ladybird/Libraries/LibWeb/DOM/Node.cpp

2872 lines
129 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2024, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Luke Wilde <lukew@serenityos.org>
* Copyright (c) 2024, Jelle Raaijmakers <jelle@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/HashTable.h>
#include <AK/StringBuilder.h>
#include <LibGC/DeferGC.h>
#include <LibJS/Runtime/FunctionObject.h>
#include <LibRegex/Regex.h>
#include <LibWeb/Bindings/MainThreadVM.h>
#include <LibWeb/Bindings/NodePrototype.h>
#include <LibWeb/DOM/Attr.h>
#include <LibWeb/DOM/CDATASection.h>
#include <LibWeb/DOM/Comment.h>
#include <LibWeb/DOM/DocumentType.h>
#include <LibWeb/DOM/Element.h>
#include <LibWeb/DOM/ElementFactory.h>
#include <LibWeb/DOM/Event.h>
#include <LibWeb/DOM/EventDispatcher.h>
#include <LibWeb/DOM/IDLEventListener.h>
#include <LibWeb/DOM/LiveNodeList.h>
#include <LibWeb/DOM/MutationType.h>
#include <LibWeb/DOM/NamedNodeMap.h>
#include <LibWeb/DOM/Node.h>
#include <LibWeb/DOM/NodeIterator.h>
#include <LibWeb/DOM/ProcessingInstruction.h>
#include <LibWeb/DOM/Range.h>
#include <LibWeb/DOM/ShadowRoot.h>
#include <LibWeb/DOM/StaticNodeList.h>
#include <LibWeb/DOM/XMLDocument.h>
#include <LibWeb/HTML/CustomElements/CustomElementReactionNames.h>
#include <LibWeb/HTML/HTMLAnchorElement.h>
#include <LibWeb/HTML/HTMLDocument.h>
#include <LibWeb/HTML/HTMLFieldSetElement.h>
#include <LibWeb/HTML/HTMLImageElement.h>
#include <LibWeb/HTML/HTMLInputElement.h>
#include <LibWeb/HTML/HTMLLegendElement.h>
#include <LibWeb/HTML/HTMLSelectElement.h>
#include <LibWeb/HTML/HTMLSlotElement.h>
#include <LibWeb/HTML/HTMLStyleElement.h>
#include <LibWeb/HTML/HTMLTableElement.h>
#include <LibWeb/HTML/HTMLTextAreaElement.h>
#include <LibWeb/HTML/Navigable.h>
#include <LibWeb/HTML/NavigableContainer.h>
#include <LibWeb/HTML/Parser/HTMLParser.h>
#include <LibWeb/Infra/CharacterTypes.h>
#include <LibWeb/Layout/Node.h>
#include <LibWeb/Layout/TextNode.h>
#include <LibWeb/MathML/MathMLElement.h>
#include <LibWeb/Namespace.h>
#include <LibWeb/Painting/Paintable.h>
#include <LibWeb/Painting/PaintableBox.h>
#include <LibWeb/SVG/SVGElement.h>
#include <LibWeb/SVG/SVGTitleElement.h>
#include <LibWeb/XLink/AttributeNames.h>
namespace Web::DOM {
static UniqueNodeID s_next_unique_id;
static HashMap<UniqueNodeID, Node*> s_node_directory;
static UniqueNodeID allocate_unique_id(Node* node)
{
auto id = s_next_unique_id;
++s_next_unique_id;
s_node_directory.set(id, node);
return id;
}
static void deallocate_unique_id(UniqueNodeID node_id)
{
if (!s_node_directory.remove(node_id))
VERIFY_NOT_REACHED();
}
Node* Node::from_unique_id(UniqueNodeID unique_id)
{
return s_node_directory.get(unique_id).value_or(nullptr);
}
Node::Node(JS::Realm& realm, Document& document, NodeType type)
: EventTarget(realm)
, m_document(&document)
, m_type(type)
, m_unique_id(allocate_unique_id(this))
{
}
Node::Node(Document& document, NodeType type)
: Node(document.realm(), document, type)
{
}
Node::~Node() = default;
void Node::finalize()
{
Base::finalize();
deallocate_unique_id(m_unique_id);
}
void Node::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
TreeNode::visit_edges(visitor);
visitor.visit(m_document);
visitor.visit(m_child_nodes);
visitor.visit(m_layout_node);
visitor.visit(m_paintable);
if (m_registered_observer_list) {
visitor.visit(*m_registered_observer_list);
}
}
// https://dom.spec.whatwg.org/#dom-node-baseuri
String Node::base_uri() const
{
// Return thiss node documents document base URL, serialized.
return document().base_url().to_string();
}
const HTML::HTMLAnchorElement* Node::enclosing_link_element() const
{
for (auto* node = this; node; node = node->parent()) {
if (!is<HTML::HTMLAnchorElement>(*node))
continue;
auto const& anchor_element = static_cast<HTML::HTMLAnchorElement const&>(*node);
if (anchor_element.has_attribute(HTML::AttributeNames::href))
return &anchor_element;
}
return nullptr;
}
const HTML::HTMLElement* Node::enclosing_html_element() const
{
return first_ancestor_of_type<HTML::HTMLElement>();
}
const HTML::HTMLElement* Node::enclosing_html_element_with_attribute(FlyString const& attribute) const
{
for (auto* node = this; node; node = node->parent()) {
if (is<HTML::HTMLElement>(*node) && as<HTML::HTMLElement>(*node).has_attribute(attribute))
return as<HTML::HTMLElement>(node);
}
return nullptr;
}
Optional<String> Node::alternative_text() const
{
return {};
}
// https://dom.spec.whatwg.org/#concept-descendant-text-content
String Node::descendant_text_content() const
{
StringBuilder builder;
for_each_in_subtree_of_type<Text>([&](auto& text_node) {
builder.append(text_node.data());
return TraversalDecision::Continue;
});
return builder.to_string_without_validation();
}
// https://dom.spec.whatwg.org/#dom-node-textcontent
Optional<String> Node::text_content() const
{
// The textContent getter steps are to return the following, switching on the interface this implements:
// If DocumentFragment or Element, return the descendant text content of this.
if (is<DocumentFragment>(this) || is<Element>(this))
return descendant_text_content();
// If CharacterData, return thiss data.
if (is<CharacterData>(this))
return static_cast<CharacterData const&>(*this).data();
// If Attr node, return this's value.
if (is<Attr>(*this))
return static_cast<Attr const&>(*this).value();
// Otherwise, return null
return {};
}
// https://dom.spec.whatwg.org/#ref-for-dom-node-textcontent%E2%91%A0
void Node::set_text_content(Optional<String> const& maybe_content)
{
// The textContent setter steps are to, if the given value is null, act as if it was the empty string instead,
// and then do as described below, switching on the interface this implements:
auto content = maybe_content.value_or(String {});
// If DocumentFragment or Element, string replace all with the given value within this.
if (is<DocumentFragment>(this) || is<Element>(this)) {
// OPTIMIZATION: Replacing nothing with nothing is a no-op. Avoid all invalidation in this case.
if (!first_child() && content.is_empty()) {
return;
}
string_replace_all(content);
}
// If CharacterData, replace data with node this, offset 0, count thiss length, and data the given value.
else if (is<CharacterData>(this)) {
auto* character_data_node = as<CharacterData>(this);
character_data_node->set_data(content);
// FIXME: CharacterData::set_data is not spec compliant. Make this match the spec when set_data becomes spec compliant.
// Do note that this will make this function able to throw an exception.
}
// If Attr, set an existing attribute value with this and the given value.
if (is<Attr>(*this)) {
static_cast<Attr&>(*this).set_value(content);
}
// Otherwise, do nothing.
if (is_connected()) {
invalidate_style(StyleInvalidationReason::NodeSetTextContent);
set_needs_layout_tree_update(true);
}
document().bump_dom_tree_version();
}
// https://dom.spec.whatwg.org/#dom-node-normalize
WebIDL::ExceptionOr<void> Node::normalize()
{
auto contiguous_exclusive_text_nodes_excluding_self = [](Node& node) {
// https://dom.spec.whatwg.org/#contiguous-exclusive-text-nodes
// The contiguous exclusive Text nodes of a node node are node, nodes previous sibling exclusive Text node, if any,
// and its contiguous exclusive Text nodes, and nodes next sibling exclusive Text node, if any,
// and its contiguous exclusive Text nodes, avoiding any duplicates.
// NOTE: The callers of this method require node itself to be excluded.
Vector<Text*> nodes;
auto* current_node = node.previous_sibling();
while (current_node && current_node->is_exclusive_text()) {
nodes.append(static_cast<Text*>(current_node));
current_node = current_node->previous_sibling();
}
// Reverse the order of the nodes so that they are in tree order.
nodes.reverse();
current_node = node.next_sibling();
while (current_node && current_node->is_exclusive_text()) {
nodes.append(static_cast<Text*>(current_node));
current_node = current_node->next_sibling();
}
return nodes;
};
// The normalize() method steps are to run these steps for each descendant exclusive Text node node of this
Vector<Text&> descendant_exclusive_text_nodes;
for_each_in_inclusive_subtree_of_type<Text>([&](Text const& node) {
if (!node.is_cdata_section())
descendant_exclusive_text_nodes.append(const_cast<Text&>(node));
return TraversalDecision::Continue;
});
for (auto& node : descendant_exclusive_text_nodes) {
// 1. Let length be nodes length.
auto& character_data = static_cast<CharacterData&>(node);
auto length = character_data.length_in_utf16_code_units();
// 2. If length is zero, then remove node and continue with the next exclusive Text node, if any.
if (length == 0) {
if (node.parent())
node.remove();
continue;
}
// 3. Let data be the concatenation of the data of nodes contiguous exclusive Text nodes (excluding itself), in tree order.
StringBuilder data;
for (auto const& text_node : contiguous_exclusive_text_nodes_excluding_self(node))
data.append(text_node->data());
// 4. Replace data with node node, offset length, count 0, and data data.
TRY(character_data.replace_data(length, 0, MUST(data.to_string())));
// 5. Let currentNode be nodes next sibling.
auto* current_node = node.next_sibling();
// 6. While currentNode is an exclusive Text node:
while (current_node && current_node->is_exclusive_text()) {
// 1. For each live range whose start node is currentNode, add length to its start offset and set its start node to node.
for (auto& range : Range::live_ranges()) {
if (range->start_container() == current_node)
TRY(range->set_start(node, range->start_offset() + length));
}
// 2. For each live range whose end node is currentNode, add length to its end offset and set its end node to node.
for (auto& range : Range::live_ranges()) {
if (range->end_container() == current_node)
TRY(range->set_end(node, range->end_offset() + length));
}
// 3. For each live range whose start node is currentNodes parent and start offset is currentNodes index, set its start node to node and its start offset to length.
for (auto& range : Range::live_ranges()) {
if (range->start_container() == current_node->parent() && range->start_offset() == current_node->index())
TRY(range->set_start(node, length));
}
// 4. For each live range whose end node is currentNodes parent and end offset is currentNodes index, set its end node to node and its end offset to length.
for (auto& range : Range::live_ranges()) {
if (range->end_container() == current_node->parent() && range->end_offset() == current_node->index())
TRY(range->set_end(node, length));
}
// 5. Add currentNodes length to length.
length += static_cast<Text&>(*current_node).length();
// 6. Set currentNode to its next sibling.
current_node = current_node->next_sibling();
}
// 7. Remove nodes contiguous exclusive Text nodes (excluding itself), in tree order.
for (auto const& text_node : contiguous_exclusive_text_nodes_excluding_self(node))
text_node->remove();
}
return {};
}
// https://dom.spec.whatwg.org/#dom-node-nodevalue
Optional<String> Node::node_value() const
{
// The nodeValue getter steps are to return the following, switching on the interface this implements:
// If Attr, return thiss value.
if (is<Attr>(this)) {
return as<Attr>(this)->value();
}
// If CharacterData, return thiss data.
if (is<CharacterData>(this)) {
return as<CharacterData>(this)->data();
}
// Otherwise, return null.
return {};
}
// https://dom.spec.whatwg.org/#ref-for-dom-node-nodevalue%E2%91%A0
void Node::set_node_value(Optional<String> const& maybe_value)
{
// The nodeValue setter steps are to, if the given value is null, act as if it was the empty string instead,
// and then do as described below, switching on the interface this implements:
auto value = maybe_value.value_or(String {});
// If Attr, set an existing attribute value with this and the given value.
if (is<Attr>(this)) {
as<Attr>(this)->set_value(move(value));
} else if (is<CharacterData>(this)) {
// If CharacterData, replace data with node this, offset 0, count thiss length, and data the given value.
as<CharacterData>(this)->set_data(value);
}
// Otherwise, do nothing.
