ladybird/Libraries/LibWeb/CSS/CSSMathProduct.cpp

209 lines
7.7 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2025, Sam Atkins <sam@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "CSSMathProduct.h"
#include <LibWeb/Bindings/CSSMathProductPrototype.h>
#include <LibWeb/Bindings/Intrinsics.h>
#include <LibWeb/CSS/CSSMathInvert.h>
#include <LibWeb/CSS/CSSNumericArray.h>
#include <LibWeb/CSS/StyleValues/CalculatedStyleValue.h>
#include <LibWeb/WebIDL/DOMException.h>
#include <LibWeb/WebIDL/ExceptionOr.h>
namespace Web::CSS {
GC_DEFINE_ALLOCATOR(CSSMathProduct);
GC::Ref<CSSMathProduct> CSSMathProduct::create(JS::Realm& realm, NumericType type, GC::Ref<CSSNumericArray> values)
{
return realm.create<CSSMathProduct>(realm, move(type), move(values));
}
// https://drafts.css-houdini.org/css-typed-om-1/#dom-cssmathproduct-cssmathproduct
WebIDL::ExceptionOr<GC::Ref<CSSMathProduct>> CSSMathProduct::construct_impl(JS::Realm& realm, Vector<CSSNumberish> values)
{
// The CSSMathProduct(...args) constructor is defined identically to the above, except that in step 3 it multiplies
// the types instead of adding, and in the last step it returns a CSSMathProduct.
// NB: So, the steps below are a modification of the CSSMathSum steps.
// 1. Replace each item of args with the result of rectifying a numberish value for the item.
GC::RootVector<GC::Ref<CSSNumericValue>> converted_values { realm.heap() };
converted_values.ensure_capacity(values.size());
for (auto const& value : values) {
converted_values.append(rectify_a_numberish_value(realm, value));
}
// 2. If args is empty, throw a SyntaxError.
if (converted_values.is_empty())
return WebIDL::SyntaxError::create(realm, "Cannot create an empty CSSMathProduct"_utf16);
// 3. Let type be the result of multiplying the types of all the items of args. If type is failure, throw a TypeError.
auto type = converted_values.first()->type();
bool first = true;
for (auto const& value : converted_values) {
if (first) {
first = false;
continue;
}
if (auto multiplied_types = type.multiplied_by(value->type()); multiplied_types.has_value()) {
type = multiplied_types.release_value();
} else {
return WebIDL::SimpleException { WebIDL::SimpleExceptionType::TypeError, "Cannot create a CSSMathProduct with values of incompatible types"sv };
}
}
// 4. Return a new CSSMathProduct whose values internal slot is set to args.
auto values_array = CSSNumericArray::create(realm, { converted_values });
return CSSMathProduct::create(realm, move(type), move(values_array));
}
CSSMathProduct::CSSMathProduct(JS::Realm& realm, NumericType type, GC::Ref<CSSNumericArray> values)
: CSSMathValue(realm, Bindings::CSSMathOperator::Product, move(type))
, m_values(move(values))
{
}
CSSMathProduct::~CSSMathProduct() = default;
void CSSMathProduct::initialize(JS::Realm& realm)
{
WEB_SET_PROTOTYPE_FOR_INTERFACE(CSSMathProduct);
Base::initialize(realm);
}
void CSSMathProduct::visit_edges(Visitor& visitor)
{
Base::visit_edges(visitor);
visitor.visit(m_values);
}
// https://drafts.css-houdini.org/css-typed-om-1/#serialize-a-cssmathvalue
String CSSMathProduct::serialize_math_value(Nested nested, Parens parens) const
{
// NB: Only steps 1 and 5 apply here.
// 1. Let s initially be the empty string.
StringBuilder s;
// 5. Otherwise, if this is a CSSMathProduct:
{
// 1. If paren-less is true, continue to the next step; otherwise, if nested is true, append "(" to s;
// otherwise, append "calc(" to s.
if (parens == Parens::With) {
if (nested == Nested::Yes) {
s.append("("sv);
} else {
s.append("calc("sv);
}
}
// 2. Serialize the first item in thiss values internal slot with nested set to true, and append the result to s.
s.append(m_values->values().first()->to_string({ .nested = true }));
// 3. For each arg in thiss values internal slot beyond the first:
bool first = true;
for (auto const& arg : m_values->values()) {
if (first) {
first = false;
continue;
}
// 1. If arg is a CSSMathInvert, append " / " to s, then serialize args value internal slot with nested
// set to true, and append the result to s.
if (auto* invert = as_if<CSSMathInvert>(*arg)) {
s.append(" / "sv);
s.append(invert->value()->to_string({ .nested = true }));
}
// 2. Otherwise, append " * " to s, then serialize arg with nested set to true, and append the result to s.
else {
s.append(" * "sv);
s.append(arg->to_string({ .nested = true }));
}
}
// 4. If paren-less is false, append ")" to s,
if (parens == Parens::With)
s.append(")"sv);
// 5. Return s.
return s.to_string_without_validation();
}
}
// https://drafts.css-houdini.org/css-typed-om-1/#dom-cssmathproduct-values
GC::Ref<CSSNumericArray> CSSMathProduct::values() const
{
return m_values;
}
// https://drafts.css-houdini.org/css-typed-om-1/#equal-numeric-value
bool CSSMathProduct::is_equal_numeric_value(GC::Ref<CSSNumericValue> other) const
{
// NB: Only steps 1 and 3 are relevant.
// 1. If value1 and value2 are not members of the same interface, return false.
auto* other_product = as_if<CSSMathProduct>(*other);
if (!other_product)
return false;
// 3. If value1 and value2 are both CSSMathSums, CSSMathProducts, CSSMathMins, or CSSMathMaxs:
// NB: Substeps are implemented in CSSNumericArray.
return m_values->is_equal_numeric_values(other_product->m_values);
}
// https://drafts.css-houdini.org/css-typed-om-1/#create-a-sum-value
Optional<SumValue> CSSMathProduct::create_a_sum_value() const
{
// 1. Let values initially be the sum value «(1, «[ ]»)». (I.e. what youd get from 1.)
SumValue values {
SumValueItem { 1, {} }
};
// 2. For each item in thiss values internal slot:
for (auto const& item : m_values->values()) {
// 1. Let new values be the result of creating a sum value from item.
// Let temp initially be an empty list.
auto new_values = item->create_a_sum_value();
SumValue temp;
// 2. If new values is failure, return failure.
if (!new_values.has_value())
return {};
// 3. For each item1 in values:
for (auto const& item1 : values) {
// 1. For each item2 in new values:
for (auto const& item2 : *new_values) {
// 1. Let item be a tuple with its value set to the product of the values of item1 and item2, and its
// unit map set to the product of the unit maps of item1 and item2, with all entries with a zero
// value removed.
auto unit_map = product_of_two_unit_maps(item1.unit_map, item2.unit_map);
unit_map.remove_all_matching([](auto&, auto& value) { return value == 0; });
// 2. Append item to temp.
temp.empend(item1.value * item2.value, move(unit_map));
}
}
// 4. Set values to temp.
values = move(temp);
}
// 3. Return values.
return values;
}
WebIDL::ExceptionOr<NonnullRefPtr<CalculationNode const>> CSSMathProduct::create_calculation_node(CalculationContext const& context) const
{
Vector<NonnullRefPtr<CalculationNode const>> child_nodes;
for (auto const& child_value : m_values->values()) {
child_nodes.append(TRY(child_value->create_calculation_node(context)));
}
return ProductCalculationNode::create(move(child_nodes));
}
}