporal/#sec-temporal-adddurationtotime
ThrowCompletionOr<GC::Ref<PlainTime>> add_duration_to_time(VM& vm, ArithmeticOperation operation, PlainTime const& temporal_time, Value temporal_duration_like)
{
// 1. Let duration be ? ToTemporalDuration(temporalDurationLike).
auto duration = TRY(to_temporal_duration(vm, temporal_duration_like));
// 2. If operation is SUBTRACT, set duration to CreateNegatedTemporalDuration(duration).
if (operation == ArithmeticOperation::Subtract)
duration = create_negated_temporal_duration(vm, duration);
// 3. Let internalDuration be ToInternalDurationRecord(duration).
auto internal_duration = to_internal_duration_record(vm, duration);
// 4. Let result be AddTime(temporalTime.[[Time]], internalDuration.[[Time]]).
auto result = add_time(temporal_time.time(), internal_duration.time);
// 5. Return ! CreateTemporalTime(result).
return MUST(create_temporal_time(vm, result));
}
}