}
// https://html.spec.whatwg.org/multipage/document-sequences.html#node-navigable
GC::Ptr<HTML::Navigable> Node::navigable() const
{
auto& document = const_cast<Document&>(this->document());
if (auto cached_navigable = document.cached_navigable()) {
if (cached_navigable->active_document() == &document)
return cached_navigable;
}
// To get the node navigable of a node node, return the navigable whose active document is node's node document,
// or null if there is no such navigable.
auto navigable = HTML::Navigable::navigable_with_active_document(document);
document.set_cached_navigable(navigable);
return navigable;
}
[[maybe_unused]] static StringView to_string(StyleInvalidationReason reason)
{
#define __ENUMERATE_STYLE_INVALIDATION_REASON(reason) \
case StyleInvalidationReason::reason: \
return #reason##sv;
switch (reason) {
ENUMERATE_STYLE_INVALIDATION_REASONS(__ENUMERATE_STYLE_INVALIDATION_REASON)
default:
VERIFY_NOT_REACHED();
}
}
void Node::invalidate_style(StyleInvalidationReason reason)
{
if (is_character_data())
return;
if (document().style_computer().may_have_has_selectors()) {
if (reason == StyleInvalidationReason::NodeRemove) {
if (auto* parent = parent_or_shadow_host(); parent) {
document().schedule_ancestors_style_invalidation_due_to_presence_of_has(*parent);
parent->for_each_child_of_type<Element>([&](auto& element) {
if (element.affected_by_has_pseudo_class_with_relative_selector_that_has_sibling_combinator())
element.invalidate_style_if_affected_by_has();
return IterationDecision::Continue;
});
}
} else {
document().schedule_ancestors_style_invalidation_due_to_presence_of_has(*this);
}
}
if (!needs_style_update() && !document().needs_full_style_update()) {
dbgln_if(STYLE_INVALIDATION_DEBUG, "Invalidate style ({}): {}", to_string(reason), debug_description());
}
if (is_document()) {
auto& document = static_cast<DOM::Document&>(*this);
document.set_needs_full_style_update(true);
document.schedule_style_update();
return;
}
// If the document is already marked for a full style update, there's no need to do anything here.
if (document().needs_full_style_update()) {
return;
}
// If any ancestor is already marked for an entire subtree update, there's no need to do anything here.
for (auto* ancestor = this->parent_or_shadow_host(); ancestor; ancestor = ancestor->parent_or_shadow_host()) {
if (ancestor->entire_subtree_needs_style_update())
return;
}
// When invalidating style for a node, we actually invalidate:
// - the node itself
// - all of its descendants
// - all of its preceding siblings and their descendants (only on DOM insert/remove)
// - all of its subsequent siblings and their descendants
// FIXME: This is a lot of invalidation and we should implement more sophisticated invalidation to do less work!
set_entire_subtree_needs_style_update(true);
if (reason == StyleInvalidationReason::NodeInsertBefore || reason == StyleInvalidationReason::NodeRemove) {
for (auto* sibling = previous_sibling(); sibling; sibling = sibling->previous_sibling()) {
if (auto* element = as_if<Element>(sibling); element && element->style_affected_by_structural_changes())
element->set_entire_subtree_needs_style_update(true);
}
}
for (auto* sibling = next_sibling(); sibling; sibling = sibling->next_sibling()) {
if (auto* element = as_if<Element>(sibling); element && element->style_affected_by_structural_changes())
element->set_entire_subtree_needs_style_update(true);
}
for (auto* ancestor = parent_or_shadow_host(); ancestor; ancestor = ancestor->parent_or_shadow_host())
ancestor->m_child_needs_style_update = true;
document().schedule_style_update();
}
void Node::invalidate_style(StyleInvalidationReason, Vector<CSS::InvalidationSet::Property> const& properties, StyleInvalidationOptions options)
{
if (is_character_data())
return;
bool properties_used_in_has_selectors = false;
for (auto const& property : properties) {
properties_used_in_has_selectors |= document().style_computer().invalidation_property_used_in_has_selector(property);
}
if (properties_used_in_has_selectors) {
document().schedule_ancestors_style_invalidation_due_to_presence_of_has(*this);
}
auto invalidation_set = document().style_computer().invalidation_set_for_properties(properties);
if (options.invalidate_self)
invalidation_set.set_needs_invalidate_self();
if (invalidation_set.is_empty())
return;
if (invalidation_set.needs_invalidate_self()) {
set_needs_style_update(true);
}
auto invalidate_entire_subtree = [&](Node& subtree_root) {
subtree_root.for_each_shadow_including_inclusive_descendant([&](Node& node) {
if (!node.is_element())
return TraversalDecision::Continue;
auto& element = static_cast<Element&>(node);
bool needs_style_recalculation = false;
if (invalidation_set.needs_invalidate_whole_subtree()) {
needs_style_recalculation = true;
} else if (element.includes_properties_from_invalidation_set(invalidation_set)) {
needs_style_recalculation = true;
} else if (options.invalidate_elements_that_use_css_custom_properties && element.style_uses_css_custom_properties()) {
needs_style_recalculation = true;
}
if (needs_style_recalculation)
element.set_needs_style_update(true);
return TraversalDecision::Continue;
});
};
invalidate_entire_subtree(*this);
if (invalidation_set.needs_invalidate_whole_subtree()) {
for (auto* sibling = next_sibling(); sibling; sibling = sibling->next_sibling()) {
if (sibling->is_element())
invalidate_entire_subtree(*sibling);
}
}
document().schedule_style_update();
}
String Node::child_text_content() const
{
if (!is<ParentNode>(*this))
return String {};
StringBuilder builder;
as<ParentNode>(*this).for_each_child([&](auto& child) {
if (is<Text>(child)) {
auto maybe_content = as<Text>(child).text_content();
if (maybe_content.has_value())
builder.append(maybe_content.value());
}
return IterationDecision::Continue;
});
return MUST(builder.to_string());
}
// https://dom.spec.whatwg.org/#concept-tree-root
Node& Node::root()
{
// The root of an object is itself, if its parent is null, or else it is the root of its parent.
// The root of a tree is any object participating in that tree whose parent is null.
Node* root = this;
while (root->parent())
root = root->parent();
return *root;
}
// https://dom.spec.whatwg.org/#concept-shadow-including-root
Node& Node::shadow_including_root()
{
// The shadow-including root of an object is its roots hosts shadow-including root,
// if the objects root is a shadow root; otherwise its root.
auto& node_root = root();
if (is<ShadowRoot>(node_root)) {
if (auto* host = static_cast<ShadowRoot&>(node_root).host(); host)
return host->shadow_including_root();
}
return node_root;
}
// https://dom.spec.whatwg.org/#connected
bool Node::is_connected() const
{
// An element is connected if its shadow-including root is a document.
return shadow_including_root().is_document();
}
// https://html.spec.whatwg.org/multipage/infrastructure.html#browsing-context-connected
bool Node::is_browsing_context_connected() const
{
// A node is browsing-context connected when it is connected and its shadow-including root's browsing context is non-null.
return is_connected() && shadow_including_root().document().browsing_context();
}
// https://dom.spec.whatwg.org/#concept-node-ensure-pre-insertion-validity
WebIDL::ExceptionOr<void> Node::ensure_pre_insertion_validity(GC::Ref<Node> node, GC::Ptr<Node> child) const
{
// 1. If parent is not a Document, DocumentFragment, or Element node, then throw a "HierarchyRequestError" DOMException.
if (!is<Document>(this) && !is<DocumentFragment>(this) && !is<Element>(this))
return WebIDL::HierarchyRequestError::create(realm(), "Can only insert into a document, document fragment or element"_string);
// 2. If node is a host-including inclusive ancestor of parent, then throw a "HierarchyRequestError" DOMException.
if (node->is_host_including_inclusive_ancestor_of(*this))
return WebIDL::HierarchyRequestError::create(realm(), "New node is an ancestor of this node"_string);
// 3. If child is non-null and its parent is not parent, then throw a "NotFoundError" DOMException.
if (child && child->parent() != this)
return WebIDL::NotFoundError::create(realm(), "This node is not the parent of the given child"_string);
// FIXME: All the following "Invalid node type for insertion" messages could be more descriptive.
// 4. If node is not a DocumentFragment, DocumentType, Element, or CharacterData node, then throw a "HierarchyRequestError" DOMException.
if (!is<DocumentFragment>(*node) && !is<DocumentType>(*node) && !is<Element>(*node) && !is<Text>(*node) && !is<Comment>(*node) && !is<ProcessingInstruction>(*node) && !is<CDATASection>(*node))
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
// 5. If either node is a Text node and parent is a document, or node is a doctype and parent is not a document, then throw a "HierarchyRequestError" DOMException.
if ((is<Text>(*node) && is<Document>(this)) || (is<DocumentType>(*node) && !is<Document>(this)))
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
// 6. If parent is a document, and any of the statements below, switched on the interface node implements, are true, then throw a "HierarchyRequestError" DOMException.
if (is<Document>(this)) {
// DocumentFragment
if (is<DocumentFragment>(*node)) {
// If node has more than one element child or has a Text node child.
// Otherwise, if node has one element child and either parent has an element child, child is a doctype, or child is non-null and a doctype is following child.
auto node_element_child_count = as<DocumentFragment>(*node).child_element_count();
if ((node_element_child_count > 1 || node->has_child_of_type<Text>())
|| (node_element_child_count == 1 && (has_child_of_type<Element>() || is<DocumentType>(child.ptr()) || (child && child->has_following_node_of_type_in_tree_order<DocumentType>())))) {
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
}
} else if (is<Element>(*node)) {
// Element
// If parent has an element child, child is a doctype, or child is non-null and a doctype is following child.
if (has_child_of_type<Element>() || is<DocumentType>(child.ptr()) || (child && child->has_following_node_of_type_in_tree_order<DocumentType>()))
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
} else if (is<DocumentType>(*node)) {
// DocumentType
// parent has a doctype child, child is non-null and an element is preceding child, or child is null and parent has an element child.
if (has_child_of_type<DocumentType>() || (child && child->has_preceding_node_of_type_in_tree_order<Element>()) || (!child && has_child_of_type<Element>()))
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
}
}
return {};
}
// https://dom.spec.whatwg.org/#concept-node-insert
void Node::insert_before(GC::Ref<Node> node, GC::Ptr<Node> child, bool suppress_observers)
{
// 1. Let nodes be nodes children, if node is a DocumentFragment node; otherwise « node ».
Vector<GC::Root<Node>> nodes;
if (is<DocumentFragment>(*node))
nodes = node->children_as_vector();
else
nodes.append(GC::make_root(*node));
// 2. Let count be nodess size.
auto count = nodes.size();
// 3. If count is 0, then return.
if (count == 0)
return;
// 4. If node is a DocumentFragment node, then:
if (is<DocumentFragment>(*node)) {
// 1. Remove its children with the suppress observers flag set.
node->remove_all_children(true);
// 2. Queue a tree mutation record for node with « », nodes, null, and null.
// NOTE: This step intentionally does not pay attention to the suppress observers flag.
node->queue_tree_mutation_record({}, nodes, nullptr, nullptr);
}
// 5. If child is non-null, then:
if (child) {
// 1. For each live range whose start node is parent and start offset is greater than childs index, increase its start offset by count.
for (auto& range : Range::live_ranges()) {
if (range->start_container() == this && range->start_offset() > child->index())
range->increase_start_offset({}, count);
}
// 2. For each live range whose end node is parent and end offset is greater than childs index, increase its end offset by count.
for (auto& range : Range::live_ranges()) {
if (range->end_container() == this && range->end_offset() > child->index())
range->increase_end_offset({}, count);
}
}
// 6. Let previousSibling be childs previous sibling or parents last child if child is null.
GC::Ptr<Node> previous_sibling;
if (child)
previous_sibling = child->previous_sibling();
else
previous_sibling = last_child();
// 7. For each node in nodes, in tree order:
// FIXME: In tree order
for (auto& node_to_insert : nodes) {
// 1. Adopt node into parents node document.
document().adopt_node(*node_to_insert);
// 2. If child is null, then append node to parents children.
if (!child)
append_child_impl(*node_to_insert);
// 3. Otherwise, insert node into parents children before childs index.
else
insert_before_impl(*node_to_insert, child);
// 4. If parent is a shadow host whose shadow roots slot assignment is "named" and node is a slottable, then
// assign a slot for node.
if (is_element()) {
auto& element = static_cast<DOM::Element&>(*this);
auto is_named_shadow_host = element.is_shadow_host()
&& element.shadow_root()->slot_assignment() == Bindings::SlotAssignmentMode::Named;
if (is_named_shadow_host && node_to_insert->is_slottable())
assign_a_slot(node_to_insert->as_slottable());
}
// 5. If parents root is a shadow root, and parent is a slot whose assigned nodes is the empty list, then run
// signal a slot change for parent.
if (root().is_shadow_root() && is<HTML::HTMLSlotElement>(*this)) {
auto& slot = static_cast<HTML::HTMLSlotElement&>(*this);
if (slot.assigned_nodes_internal().is_empty())
signal_a_slot_change(slot);
}
// 6. Run assign slottables for a tree with nodes root.
assign_slottables_for_a_tree(node_to_insert->root());
node_to_insert->invalidate_style(StyleInvalidationReason::NodeInsertBefore);
// 7. For each shadow-including inclusive descendant inclusiveDescendant of node, in shadow-including tree order:
node_to_insert->for_each_shadow_including_inclusive_descendant([&](Node& inclusive_descendant) {
// 1. Run the insertion steps with inclusiveDescendant.
inclusive_descendant.inserted();
// 2. If inclusiveDescendant is connected, then:
// NOTE: This is not specified here in the spec, but these steps can only be performed on an element.
if (inclusive_descendant.is_connected() && is<DOM::Element>(inclusive_descendant)) {
auto& element = static_cast<DOM::Element&>(inclusive_descendant);
// 1. If inclusiveDescendant is custom, then enqueue a custom element callback reaction with inclusiveDescendant,
// callback name "connectedCallback", and an empty argument list.
if (element.is_custom()) {
GC::RootVector<JS::Value> empty_arguments { vm().heap() };
element.enqueue_a_custom_element_callback_reaction(HTML::CustomElementReactionNames::connectedCallback, move(empty_arguments));
}
// 2. Otherwise, try to upgrade inclusiveDescendant.
// NOTE: If this successfully upgrades inclusiveDescendant, its connectedCallback will be enqueued automatically during
// the upgrade an element algorithm.
else {
element.try_to_upgrade();
}
}
return TraversalDecision::Continue;
});
}
// 8. If suppress observers flag is unset, then queue a tree mutation record for parent with nodes, « », previousSibling, and child.
if (!suppress_observers) {
queue_tree_mutation_record(nodes, {}, previous_sibling.ptr(), child.ptr());
}
// 9. Run the children changed steps for parent.
ChildrenChangedMetadata metadata { ChildrenChangedMetadata::Type::Inserted, node };
children_changed(&metadata);
// 10. Let staticNodeList be a list of nodes, initially « ».
// Spec-Note: We collect all nodes before calling the post-connection steps on any one of them, instead of calling
// the post-connection steps while were traversing the node tree. This is because the post-connection
// steps can modify the trees structure, making live traversal unsafe, possibly leading to the
// post-connection steps being called multiple times on the same node.
GC::RootVector<GC::Ref<Node>> static_node_list(heap());
// 11. For each node of nodes, in tree order:
for (auto& node : nodes) {
// 1. For each shadow-including inclusive descendant inclusiveDescendant of node, in shadow-including tree
// order, append inclusiveDescendant to staticNodeList.
node->for_each_shadow_including_inclusive_descendant([&static_node_list](Node& inclusive_descendant) {
static_node_list.append(inclusive_descendant);
return TraversalDecision::Continue;
});
}
// 12. For each node of staticNodeList, if node is connected, then run the post-connection steps with node.
for (auto& node : static_node_list) {
if (node->is_connected())
node->post_connection();
}
if (is_connected()) {
set_needs_layout_tree_update(true);
}
document().bump_dom_tree_version();
}
// https://dom.spec.whatwg.org/#concept-node-pre-insert
WebIDL::ExceptionOr<GC::Ref<Node>> Node::pre_insert(GC::Ref<Node> node, GC::Ptr<Node> child)
{
// 1. Ensure pre-insertion validity of node into parent before child.
TRY(ensure_pre_insertion_validity(node, child));
// 2. Let referenceChild be child.
auto reference_child = child;
// 3. If referenceChild is node, then set referenceChild to nodes next sibling.
if (reference_child == node)
reference_child = node->next_sibling();
// 4. Insert node into parent before referenceChild.
insert_before(node, reference_child);
// 5. Return node.
return node;
}
// https://dom.spec.whatwg.org/#dom-node-removechild
WebIDL::ExceptionOr<GC::Ref<Node>> Node::remove_child(GC::Ref<Node> child)
{
// The removeChild(child) method steps are to return the result of pre-removing child from this.
return pre_remove(child);
}
// https://dom.spec.whatwg.org/#concept-node-pre-remove
WebIDL::ExceptionOr<GC::Ref<Node>> Node::pre_remove(GC::Ref<Node> child)
{
// 1. If childs parent is not parent, then throw a "NotFoundError" DOMException.
if (child->parent() != this)
return WebIDL::NotFoundError::create(realm(), "Child does not belong to this node"_string);
// 2. Remove child.
child->remove();
// 3. Return child.
return child;
}
// https://dom.spec.whatwg.org/#concept-node-append
WebIDL::ExceptionOr<GC::Ref<Node>> Node::append_child(GC::Ref<Node> node)
{
// To append a node to a parent, pre-insert node into parent before null.
return pre_insert(node, nullptr);
}
// https://dom.spec.whatwg.org/#concept-node-remove
void Node::remove(bool suppress_observers)
{
// 1. Let parent be nodes parent
auto* parent = this->parent();
// 2. Assert: parent is non-null.
VERIFY(parent);
// 3. Let index be nodes index.
auto index = this->index();
// 4. For each live range whose start node is an inclusive descendant of node, set its start to (parent, index).
for (auto& range : Range::live_ranges()) {
if (range->start_container()->is_inclusive_descendant_of(*this))
MUST(range->set_start(*parent, index));
}
// 5. For each live range whose end node is an inclusive descendant of node, set its end to (parent, index).
for (auto& range : Range::live_ranges()) {
if (range->end_container()->is_inclusive_descendant_of(*this))
MUST(range->set_end(*parent, index));
}
// 6. For each live range whose start node is parent and start offset is greater than index, decrease its start offset by 1.
for (auto& range : Range::live_ranges()) {
if (range->start_container() == parent && range->start_offset() > index)
range->decrease_start_offset({}, 1);
}
// 7. For each live range whose end node is parent and end offset is greater than index, decrease its end offset by 1.
for (auto& range : Range::live_ranges()) {
if (range->end_container() == parent && range->end_offset() > index)
range->decrease_end_offset({}, 1);
}
// 8. For each NodeIterator object iterator whose roots node document is nodes node document, run the NodeIterator pre-removing steps given node and iterator.
document().for_each_node_iterator([&](NodeIterator& node_iterator) {
node_iterator.run_pre_removing_steps(*this);
});
// 9. Let oldPreviousSibling be nodes previous sibling.
GC::Ptr<Node> old_previous_sibling = previous_sibling();
// 10. Let oldNextSibling be nodes next sibling.
GC::Ptr<Node> old_next_sibling = next_sibling();
if (is_connected()) {
// Since the tree structure is about to change, we need to invalidate both style and layout.
// In the future, we should find a way to only invalidate the parts that actually need it.
invalidate_style(StyleInvalidationReason::NodeRemove);
// NOTE: If we didn't have a layout node before, rebuilding the layout tree isn't gonna give us one
// after we've been removed from the DOM.
if (layout_node())
parent->set_needs_layout_tree_update(true);
}
// 11. Remove node from its parents children.
parent->remove_child_impl(*this);
// 12. If node is assigned, then run assign slottables for nodes assigned slot.
if (auto assigned_slot = assigned_slot_for_node(*this))
assign_slottables(*assigned_slot);
auto& parent_root = parent->root();
// 13. If parents root is a shadow root, and parent is a slot whose assigned nodes is the empty list, then run
// signal a slot change for parent.
if (parent_root.is_shadow_root() && is<HTML::HTMLSlotElement>(parent)) {
auto& slot = static_cast<HTML::HTMLSlotElement&>(*parent);
if (slot.assigned_nodes_internal().is_empty())
signal_a_slot_change(slot);
}
// 14. If node has an inclusive descendant that is a slot, then:
auto has_descendent_slot = false;
for_each_in_inclusive_subtree_of_type<HTML::HTMLSlotElement>([&](auto const&) {
has_descendent_slot = true;
return TraversalDecision::Break;
});
if (has_descendent_slot) {
// 1. Run assign slottables for a tree with parents root.
assign_slottables_for_a_tree(parent_root);
// 2. Run assign slottables for a tree with node.
assign_slottables_for_a_tree(*this);
}
// 15. Run the removing steps with node and parent.
removed_from(parent, parent_root);
// 16. Let isParentConnected be parents connected.
bool is_parent_connected = parent->is_connected();
// 17. If node is custom and isParentConnected is true, then enqueue a custom element callback reaction with node,
// callback name "disconnectedCallback", and an empty argument list.
// Spec Note: It is intentional for now that custom elements do not get parent passed.
// This might change in the future if there is a need.
if (is<DOM::Element>(*this)) {
auto& element = static_cast<DOM::Element&>(*this);
if (element.is_custom() && is_parent_connected) {
GC::RootVector<JS::Value> empty_arguments { vm().heap() };
element.enqueue_a_custom_element_callback_reaction(HTML::CustomElementReactionNames::disconnectedCallback, move(empty_arguments));
}
}
// 18. For each shadow-including descendant descendant of node, in shadow-including tree order, then:
for_each_shadow_including_descendant([&](Node& descendant) {
// 1. Run the removing steps with descendant
descendant.removed_from(nullptr, parent_root);
// 2. If descendant is custom and isParentConnected is true, then enqueue a custom element callback reaction with descendant,
// callback name "disconnectedCallback", and an empty argument list.
if (is<DOM::Element>(descendant)) {
auto& element = static_cast<DOM::Element&>(descendant);
if (element.is_custom() && is_parent_connected) {
GC::RootVector<JS::Value> empty_arguments { vm().heap() };
element.enqueue_a_custom_element_callback_reaction(HTML::CustomElementReactionNames::disconnectedCallback, move(empty_arguments));
}
}
return TraversalDecision::Continue;
});
// 19. For each inclusive ancestor inclusiveAncestor of parent, and then for each registered of inclusiveAncestors registered observer list,
// if registereds options["subtree"] is true, then append a new transient registered observer
// whose observer is registereds observer, options is registereds options, and source is registered to nodes registered observer list.
for (auto* inclusive_ancestor = parent; inclusive_ancestor; inclusive_ancestor = inclusive_ancestor->parent()) {
if (!inclusive_ancestor->m_registered_observer_list)
continue;
for (auto& registered : *inclusive_ancestor->m_registered_observer_list) {
if (registered->options().subtree) {
auto transient_observer = TransientRegisteredObserver::create(registered->observer(), registered->options(), registered);
add_registered_observer(move(transient_observer));
}
}
}
// 20. If suppress observers flag is unset, then queue a tree mutation record for parent with « », « node », oldPreviousSibling, and oldNextSibling.
if (!suppress_observers) {
parent->queue_tree_mutation_record({}, { *this }, old_previous_sibling.ptr(), old_next_sibling.ptr());
}
// 21. Run the children changed steps for parent.
parent->children_changed(nullptr);
document().bump_dom_tree_version();
}
// https://dom.spec.whatwg.org/#concept-node-replace
WebIDL::ExceptionOr<GC::Ref<Node>> Node::replace_child(GC::Ref<Node> node, GC::Ref<Node> child)
{
// If parent is not a Document, DocumentFragment, or Element node, then throw a "HierarchyRequestError" DOMException.
if (!is<Document>(this) && !is<DocumentFragment>(this) && !is<Element>(this))
return WebIDL::HierarchyRequestError::create(realm(), "Can only insert into a document, document fragment or element"_string);
// 2. If node is a host-including inclusive ancestor of parent, then throw a "HierarchyRequestError" DOMException.
if (node->is_host_including_inclusive_ancestor_of(*this))
return WebIDL::HierarchyRequestError::create(realm(), "New node is an ancestor of this node"_string);
// 3. If childs parent is not parent, then throw a "NotFoundError" DOMException.
if (child->parent() != this)
return WebIDL::NotFoundError::create(realm(), "This node is not the parent of the given child"_string);
// FIXME: All the following "Invalid node type for insertion" messages could be more descriptive.
// 4. If node is not a DocumentFragment, DocumentType, Element, or CharacterData node, then throw a "HierarchyRequestError" DOMException.
if (!is<DocumentFragment>(*node) && !is<DocumentType>(*node) && !is<Element>(*node) && !is<Text>(*node) && !is<Comment>(*node) && !is<ProcessingInstruction>(*node))
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
// 5. If either node is a Text node and parent is a document, or node is a doctype and parent is not a document, then throw a "HierarchyRequestError" DOMException.
if ((is<Text>(*node) && is<Document>(this)) || (is<DocumentType>(*node) && !is<Document>(this)))
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
// If parent is a document, and any of the statements below, switched on the interface node implements, are true, then throw a "HierarchyRequestError" DOMException.
if (is<Document>(this)) {
// DocumentFragment
if (is<DocumentFragment>(*node)) {
// If node has more than one element child or has a Text node child.
// Otherwise, if node has one element child and either parent has an element child that is not child or a doctype is following child.
auto node_element_child_count = as<DocumentFragment>(*node).child_element_count();
if ((node_element_child_count > 1 || node->has_child_of_type<Text>())
|| (node_element_child_count == 1 && (first_child_of_type<Element>() != child || child->has_following_node_of_type_in_tree_order<DocumentType>()))) {
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
}
} else if (is<Element>(*node)) {
// Element
// parent has an element child that is not child or a doctype is following child.
if (first_child_of_type<Element>() != child || child->has_following_node_of_type_in_tree_order<DocumentType>())
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
} else if (is<DocumentType>(*node)) {
// DocumentType
// parent has a doctype child that is not child, or an element is preceding child.
if (first_child_of_type<DocumentType>() != child || child->has_preceding_node_of_type_in_tree_order<Element>())
return WebIDL::HierarchyRequestError::create(realm(), "Invalid node type for insertion"_string);
}
}
// 7. Let referenceChild be childs next sibling.
GC::Ptr<Node> reference_child = child->next_sibling();
// 8. If referenceChild is node, then set referenceChild to nodes next sibling.
if (reference_child == node)
reference_child = node->next_sibling();
// 9. Let previousSibling be childs previous sibling.
GC::Ptr<Node> previous_sibling = child->previous_sibling();
// 10. Let removedNodes be the empty set.
Vector<GC::Root<Node>> removed_nodes;
// 11. If childs parent is non-null, then:
// NOTE: The above can only be false if child is node.
if (child->parent()) {
// 1. Set removedNodes to « child ».
removed_nodes.append(GC::make_root(*child));
// 2. Remove child with the suppress observers flag set.
child->remove(true);
}
// 12. Let nodes be nodes children if node is a DocumentFragment node; otherwise « node ».
Vector<GC::Root<Node>> nodes;
if (is<DocumentFragment>(*node))
nodes = node->children_as_vector();
else
nodes.append(GC::make_root(*node));
// AD-HOC: Since removing the child may have executed arbitrary code, we have to verify
// the sanity of inserting `node` before `reference_child` again, as well as
// `child` not being reinserted elsewhere.
if (!reference_child || (reference_child->parent() == this && !child->parent_node())) {
// 13. Insert node into parent before referenceChild with the suppress observers flag set.
insert_before(node, reference_child, true);
}
// 14. Queue a tree mutation record for parent with nodes, removedNodes, previousSibling, and referenceChild.
queue_tree_mutation_record(move(nodes), move(removed_nodes), previous_sibling.ptr(), reference_child.ptr());
// 15. Return child.
return child;
}
// https://dom.spec.whatwg.org/#concept-node-clone
WebIDL::ExceptionOr<GC::Ref<Node>> Node::clone_node(Document* document, bool subtree, Node* parent) const
{
// To clone a node given a node node and an optional document document (default nodes node document),
// boolean subtree (default false), and node-or-null parent (default null):
if (!document)
document = m_document;
// 1. Assert: node is not a document or node is document.
VERIFY(!is_document() || this == document);
// 2. Let copy be the result of cloning a single node given node and document.
auto copy = TRY(clone_single_node(*document));
// 3. Run any cloning steps defined for node in other applicable specifications and pass node, copy, and subtree as parameters.
TRY(cloned(*copy, subtree));
// 4. If parent is non-null, then append copy to parent.
if (parent)
TRY(parent->append_child(copy));
// 5. If subtree is true, then for each child of nodes children, in tree order:
// clone a node given child with document set to document, subtree set to subtree, and parent set to copy.
if (subtree) {
for (auto child = first_child(); child; child = child->next_sibling()) {
TRY(child->clone_node(document, subtree, copy));
}
}
// 6. If node is an element, node is a shadow host, and nodes shadow roots clonable is true:
if (is_element()) {
auto& node_element = as<Element>(*this);
if (node_element.is_shadow_host() && node_element.shadow_root()->clonable()) {
// 1. Assert: copy is not a shadow host.
auto& copy_element = as<Element>(*copy);
VERIFY(!copy_element.is_shadow_host());
// 2. Attach a shadow root with copy, nodes shadow roots mode, true, nodes shadow roots serializable, nodes shadow roots delegates focus, and nodes shadow roots slot assignment.
TRY(copy_element.attach_a_shadow_root(node_element.shadow_root()->mode(), true, node_element.shadow_root()->serializable(), node_element.shadow_root()->delegates_focus(), node_element.shadow_root()->slot_assignment()));
// 3. Set copys shadow roots declarative to nodes shadow roots declarative.
copy_element.shadow_root()->set_declarative(node_element.shadow_root()->declarative());
// 4. For each child of nodes shadow roots children, in tree order:
// clone a node given child with document set to document, subtree set to subtree, and parent set to copys shadow root.
for (auto child = node_element.shadow_root()->first_child(); child; child = child->next_sibling()) {
TRY(child->clone_node(document, subtree, copy_element.shadow_root()));
}
}
}
// 7. Return copy.
return GC::Ref { *copy };
}
// https://dom.spec.whatwg.org/#clone-a-single-node
WebIDL::ExceptionOr<GC::Ref<Node>> Node::clone_single_node(Document& document) const
{
// To clone a single node given a node node and document document:
// 1. Let copy be null.
GC::Ptr<Node> copy = nullptr;
// 2. If node is an element:
if (is_element()) {
// 1. Set copy to the result of creating an element, given document, nodes local name, nodes namespace, nodes namespace prefix, and nodes is value.
auto& element = *as<Element>(this);
auto element_copy = TRY(DOM::create_element(document, element.local_name(), element.namespace_uri(), element.prefix(), element.is_value()));
// 2. For each attribute of nodes attribute list:
Optional<WebIDL::Exception> maybe_exception;
element.for_each_attribute([&](Attr const& attr) {
// 1. Let copyAttribute be the result of cloning a single node given attribute and document.
auto copy_attribute_or_error = attr.clone_single_node(document);
if (copy_attribute_or_error.is_error()) {
maybe_exception = copy_attribute_or_error.release_error();
return;
}
auto copy_attribute = copy_attribute_or_error.release_value();
// 2. Append copyAttribute to copy.
element_copy->append_attribute(as<Attr>(*copy_attribute));
});
if (maybe_exception.has_value())
return *maybe_exception;
copy = move(element_copy);
}
// 3. Otherwise, set copy to a node that implements the same interfaces as node, and fulfills these additional requirements, switching on the interface node implements:
else {
if (is_document()) {
// -> Document
auto& document_ = as<Document>(*this);
auto document_copy = [&] -> GC::Ref<Document> {
switch (document_.document_type()) {
case Document::Type::XML:
return XMLDocument::create(realm(), document_.url());
case Document::Type::HTML:
return HTML::HTMLDocument::create(realm(), document_.url());
default:
return Document::create(realm(), document_.url());
}
}();
// Set copys encoding, content type, URL, origin, type, and mode to those of node.
document_copy->set_encoding(document_.encoding());
document_copy->set_content_type(document_.content_type());
document_copy->set_url(document_.url());
document_copy->set_origin(document_.origin());
document_copy->set_document_type(document_.document_type());
document_copy->set_quirks_mode(document_.mode());
copy = move(document_copy);
} else if (is_document_type()) {
// -> DocumentType
auto& document_type = as<DocumentType>(*this);
auto document_type_copy = realm().create<DocumentType>(document);
// Set copys name, public ID, and system ID to those of node.
document_type_copy->set_name(document_type.name());
document_type_copy->set_public_id(document_type.public_id());
document_type_copy->set_system_id(document_type.system_id());
copy = move(document_type_copy);
} else if (is_attribute()) {
// -> Attr
// Set copys namespace, namespace prefix, local name, and value to those of node.
auto& attr = as<Attr>(*this);
copy = attr.clone(document);
} else if (is_text()) {
// -> Text
auto& text = as<Text>(*this);
// Set copys data to that of node.
copy = [&]() -> GC::Ref<Text> {
switch (type()) {
case NodeType::TEXT_NODE:
return realm().create<Text>(document, text.data());
case NodeType::CDATA_SECTION_NODE:
return realm().create<CDATASection>(document, text.data());
default:
VERIFY_NOT_REACHED();
}
}();
} else if (is_comment()) {
// -> Comment
auto& comment = as<Comment>(*this);
// Set copys data to that of node.
auto comment_copy = realm().create<Comment>(document, comment.data());
copy = move(comment_copy);
} else if (is<ProcessingInstruction>(this)) {
// -> ProcessingInstruction
auto& processing_instruction = as<ProcessingInstruction>(*this);
// Set copys target and data to those of node.
auto processing_instruction_copy = realm().create<ProcessingInstruction>(document, processing_instruction.data(), processing_instruction.target());
copy = move(processing_instruction_copy);
}
// -> Otherwise
// Do nothing.
else if (is<DocumentFragment>(this)) {
copy = realm().create<DocumentFragment>(document);
} else {
dbgln("Missing code for cloning a '{}' node. Please add it to Node::clone_single_node()", class_name());
VERIFY_NOT_REACHED();
}
}
// 4. Assert: copy is a node.
VERIFY(copy);
// 5. If node is a document, then set document to copy.
Document& document_to_use = is_document()
? static_cast<Document&>(*copy)
: document;
// 6. Set copys node document to document.
copy->set_document(document_to_use);
// 7. Return copy.
return GC::Ref { *copy };
}
// https://dom.spec.whatwg.org/#dom-node-clonenode
WebIDL::ExceptionOr<GC::Ref<Node>> Node::clone_node_binding(bool subtree)
{
// 1. If this is a shadow root, then throw a "NotSupportedError" DOMException.
if (is<ShadowRoot>(*this))
return WebIDL::NotSupportedError::create(realm(), "Cannot clone shadow root"_string);
// 2. Return the result of cloning a node given this with subtree set to subtree.
return clone_node(nullptr, subtree);
}
void Node::set_document(Badge<Document>, Document& document)
{
set_document(document);
}
void Node::set_document(Document& document)
{
if (m_document.ptr() == &document)
return;
m_document = &document;
if (needs_style_update() || child_needs_style_update()) {
// NOTE: We unset and reset the "needs style update" flag here.
// This ensures that there's a pending style update in the new document
// that will eventually assign some style to this node if needed.
set_needs_style_update(false);
set_needs_style_update(true);
}
}
// https://w3c.github.io/editing/docs/execCommand/#editable
bool Node::is_editable() const
{
// Something is editable if it is a node; it is not an editing host;
if (is_editing_host())
return false;
// it does not have a contenteditable attribute set to the false state;
if (is<HTML::HTMLElement>(this) && static_cast<HTML::HTMLElement const&>(*this).content_editable_state() == HTML::ContentEditableState::False)
return false;
// its parent is an editing host or editable;
if (!parent() || !parent()->is_editable_or_editing_host())
return false;
// and either it is an HTML element,
if (is<HTML::HTMLElement>(this))
return true;
// or it is an svg or math element,
if (is<SVG::SVGElement>(this) || is<MathML::MathMLElement>(this))
return true;
// or it is not an Element and its parent is an HTML element.
return !is<Element>(this) && is<HTML::HTMLElement>(parent());
}
// https://html.spec.whatwg.org/multipage/interaction.html#editing-host
bool Node::is_editing_host() const
{
// NOTE: Both conditions below require this to be an HTML element.
if (!is<HTML::HTMLElement>(this))
return false;
// An editing host is either an HTML element with its contenteditable attribute in the true state or
// plaintext-only state,
auto state = static_cast<HTML::HTMLElement const&>(*this).content_editable_state();
if (state == HTML::ContentEditableState::True || state == HTML::ContentEditableState::PlaintextOnly)
return true;
// or a child HTML element of a Document whose design mode enabled is true.
return is<Document>(parent()) && static_cast<Document const&>(*parent()).design_mode_enabled_state();
}
void Node::set_layout_node(Badge<Layout::Node>, GC::Ref<Layout::Node> layout_node)
{
m_layout_node = layout_node;
}
void Node::detach_layout_node(Badge<Layout::TreeBuilder>)
{
m_layout_node = nullptr;
}
2022-04-01 20:58:27 +03:00
EventTarget* Node::get_parent(Event const&)
{
// A nodes get the parent algorithm, given an event, returns the nodes assigned slot, if node is assigned;
// otherwise nodes parent.
if (auto assigned_slot = assigned_slot_for_node(*this))
return assigned_slot.ptr();
return parent();
}
void Node::set_needs_layout_tree_update(bool value)
{
if (m_needs_layout_tree_update == value)
return;
m_needs_layout_tree_update = value;
// NOTE: If this is a shadow root, we need to propagate the layout tree update to the host.
if (is_shadow_root()) {
auto& shadow_root = static_cast<ShadowRoot&>(*this);
if (auto host = shadow_root.host())
host->set_needs_layout_tree_update(value);
}
if (m_needs_layout_tree_update) {
for (auto* ancestor = parent_or_shadow_host(); ancestor; ancestor = ancestor->parent_or_shadow_host()) {
if (ancestor->m_child_needs_layout_tree_update)
break;
ancestor->m_child_needs_layout_tree_update = true;
}
document().set_needs_layout();
}
}
void Node::set_needs_style_update(bool value)
{
if (m_needs_style_update == value)
return;
m_needs_style_update = value;
if (m_needs_style_update) {
for (auto* ancestor = parent_or_shadow_host(); ancestor; ancestor = ancestor->parent_or_shadow_host()) {
if (ancestor->m_child_needs_style_update)
break;
ancestor->m_child_needs_style_update = true;
}
document().schedule_style_update();
}
}
void Node::post_connection()
{
}
void Node::inserted()
{
set_needs_style_update(true);
}
void Node::removed_from(Node*, Node&)
{
m_layout_node = nullptr;
m_paintable = nullptr;
}
ParentNode* Node::parent_or_shadow_host()
{
if (is<ShadowRoot>(*this))
return static_cast<ShadowRoot&>(*this).host();
return as<ParentNode>(parent());
}
Element* Node::parent_or_shadow_host_element()
{
if (is<ShadowRoot>(*this))
return static_cast<ShadowRoot&>(*this).host();
if (!parent())
return nullptr;
if (is<Element>(*parent()))
return static_cast<Element*>(parent());
if (is<ShadowRoot>(*parent()))
return static_cast<ShadowRoot&>(*parent()).host();
return nullptr;
}
Slottable Node::as_slottable()
{
VERIFY(is_slottable());
if (is_element())
return GC::Ref { static_cast<Element&>(*this) };
return GC::Ref { static_cast<Text&>(*this) };
}
GC::Ref<NodeList> Node::child_nodes()
{
if (!m_child_nodes) {
m_child_nodes = LiveNodeList::create(realm(), *this, LiveNodeList::Scope::Children, [](auto&) {
return true;
});
}
return *m_child_nodes;
}
Vector<GC::Root<Node>> Node::children_as_vector() const
{
Vector<GC::Root<Node>> nodes;
for_each_child([&](auto& child) {
nodes.append(GC::make_root(child));
return IterationDecision::Continue;
});
return nodes;
}
void Node::remove_all_children(bool suppress_observers)
{
while (GC::Ptr<Node> child = first_child())
child->remove(suppress_observers);
}
// https://dom.spec.whatwg.org/#dom-node-comparedocumentposition
u16 Node::compare_document_position(GC::Ptr<Node> other)
{
// 1. If this is other, then return zero.
if (this == other.ptr())
return DOCUMENT_POSITION_EQUAL;
// 2. Let node1 be other and node2 be this.
Node* node1 = other.ptr();
Node* node2 = this;
// 3. Let attr1 and attr2 be null.
Attr* attr1 = nullptr;
Attr* attr2 = nullptr;
// 4. If node1 is an attribute, then set attr1 to node1 and node1 to attr1s element.
if (is<Attr>(node1)) {
attr1 = as<Attr>(node1);
node1 = attr1->owner_element();
}
// 5. If node2 is an attribute, then:
if (is<Attr>(node2)) {
// 1. Set attr2 to node2 and node2 to attr2s element.
attr2 = as<Attr>(node2);
node2 = attr2->owner_element();
// 2. If attr1 and node1 are non-null, and node2 is node1, then:
if (attr1 && node1 && node2 == node1) {
// FIXME: 1. For each attr of node2s attribute list:
// 1. If attr equals attr1, then return the result of adding DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC and DOCUMENT_POSITION_PRECEDING.
// 2. If attr equals attr2, then return the result of adding DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC and DOCUMENT_POSITION_FOLLOWING.
}
}
// 6. If node1 or node2 is null, or node1s root is not node2s root, then return the result of adding
// DOCUMENT_POSITION_DISCONNECTED, DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC, and either DOCUMENT_POSITION_PRECEDING or DOCUMENT_POSITION_FOLLOWING, with the constraint that this is to be consistent, together.
if ((node1 == nullptr || node2 == nullptr) || (&node1->root() != &node2->root()))
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | (node1 > node2 ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING);
Vector<Node*> node1_ancestors;
for (auto* node = node1; node; node = node->parent())
node1_ancestors.append(node);
Vector<Node*> node2_ancestors;
for (auto* node = node2; node; node = node->parent())
node2_ancestors.append(node);
auto it_node1_ancestors = node1_ancestors.rbegin();
auto it_node2_ancestors = node2_ancestors.rbegin();
// Walk ancestor chains of both nodes starting from root
while (it_node1_ancestors != node1_ancestors.rend() && it_node2_ancestors != node2_ancestors.rend()) {
auto* ancestor1 = *it_node1_ancestors;
auto* ancestor2 = *it_node2_ancestors;
// If ancestors of nodes at the same level in the tree are different then preceding node is the one with lower sibling position
if (ancestor1 != ancestor2) {
auto* node = ancestor1;
while (node) {
if (node == ancestor2)
return DOCUMENT_POSITION_PRECEDING;
node = node->next_sibling();
}
return DOCUMENT_POSITION_FOLLOWING;
}
it_node1_ancestors++;
it_node2_ancestors++;
}
// NOTE: If nodes in ancestors chains are the same but one chain is longer, then one node is ancestor of another.
// The node with shorter ancestors chain is the ancestor.
// The node with longer ancestors chain is the descendant.
// 7. If node1 is an ancestor of node2 and attr1 is null, or node1 is node2 and attr2 is non-null, then return the result of adding DOCUMENT_POSITION_CONTAINS to DOCUMENT_POSITION_PRECEDING.
if ((node1_ancestors.size() < node2_ancestors.size() && !attr1) || (node1 == node2 && attr2))
return DOCUMENT_POSITION_CONTAINS | DOCUMENT_POSITION_PRECEDING;
// 8. If node1 is a descendant of node2 and attr2 is null, or node1 is node2 and attr1 is non-null, then return the result of adding DOCUMENT_POSITION_CONTAINED_BY to DOCUMENT_POSITION_FOLLOWING.
if ((node1_ancestors.size() > node2_ancestors.size() && !attr2) || (node1 == node2 && attr1))
return DOCUMENT_POSITION_CONTAINED_BY | DOCUMENT_POSITION_FOLLOWING;
// 9. If node1 is preceding node2, then return DOCUMENT_POSITION_PRECEDING.
if (node1_ancestors.size() < node2_ancestors.size())
return DOCUMENT_POSITION_PRECEDING;
// 10. Return DOCUMENT_POSITION_FOLLOWING.
return DOCUMENT_POSITION_FOLLOWING;
}
// https://dom.spec.whatwg.org/#concept-tree-host-including-inclusive-ancestor
2022-04-01 20:58:27 +03:00
bool Node::is_host_including_inclusive_ancestor_of(Node const& other) const
{
// An object A is a host-including inclusive ancestor of an object B,
// if either A is an inclusive ancestor of B,
if (is_inclusive_ancestor_of(other))
return true;
// or if Bs root has a non-null host and A is a host-including inclusive ancestor of Bs roots host
if (is<DocumentFragment>(other.root())
&& static_cast<DocumentFragment const&>(other.root()).host()
&& is_inclusive_ancestor_of(*static_cast<DocumentFragment const&>(other.root()).host())) {
return true;
}
return false;
}
// https://dom.spec.whatwg.org/#dom-node-ownerdocument
GC::Ptr<Document> Node::owner_document() const
{
// The ownerDocument getter steps are to return null, if this is a document; otherwise thiss node document.
if (is_document())
return nullptr;
return m_document;
}
// This function tells us whether a node is interesting enough to show up
// in the DOM inspector. This hides two things:
// - Non-rendered whitespace
// - Rendered whitespace between block-level elements
bool Node::is_uninteresting_whitespace_node() const
{
if (!is<Text>(*this))
return false;
if (!static_cast<Text const&>(*this).data().bytes_as_string_view().is_whitespace())
return false;
if (!layout_node())
return true;
if (auto parent = layout_node()->parent(); parent && parent->is_anonymous())
return true;
return false;
}
void Node::serialize_tree_as_json(JsonObjectSerializer<StringBuilder>& object) const
{
MUST(object.add("name"sv, node_name()));
MUST(object.add("id"sv, unique_id().value()));
if (is_document()) {
MUST(object.add("type"sv, "document"));
} else if (is_element()) {
MUST(object.add("type"sv, "element"));
auto const* element = static_cast<DOM::Element const*>(this);
if (element->namespace_uri().has_value())
MUST(object.add("namespace"sv, element->namespace_uri().value()));
if (element->has_attributes()) {
auto attributes = MUST(object.add_object("attributes"sv));
element->for_each_attribute([&attributes](auto& name, auto& value) {
MUST(attributes.add(name, value));
});
MUST(attributes.finish());
}
if (element->is_navigable_container()) {
auto const* container = static_cast<HTML::NavigableContainer const*>(element);
if (auto const* content_document = container->content_document()) {
auto children = MUST(object.add_array("children"sv));
JsonObjectSerializer<StringBuilder> content_document_object = MUST(children.add_object());
content_document->serialize_tree_as_json(content_document_object);
MUST(content_document_object.finish());
MUST(children.finish());
}
}
if (paintable_box()) {
if (paintable_box()->could_be_scrolled_by_wheel_event()) {
MUST(object.add("scrollable"sv, true));
}
if (!paintable_box()->is_visible()) {
MUST(object.add("invisible"sv, true));
}
if (paintable_box()->has_stacking_context()) {
MUST(object.add("stackingContext"sv, true));
}
}
} else if (is_text()) {
MUST(object.add("type"sv, "text"));
auto text_node = static_cast<DOM::Text const*>(this);
MUST(object.add("text"sv, text_node->data()));
} else if (is_comment()) {
MUST(object.add("type"sv, "comment"sv));
MUST(object.add("data"sv, static_cast<DOM::Comment const&>(*this).data()));
} else if (is_shadow_root()) {
MUST(object.add("type"sv, "shadow-root"));
MUST(object.add("mode"sv, static_cast<DOM::ShadowRoot const&>(*this).mode() == Bindings::ShadowRootMode::Open ? "open"sv : "closed"sv));
}
MUST((object.add("visible"sv, !!layout_node())));
auto const* element = is_element() ? static_cast<DOM::Element const*>(this) : nullptr;
if (has_child_nodes()
|| (element && (element->is_shadow_host() || element->has_pseudo_elements()))) {
auto children = MUST(object.add_array("children"sv));
auto add_child = [&children](DOM::Node const& child) {
if (child.is_uninteresting_whitespace_node())
return IterationDecision::Continue;
JsonObjectSerializer<StringBuilder> child_object = MUST(children.add_object());
child.serialize_tree_as_json(child_object);
MUST(child_object.finish());
return IterationDecision::Continue;
};
for_each_child(add_child);
if (element) {
// Pseudo-elements don't have DOM nodes,so we have to add them separately.
element->serialize_pseudo_elements_as_json(children);
if (element->is_shadow_host())
add_child(*element->shadow_root());
}
MUST(children.finish());
}
}
// https://html.spec.whatwg.org/multipage/webappapis.html#concept-n-script
// https://whatpr.org/html/9893/webappapis.html#concept-n-script
bool Node::is_scripting_enabled() const
{
// Scripting is enabled for a node node if node's node document's browsing context is non-null, and scripting is enabled for node's relevant realm.
return document().browsing_context() && HTML::is_scripting_enabled(HTML::relevant_realm(*this));
}
// https://html.spec.whatwg.org/multipage/webappapis.html#concept-n-noscript
// https://whatpr.org/html/9893/webappapis.html#concept-n-script
bool Node::is_scripting_disabled() const
{
// Scripting is disabled for a node when scripting is not enabled, i.e., when its node document's browsing context is null or when scripting is disabled for its relevant realm.
return !is_scripting_enabled();
}
// https://dom.spec.whatwg.org/#dom-node-contains
bool Node::contains(GC::Ptr<Node> other) const
{
// The contains(other) method steps are to return true if other is an inclusive descendant of this; otherwise false (including when other is null).
return other && other->is_inclusive_descendant_of(*this);
}
// https://dom.spec.whatwg.org/#concept-shadow-including-descendant
bool Node::is_shadow_including_descendant_of(Node const& other) const
{
// An object A is a shadow-including descendant of an object B,
// if A is a descendant of B,
if (is_descendant_of(other))
return true;
// or As root is a shadow root
if (!is<ShadowRoot>(root()))
return false;
// and As roots host is a shadow-including inclusive descendant of B.
auto& shadow_root = as<ShadowRoot>(root());
return shadow_root.host() && shadow_root.host()->is_shadow_including_inclusive_descendant_of(other);
}
// https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
bool Node::is_shadow_including_inclusive_descendant_of(Node const& other) const
{
// A shadow-including inclusive descendant is an object or one of its shadow-including descendants.
return &other == this || is_shadow_including_descendant_of(other);
}
// https://dom.spec.whatwg.org/#concept-shadow-including-ancestor
bool Node::is_shadow_including_ancestor_of(Node const& other) const
{
// An object A is a shadow-including ancestor of an object B, if and only if B is a shadow-including descendant of A.
return other.is_shadow_including_descendant_of(*this);
}
// https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
bool Node::is_shadow_including_inclusive_ancestor_of(Node const& other) const
{
// A shadow-including inclusive ancestor is an object or one of its shadow-including ancestors.
return other.is_shadow_including_inclusive_descendant_of(*this);
}
// https://dom.spec.whatwg.org/#concept-node-replace-all
void Node::replace_all(GC::Ptr<Node> node)
{
// 1. Let removedNodes be parents children.
auto removed_nodes = children_as_vector();
// 2. Let addedNodes be the empty set.
Vector<GC::Root<Node>> added_nodes;
// 3. If node is a DocumentFragment node, then set addedNodes to nodes children.
if (node && is<DocumentFragment>(*node)) {
added_nodes = node->children_as_vector();
}
// 4. Otherwise, if node is non-null, set addedNodes to « node ».
else if (node) {
added_nodes.append(GC::make_root(*node));
}
// 5. Remove all parents children, in tree order, with the suppress observers flag set.
remove_all_children(true);
// 6. If node is non-null, then insert node into parent before null with the suppress observers flag set.
if (node)
insert_before(*node, nullptr, true);
// 7. If either addedNodes or removedNodes is not empty, then queue a tree mutation record for parent with addedNodes, removedNodes, null, and null.
if (!added_nodes.is_empty() || !removed_nodes.is_empty()) {
queue_tree_mutation_record(move(added_nodes), move(removed_nodes), nullptr, nullptr);
}
}
// https://dom.spec.whatwg.org/#string-replace-all
void Node::string_replace_all(String const& string)
{
// 1. Let node be null.
GC::Ptr<Node> node;
// 2. If string is not the empty string, then set node to a new Text node whose data is string and node document is parents node document.
if (!string.is_empty())
node = realm().create<Text>(document(), string);
// 3. Replace all with node within parent.
replace_all(node);
}
// https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#fragment-serializing-algorithm-steps
WebIDL::ExceptionOr<String> Node::serialize_fragment(DOMParsing::RequireWellFormed require_well_formed, FragmentSerializationMode fragment_serialization_mode) const
{
// 1. Let context document be the value of node's node document.
auto const& context_document = document();
// 2. If context document is an HTML document, return the result of HTML fragment serialization algorithm with node, false, and « ».
if (context_document.is_html_document())
return HTML::HTMLParser::serialize_html_fragment(*this, HTML::HTMLParser::SerializableShadowRoots::No, {}, fragment_serialization_mode);
// 3. Return the XML serialization of node given require well-formed.
// AD-HOC: XML serialization algorithm returns the "outer" XML serialization of the node.
// For inner, concatenate the serialization of all children.
if (fragment_serialization_mode == FragmentSerializationMode::Inner) {
StringBuilder markup;
for (auto* child = first_child(); child; child = child->next_sibling()) {
auto child_markup = TRY(DOMParsing::serialize_node_to_xml_string(*child, require_well_formed));
markup.append(child_markup.bytes_as_string_view());
}
return MUST(markup.to_string());
}
return DOMParsing::serialize_node_to_xml_string(*this, require_well_formed);
}
// https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#unsafely-set-html
WebIDL::ExceptionOr<void> Node::unsafely_set_html(Element& context_element, StringView html)
{
// 1. Let newChildren be the result of the HTML fragment parsing algorithm given contextElement, html, and true.
auto new_children = HTML::HTMLParser::parse_html_fragment(context_element, html, HTML::HTMLParser::AllowDeclarativeShadowRoots::Yes);
// 2. Let fragment be a new DocumentFragment whose node document is contextElements node document.
auto fragment = realm().create<DocumentFragment>(context_element.document());
// 3. For each node in newChildren, append node to fragment.
for (auto& child : new_children)
// I don't know if this can throw here, but let's be safe.
(void)TRY(fragment->append_child(*child));
// 4. Replace all with fragment within contextElement.
replace_all(fragment);
return {};
}
// https://dom.spec.whatwg.org/#dom-node-issamenode
bool Node::is_same_node(Node const* other_node) const
{
// The isSameNode(otherNode) method steps are to return true if otherNode is this; otherwise false.
return this == other_node;
}
// https://dom.spec.whatwg.org/#dom-node-isequalnode
bool Node::is_equal_node(Node const* other_node) const
{
// The isEqualNode(otherNode) method steps are to return true if otherNode is non-null and this equals otherNode; otherwise false.
if (!other_node)
return false;
// Fast path for testing a node against itself.
if (this == other_node)
return true;
// A node A equals a node B if all of the following conditions are true:
// A and B implement the same interfaces.
if (!node_name().equals_ignoring_ascii_case(other_node->node_name()))
return false;
// The following are equal, switching on the interface A implements:
switch (node_type()) {
case (u16)NodeType::DOCUMENT_TYPE_NODE: {
// Its name, public ID, and system ID.
auto& this_doctype = as<DocumentType>(*this);
auto& other_doctype = as<DocumentType>(*other_node);
if (this_doctype.name() != other_doctype.name()
|| this_doctype.public_id() != other_doctype.public_id()
|| this_doctype.system_id() != other_doctype.system_id())
return false;
break;
}
case (u16)NodeType::ELEMENT_NODE: {
// Its namespace, namespace prefix, local name, and its attribute lists size.
auto& this_element = as<Element>(*this);
auto& other_element = as<Element>(*other_node);
if (this_element.namespace_uri() != other_element.namespace_uri()
|| this_element.prefix() != other_element.prefix()
|| this_element.local_name() != other_element.local_name()
|| this_element.attribute_list_size() != other_element.attribute_list_size())
return false;
// If A is an element, each attribute in its attribute list has an attribute that equals an attribute in Bs attribute list.
bool has_same_attributes = true;
this_element.for_each_attribute([&](auto const& attribute) {
if (other_element.get_attribute_ns(attribute.namespace_uri(), attribute.local_name()) != attribute.value())
has_same_attributes = false;
});
if (!has_same_attributes)
return false;
break;
}
case (u16)NodeType::COMMENT_NODE:
case (u16)NodeType::TEXT_NODE: {
// Its data.
auto& this_cdata = as<CharacterData>(*this);
auto& other_cdata = as<CharacterData>(*other_node);
if (this_cdata.data() != other_cdata.data())
return false;
break;
}
case (u16)NodeType::ATTRIBUTE_NODE: {
// Its namespace, local name, and value.
auto& this_attr = as<Attr>(*this);
auto& other_attr = as<Attr>(*other_node);
if (this_attr.namespace_uri() != other_attr.namespace_uri())
return false;
if (this_attr.local_name() != other_attr.local_name())
return false;
if (this_attr.value() != other_attr.value())
return false;
break;
}
case (u16)NodeType::PROCESSING_INSTRUCTION_NODE: {
// Its target and data.
auto& this_processing_instruction = as<ProcessingInstruction>(*this);
auto& other_processing_instruction = as<ProcessingInstruction>(*other_node);
if (this_processing_instruction.target() != other_processing_instruction.target())
return false;
if (this_processing_instruction.data() != other_processing_instruction.data())
return false;
break;
}
default:
break;
}
// A and B have the same number of children.
if (child_count() != other_node->child_count())
return false;
// Each child of A equals the child of B at the identical index.
auto* this_child = first_child();
auto* other_child = other_node->first_child();
while (this_child) {
VERIFY(other_child);
if (!this_child->is_equal_node(other_child))
return false;
this_child = this_child->next_sibling();
other_child = other_child->next_sibling();
}
return true;
}
// https://dom.spec.whatwg.org/#locate-a-namespace
Optional<String> Node::locate_a_namespace(Optional<String> const& prefix) const
{
// To locate a namespace for a node using prefix, switch on the interface node implements:
// Element
if (is<Element>(*this)) {
// 1. If prefix is "xml", then return the XML namespace.
if (prefix == "xml")
return Web::Namespace::XML.to_string();
// 2. If prefix is "xmlns", then return the XMLNS namespace.
if (prefix == "xmlns")
return Web::Namespace::XMLNS.to_string();
// 3. If its namespace is non-null and its namespace prefix is prefix, then return namespace.
auto& element = as<Element>(*this);
if (element.namespace_uri().has_value() && element.prefix() == prefix)
return element.namespace_uri()->to_string();
// 4. If it has an attribute whose namespace is the XMLNS namespace, namespace prefix is "xmlns", and local name is prefix,
// or if prefix is null and it has an attribute whose namespace is the XMLNS namespace, namespace prefix is null,
// and local name is "xmlns", then return its value if it is not the empty string, and null otherwise.
if (auto* attributes = element.attributes()) {
for (size_t i = 0; i < attributes->length(); ++i) {
auto& attr = *attributes->item(i);
if (attr.namespace_uri() == Web::Namespace::XMLNS) {
if ((attr.prefix() == "xmlns" && attr.local_name() == prefix) || (!prefix.has_value() && !attr.prefix().has_value() && attr.local_name() == "xmlns")) {
auto value = attr.value();
if (!value.is_empty())
return value;
return {};
}
}
}
}
// 5. If its parent element is null, then return null.
auto* parent_element = element.parent_element();
if (!element.parent_element())
return {};
// 6. Return the result of running locate a namespace on its parent element using prefix.
return parent_element->locate_a_namespace(prefix);
}
// Document
if (is<Document>(*this)) {
// 1. If its document element is null, then return null.
auto* document_element = as<Document>(*this).document_element();
if (!document_element)
return {};
// 2. Return the result of running locate a namespace on its document element using prefix.
return document_element->locate_a_namespace(prefix);
}
// DocumentType
// DocumentFragment
if (is<DocumentType>(*this) || is<DocumentFragment>(*this)) {
// Return null.
return {};
}
// Attr
if (is<Attr>(*this)) {
// 1. If its element is null, then return null.
auto* element = as<Attr>(*this).owner_element();
if (!element)
return {};
// 2. Return the result of running locate a namespace on its element using prefix.
return element->locate_a_namespace(prefix);
}
// Otherwise
// 1. If its parent element is null, then return null.
auto* parent_element = this->parent_element();
if (!parent_element)
return {};
// 2. Return the result of running locate a namespace on its parent element using prefix.
return parent_element->locate_a_namespace(prefix);
}
// https://dom.spec.whatwg.org/#dom-node-lookupnamespaceuri
Optional<String> Node::lookup_namespace_uri(Optional<String> prefix) const
{
// 1. If prefix is the empty string, then set it to null.
if (prefix.has_value() && prefix->is_empty())
prefix = {};
// 2. Return the result of running locate a namespace for this using prefix.
return locate_a_namespace(prefix);
}
// https://dom.spec.whatwg.org/#dom-node-lookupprefix
Optional<String> Node::lookup_prefix(Optional<String> namespace_) const
{
// 1. If namespace is null or the empty string, then return null.
if (!namespace_.has_value() || namespace_->is_empty())
return {};
// 2. Switch on the interface this implements:
// Element
if (is<Element>(*this)) {
// Return the result of locating a namespace prefix for it using namespace.
auto& element = as<Element>(*this);
return element.locate_a_namespace_prefix(namespace_);
}
// Document
if (is<Document>(*this)) {
// Return the result of locating a namespace prefix for its document element, if its document element is non-null; otherwise null.
auto* document_element = as<Document>(*this).document_element();
if (!document_element)
return {};
return document_element->locate_a_namespace_prefix(namespace_);
}
// DocumentType
// DocumentFragment
if (is<DocumentType>(*this) || is<DocumentFragment>(*this))
// Return null
return {};
// Attr
if (is<Attr>(*this)) {
// Return the result of locating a namespace prefix for its element, if its element is non-null; otherwise null.
auto* element = as<Attr>(*this).owner_element();
if (!element)
return {};
return element->locate_a_namespace_prefix(namespace_);
}
// Otherwise
// Return the result of locating a namespace prefix for its parent element, if its parent element is non-null; otherwise null.
auto* parent_element = this->parent_element();
if (!parent_element)
return {};
return parent_element->locate_a_namespace_prefix(namespace_);
}
// https://dom.spec.whatwg.org/#dom-node-isdefaultnamespace
bool Node::is_default_namespace(Optional<String> namespace_) const
{
// 1. If namespace is the empty string, then set it to null.
if (namespace_.has_value() && namespace_->is_empty())
namespace_ = {};
// 2. Let defaultNamespace be the result of running locate a namespace for this using null.
auto default_namespace = locate_a_namespace({});
// 3. Return true if defaultNamespace is the same as namespace; otherwise false.
return default_namespace == namespace_;
}
bool Node::is_inert() const
{
if (auto* html_element = as_if<HTML::HTMLElement>(*this))
return html_element->is_inert();
if (auto* enclosing_html_element = this->enclosing_html_element())
return enclosing_html_element->is_inert();
return false;
}
// https://dom.spec.whatwg.org/#in-a-document-tree
bool Node::in_a_document_tree() const
{
// An element is in a document tree if its root is a document.
return root().is_document();
}
2021-10-16 03:04:55 +01:00
// https://dom.spec.whatwg.org/#dom-node-getrootnode
GC::Ref<Node> Node::get_root_node(GetRootNodeOptions const& options)
2021-10-16 03:04:55 +01:00
{
// The getRootNode(options) method steps are to return thiss shadow-including root if options["composed"] is true;
2021-10-16 03:04:55 +01:00
if (options.composed)
return shadow_including_root();
// otherwise thiss root.
2021-10-16 03:04:55 +01:00
return root();
}
String Node::debug_description() const
{
StringBuilder builder;
builder.append(node_name().to_deprecated_fly_string().to_lowercase());
if (is_element()) {
auto const& element = static_cast<DOM::Element const&>(*this);
if (element.id().has_value())
builder.appendff("#{}", element.id().value());
for (auto const& class_name : element.class_names())
builder.appendff(".{}", class_name);
}
return MUST(builder.to_string());
}
// https://dom.spec.whatwg.org/#concept-node-length
size_t Node::length() const
{
// 1. If node is a DocumentType or Attr node, then return 0.
if (is_document_type() || is_attribute())
return 0;
// 2. If node is a CharacterData node, then return nodes datas length.
if (is_character_data())
return as<CharacterData>(*this).length_in_utf16_code_units();
// 3. Return the number of nodes children.
return child_count();
}
void Node::set_paintable(GC::Ptr<Painting::Paintable> paintable)
{
m_paintable = paintable;
}
void Node::clear_paintable()
{
m_paintable = nullptr;
}
Painting::Paintable const* Node::paintable() const
{
return m_paintable;
}
Painting::Paintable* Node::paintable()
{
return m_paintable;
}
Painting::PaintableBox const* Node::paintable_box() const
{
if (paintable() && paintable()->is_paintable_box())
return static_cast<Painting::PaintableBox const*>(paintable());
return nullptr;
}
Painting::PaintableBox* Node::paintable_box()
{
if (paintable() && paintable()->is_paintable_box())
return static_cast<Painting::PaintableBox*>(paintable());
return nullptr;
}
// https://dom.spec.whatwg.org/#queue-a-mutation-record
void Node::queue_mutation_record(FlyString const& type, Optional<FlyString> const& attribute_name, Optional<FlyString> const& attribute_namespace, Optional<String> const& old_value, Vector<GC::Root<Node>> added_nodes, Vector<GC::Root<Node>> removed_nodes, Node* previous_sibling, Node* next_sibling) const
{
// NOTE: We defer garbage collection until the end of the scope, since we can't safely use MutationObserver* as a hashmap key otherwise.
// FIXME: This is a total hack.
GC::DeferGC defer_gc(heap());
// 1. Let interestedObservers be an empty map.
// mutationObserver -> mappedOldValue
OrderedHashMap<MutationObserver*, Optional<String>> interested_observers;
// 2. Let nodes be the inclusive ancestors of target.
// 3. For each node in nodes, and then for each registered of nodes registered observer list:
for (auto* node = this; node; node = node->parent()) {
if (!node->m_registered_observer_list)
continue;
for (auto& registered_observer : *node->m_registered_observer_list) {
// 1. Let options be registereds options.
auto& options = registered_observer->options();
// 2. If none of the following are true
// - node is not target and options["subtree"] is false
// - type is "attributes" and options["attributes"] either does not exist or is false
// - type is "attributes", options["attributeFilter"] exists, and options["attributeFilter"] does not contain name or namespace is non-null
// - type is "characterData" and options["characterData"] either does not exist or is false
// - type is "childList" and options["childList"] is false
// then:
if (!(node != this && !options.subtree)
&& !(type == MutationType::attributes && (!options.attributes.has_value() || !options.attributes.value()))
&& !(type == MutationType::attributes && options.attribute_filter.has_value() && (attribute_namespace.has_value() || !options.attribute_filter->contains_slow(attribute_name.value_or(String {}))))
&& !(type == MutationType::characterData && (!options.character_data.has_value() || !options.character_data.value()))
&& !(type == MutationType::childList && !options.child_list)) {
// 1. Let mo be registereds observer.
auto mutation_observer = registered_observer->observer();
// 2. If interestedObservers[mo] does not exist, then set interestedObservers[mo] to null.
if (!interested_observers.contains(mutation_observer))
interested_observers.set(mutation_observer, {});
// 3. If either type is "attributes" and options["attributeOldValue"] is true, or type is "characterData" and options["characterDataOldValue"] is true, then set interestedObservers[mo] to oldValue.
if ((type == MutationType::attributes && options.attribute_old_value.has_value() && options.attribute_old_value.value()) || (type == MutationType::characterData && options.character_data_old_value.has_value() && options.character_data_old_value.value()))
interested_observers.set(mutation_observer, old_value);
}
}
}
// OPTIMIZATION: If there are no interested observers, bail without doing any more work.
if (interested_observers.is_empty())
return;
auto added_nodes_list = StaticNodeList::create(realm(), move(added_nodes));
auto removed_nodes_list = StaticNodeList::create(realm(), move(removed_nodes));
// 4. For each observer → mappedOldValue of interestedObservers:
for (auto& interested_observer : interested_observers) {
// FIXME: The MutationRecord constructor shuld take an Optional<FlyString> attribute name and namespace
Optional<String> string_attribute_name;
if (attribute_name.has_value())
string_attribute_name = attribute_name->to_string();
Optional<String> string_attribute_namespace;
if (attribute_namespace.has_value())
string_attribute_name = attribute_namespace->to_string();
// 1. Let record be a new MutationRecord object with its type set to type, target set to target, attributeName set to name, attributeNamespace set to namespace, oldValue set to mappedOldValue,
// addedNodes set to addedNodes, removedNodes set to removedNodes, previousSibling set to previousSibling, and nextSibling set to nextSibling.
auto record = MutationRecord::create(realm(), type, *this, added_nodes_list, removed_nodes_list, previous_sibling, next_sibling, string_attribute_name, string_attribute_namespace, /* mappedOldValue */ interested_observer.value);
// 2. Enqueue record to observers record queue.
interested_observer.key->enqueue_record({}, move(record));
}
// 5. Queue a mutation observer microtask.
Bindings::queue_mutation_observer_microtask(document());
}
// https://dom.spec.whatwg.org/#queue-a-tree-mutation-record
void Node::queue_tree_mutation_record(Vector<GC::Root<Node>> added_nodes, Vector<GC::Root<Node>> removed_nodes, Node* previous_sibling, Node* next_sibling)
{
// 1. Assert: either addedNodes or removedNodes is not empty.
VERIFY(added_nodes.size() > 0 || removed_nodes.size() > 0);
// 2. Queue a mutation record of "childList" for target with null, null, null, addedNodes, removedNodes, previousSibling, and nextSibling.
queue_mutation_record(MutationType::childList, {}, {}, {}, move(added_nodes), move(removed_nodes), previous_sibling, next_sibling);
}
void Node::append_child_impl(GC::Ref<Node> node)
{
VERIFY(!node->parent());
if (!is_child_allowed(*node))
return;
TreeNode::append_child(node);
}
void Node::insert_before_impl(GC::Ref<Node> node, GC::Ptr<Node> child)
{
if (!child)
return append_child_impl(move(node));
TreeNode::insert_before(node, child);
}
void Node::remove_child_impl(GC::Ref<Node> node)
{
TreeNode::remove_child(node);
}
bool Node::is_descendant_of(Node const& other) const
{
return other.is_ancestor_of(*this);
}
bool Node::is_inclusive_descendant_of(Node const& other) const
{
return other.is_inclusive_ancestor_of(*this);
}
// https://dom.spec.whatwg.org/#concept-tree-following
bool Node::is_following(Node const& other) const
{
// An object A is following an object B if A and B are in the same tree and A comes after B in tree order.
for (auto* node = previous_in_pre_order(); node; node = node->previous_in_pre_order()) {
if (node == &other)
return true;
}
return false;
}
2023-02-25 10:44:51 -07:00
void Node::build_accessibility_tree(AccessibilityTreeNode& parent)
{
if (is_uninteresting_whitespace_node())
return;
if (is_document()) {
2023-02-25 10:44:51 -07:00
auto* document = static_cast<DOM::Document*>(this);
auto* document_element = document->document_element();
if (document_element && document_element->include_in_accessibility_tree()) {
parent.set_value(document_element);
if (document_element->has_child_nodes())
2023-02-25 10:44:51 -07:00
document_element->for_each_child([&parent](DOM::Node& child) {
child.build_accessibility_tree(parent);
return IterationDecision::Continue;
});
}
} else if (is_element()) {
auto const* element = static_cast<DOM::Element const*>(this);
if (is<HTML::HTMLScriptElement>(element) || is<HTML::HTMLStyleElement>(element))
return;
if (element->include_in_accessibility_tree()) {
auto current_node = AccessibilityTreeNode::create(&document(), this);
parent.append_child(current_node);
if (has_child_nodes()) {
for_each_child([&current_node](DOM::Node& child) {
child.build_accessibility_tree(*current_node);
return IterationDecision::Continue;
});
}
} else if (has_child_nodes()) {
for_each_child([&parent](DOM::Node& child) {
child.build_accessibility_tree(parent);
return IterationDecision::Continue;
});
}
} else if (is_text()) {
parent.append_child(AccessibilityTreeNode::create(&document(), this));
if (has_child_nodes()) {
for_each_child([&parent](DOM::Node& child) {
child.build_accessibility_tree(parent);
return IterationDecision::Continue;
});
}
}
}
// https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_te
ErrorOr<String> Node::name_or_description(NameOrDescription target, Document const& document, HashTable<UniqueNodeID>& visited_nodes, IsDescendant is_descendant, ShouldComputeRole should_compute_role) const
{
// The text alternative for a given element is computed as follows:
// 1. Set the root node to the given element, the current node to the root node, and the total accumulated text to the
// empty string (""). If the root node's role prohibits naming, return the empty string ("").
auto const* root_node = this;
auto const* current_node = root_node;
StringBuilder total_accumulated_text;
visited_nodes.set(unique_id());
if (is_element()) {
auto const* element = static_cast<DOM::Element const*>(this);
Optional<ARIA::Role> role = OptionalNone {};
// Per https://w3c.github.io/aria/#document-handling_author-errors_roles, determining whether to ignore certain
// specified landmark roles requires first determining, in the ARIAMixin code, whether the element for which the
// role is specified has an accessible name — that is, calling into this name_or_description code. But if we
// then try to retrieve a role for such elements here, thatd then end up calling right back into this
// name_or_description code — which would cause the calls to loop infinitely. So to avoid that, the caller
// in the ARIAMixin code can pass the shouldComputeRole parameter to indicate we must skip the role lookup.
if (should_compute_role == ShouldComputeRole::Yes)
role = element->role_from_role_attribute_value();
// Per https://w3c.github.io/html-aam/#el-aside and https://w3c.github.io/html-aam/#el-section, computing a
// default role for an aside element or section element requires first computing its accessible name — that is,
// calling into this name_or_description code. But if we then try to determine a default role for the aside
// element or section element here, thatd then end up calling right back into this name_or_description code —
// which would cause the calls to loop infinitely. So to avoid that, we only compute a default role here if this
// isnt an aside element or section element.
// https://github.com/w3c/aria/issues/2391
if (!role.has_value() && element->local_name() != HTML::TagNames::aside && element->local_name() != HTML::TagNames::section)
role = element->default_role();
// 2. Compute the text alternative for the current node:
// A. Hidden Not Referenced: If the current node is hidden and is:
// i. Not part of an aria-labelledby or aria-describedby traversal, where the node directly referenced by that
// relation was hidden.
// ii. Nor part of a native host language text alternative element (e.g. label in HTML) or attribute traversal,
// where the root of that traversal was hidden.
// Return the empty string.
//
// NOTE: Nodes with CSS properties display:none, visibility:hidden, visibility:collapse or content-visibility:hidden:
// They are considered hidden, as they match the guidelines "not perceivable" and "explicitly hidden".
//
// AD-HOC: We dont implement this step here — because strictly implementing this would cause us to return early
// whenever encountering a node (element, actually) that “is hidden and is not directly referenced by
// aria-labelledby or aria-describedby”, without traversing down through that elements subtree to see if it has
// (1) any descendant elements that are directly referenced and/or (2) any un-hidden nodes. So we instead (in
// substep G below) traverse upward through ancestor nodes of every text node, and check in that way to do the
// equivalent of what this step seems to have been intended to do.
// https://github.com/w3c/aria/issues/2387
// B. Otherwise:
// - if computing a name, and the current node has an aria-labelledby attribute that contains at least one valid
// IDREF, and the current node is not already part of an aria-labelledby traversal, process its IDREFs in the
// order they occur:
// - or, if computing a description, and the current node has an aria-describedby attribute that contains at least
// one valid IDREF, and the current node is not already part of an aria-describedby traversal, process its IDREFs
// in the order they occur:
auto aria_labelled_by = element->aria_labelled_by();
auto aria_described_by = element->aria_described_by();
if ((target == NameOrDescription::Name && aria_labelled_by.has_value() && Node::first_valid_id(*aria_labelled_by, document).has_value())
|| (target == NameOrDescription::Description && aria_described_by.has_value() && Node::first_valid_id(*aria_described_by, document).has_value())) {
// i. Set the accumulated text to the empty string.
total_accumulated_text.clear();
Vector<StringView> id_list;
if (target == NameOrDescription::Name) {
id_list = aria_labelled_by->bytes_as_string_view().split_view_if(Infra::is_ascii_whitespace);
} else {
id_list = aria_described_by->bytes_as_string_view().split_view_if(Infra::is_ascii_whitespace);
}
// ii. For each IDREF:
for (auto const& id_ref : id_list) {
auto node = document.get_element_by_id(MUST(FlyString::from_utf8(id_ref)));
if (!node)
continue;
// AD-HOC: The “For each IDREF” substep in the spec doesnt seem to explicitly require the following
// check for an aria-label value; but the “div group explicitly labelledby self and heading” subtest at
// https://wpt.fyi/results/accname/name/comp_labelledby.html wont pass unless we do this check.
// https://github.com/w3c/aria/issues/2388
if (target == NameOrDescription::Name && node->aria_label().has_value() && !node->aria_label()->is_empty() && !node->aria_label()->bytes_as_string_view().is_whitespace()) {
total_accumulated_text.append(' ');
total_accumulated_text.append(node->aria_label().value());
}
if (visited_nodes.contains(node->unique_id()))
continue;
// a. Set the current node to the node referenced by the IDREF.
current_node = node;
// b. Compute the text alternative of the current node beginning with step 2. Set the result to that text alternative.
auto result = TRY(node->name_or_description(target, document, visited_nodes));
// c. Append the result, with a space, to the accumulated text.
total_accumulated_text.append(' ');
total_accumulated_text.append(result);
}
// iii. Return the accumulated text.
// AD-HOC: This substep in the spec doesnt seem to explicitly require the following check for an aria-label
// value; but the “button's hidden referenced name (visibility:hidden) with hidden aria-labelledby traversal
// falls back to aria-label” subtest at https://wpt.fyi/results/accname/name/comp_labelledby.html wont pass
// unless we do this check.
// https://github.com/w3c/aria/issues/2388
if (total_accumulated_text.string_view().is_whitespace() && target == NameOrDescription::Name && element->aria_label().has_value() && !element->aria_label()->is_empty() && !element->aria_label()->bytes_as_string_view().is_whitespace())
return element->aria_label().release_value();
return total_accumulated_text.to_string();
}
// D. AriaLabel: Otherwise, if the current node has an aria-label attribute whose value is not undefined, not
// the empty string, nor, when trimmed of whitespace, is not the empty string:
//
// AD-HOC: Weve reordered substeps C and D from https://w3c.github.io/accname/#step2 — because
// the more-specific per-HTML-element requirements at https://w3c.github.io/html-aam/#accname-computation
// necessitate doing so, and the “input with label for association is superceded by aria-label” subtest at
// https://wpt.fyi/results/accname/name/comp_label.html wont pass unless we do this reordering.
// Spec PR: https://github.com/w3c/aria/pull/2377
if (target == NameOrDescription::Name && element->aria_label().has_value() && !element->aria_label()->is_empty() && !element->aria_label()->bytes_as_string_view().is_whitespace()) {
// TODO: - If traversal of the current node is due to recursion and the current node is an embedded control as defined in step 2E, ignore aria-label and skip to rule 2E.
// https://github.com/w3c/aria/pull/2385 and https://github.com/w3c/accname/issues/173
if (!element->is_html_slot_element())
return element->aria_label().value();
}
// C. Embedded Control: Otherwise, if the current node is a control embedded within the label (e.g. any element
// directly referenced by aria-labelledby) for another widget, where the user can adjust the embedded control's
// value, then return the embedded control as part of the text alternative in the following manner:
GC::Ptr<DOM::NodeList> labels;
if (is<HTML::HTMLElement>(this))
labels = (const_cast<HTML::HTMLElement&>(static_cast<HTML::HTMLElement const&>(*current_node))).labels();
if (labels != nullptr && labels->length() > 0) {
StringBuilder builder;
for (u32 i = 0; i < labels->length(); i++) {
if (!builder.is_empty())
builder.append(" "sv);
auto nodes = labels->item(i)->children_as_vector();
for (auto const& node : nodes) {
// AD-HOC: https://wpt.fyi/results/accname/name/comp_host_language_label.html has “encapsulation”
// tests, from which can be induced a requirement that when computing the accessible name for a
// <label>-ed form control (“embedded control”), then any content (text content or attribute values)
// from the control itself that would otherwise be included in the accessible-name computation for
// it ancestor <label> must instead be skipped and not included. The HTML-AAM spec seems to maybe
// be trying to achieve that result by expressing specific steps for each particular type of form
// control. But what all that reduces/optimizes/simplifies down to is just, “skip over self”.
// https://github.com/w3c/aria/issues/2389
if (node == this)
continue;
if (node->is_element()) {
auto const& element = static_cast<DOM::Element const&>(*node);
auto role = element.role_or_default();
if (role == ARIA::Role::textbox) {
// i. Textbox: If the embedded control has role textbox, return its value.
if (is<HTML::HTMLInputElement>(*node)) {
auto const& element = static_cast<HTML::HTMLInputElement const&>(*node);
if (element.has_attribute(HTML::AttributeNames::value))
builder.append(element.value());
} else
builder.append(node->text_content().value());
} else if (role == ARIA::Role::combobox) {
// ii. Combobox/Listbox: If the embedded control has role combobox or listbox, return the text
// alternative of the chosen option.
if (is<HTML::HTMLInputElement>(*node)) {
auto const& element = static_cast<HTML::HTMLInputElement const&>(*node);
if (element.has_attribute(HTML::AttributeNames::value))
builder.append(element.value());
} else if (is<HTML::HTMLSelectElement>(*node)) {
auto const& element = static_cast<HTML::HTMLSelectElement const&>(*node);
builder.append(element.value());
} else
builder.append(node->text_content().value());
} else if (role == ARIA::Role::listbox) {
// ii. Combobox/Listbox: If the embedded control has role combobox or listbox, return the text
// alternative of the chosen option.
if (is<HTML::HTMLSelectElement>(*node)) {
auto const& element = static_cast<HTML::HTMLSelectElement const&>(*node);
builder.append(element.value());
}
auto children = node->children_as_vector();
for (auto& child : children) {
if (child->is_element()) {
auto const& element = static_cast<DOM::Element const&>(*child);
auto role = element.role_or_default();
if (role == ARIA::Role::option && element.aria_selected() == "true")
builder.append(element.text_content().value());
}
}
} else if (role == ARIA::Role::spinbutton || role == ARIA::Role::slider) {
auto aria_valuenow = element.aria_value_now();
auto aria_valuetext = element.aria_value_text();
// iii. Range: If the embedded control has role range (e.g., a spinbutton or slider):
// a. If the aria-valuetext property is present, return its value,
if (aria_valuetext.has_value())
builder.append(aria_valuetext.value());
// b. Otherwise, if the aria-valuenow property is present, return its value
else if (aria_valuenow.has_value())
builder.append(aria_valuenow.value());
// c. Otherwise, use the value as specified by a host language attribute.
else if (is<HTML::HTMLInputElement>(*node)) {
auto const& element = static_cast<HTML::HTMLInputElement const&>(*node);
if (element.has_attribute(HTML::AttributeNames::value))
builder.append(element.value());
}
}
} else if (node->is_text()) {
auto const& text_node = static_cast<DOM::Text const&>(*node);
builder.append(text_node.data());
}
}
}
return builder.to_string();
}
// E. Host Language Label: Otherwise, if the current node's native markup provides an attribute (e.g. alt) or
// element (e.g. HTML label or SVG title) that defines a text alternative, return that alternative in the form
// of a flat string as defined by the host language.
// TODO: Confirm (through existing WPT test cases) whether HTMLLabelElement is already handled (by the code for
// step C. “Embedded Control” above) in conformance with the spec requirements — and if not, then add handling.
//
// https://w3c.github.io/html-aam/#img-element-accessible-name-computation
// use alt attribute, even if its value is the empty string.
// See also https://wpt.fyi/results/accname/name/comp_tooltip.tentative.html.
if (is<HTML::HTMLImageElement>(*element) && element->has_attribute(HTML::AttributeNames::alt))
return element->get_attribute(HTML::AttributeNames::alt).value();
// https://w3c.github.io/svg-aam/#mapping_additional_nd
Optional<String> title_element_text;
if (element->is_svg_element()) {
// If the current node has at least one direct child title element, select the appropriate title based on
// the language rules for the SVG specification, and return the title text alternative as a flat string.
element->for_each_child_of_type<SVG::SVGTitleElement>([&](SVG::SVGTitleElement const& title) mutable {
title_element_text = title.text_content();
return IterationDecision::Break;
});
if (title_element_text.has_value())
return title_element_text.release_value();
// If the current node is a link, and there was no child title element, but it has an xlink:title attribute,
// return the value of that attribute.
if (auto title_attribute = element->get_attribute_ns(Namespace::XLink, XLink::AttributeNames::title); title_attribute.has_value())
return title_attribute.release_value();
}
// https://w3c.github.io/html-aam/#table-element-accessible-name-computation
// 2. If the accessible name is still empty, then: if the table element has a child that is a caption element,
// then use the subtree of the first such element.
if (is<HTML::HTMLTableElement>(*element))
if (auto& table = (const_cast<HTML::HTMLTableElement&>(static_cast<HTML::HTMLTableElement const&>(*element))); table.caption())
return table.caption()->text_content().release_value();
// https://w3c.github.io/html-aam/#fieldset-element-accessible-name-computation
// 2. If the accessible name is still empty, then: if the fieldset element has a child that is a legend element,
// then use the subtree of the first such element.
if (is<HTML::HTMLFieldSetElement>(*element)) {
Optional<String> legend;
auto& fieldset = (const_cast<HTML::HTMLFieldSetElement&>(static_cast<HTML::HTMLFieldSetElement const&>(*element)));
fieldset.for_each_child_of_type<HTML::HTMLLegendElement>([&](HTML::HTMLLegendElement const& element) mutable {
legend = element.text_content().release_value();
return IterationDecision::Break;
});
if (legend.has_value())
return legend.release_value();
}
if (is<HTML::HTMLInputElement>(*element)) {
auto& input = (const_cast<HTML::HTMLInputElement&>(static_cast<HTML::HTMLInputElement const&>(*element)));
// https://w3c.github.io/html-aam/#input-type-button-input-type-submit-and-input-type-reset-accessible-name-computation
// 3. Otherwise use the value attribute.
if (input.type_state() == HTML::HTMLInputElement::TypeAttributeState::Button
|| input.type_state() == HTML::HTMLInputElement::TypeAttributeState::SubmitButton
|| input.type_state() == HTML::HTMLInputElement::TypeAttributeState::ResetButton)
if (auto value = input.get_attribute(HTML::AttributeNames::value); value.has_value())
return value.release_value();
// https://w3c.github.io/html-aam/#input-type-image-accessible-name-computation
// 3. Otherwise use alt attribute if present and its value is not the empty string.
if (input.type_state() == HTML::HTMLInputElement::TypeAttributeState::ImageButton)
if (auto alt = element->get_attribute(HTML::AttributeNames::alt); alt.has_value())
return alt.release_value();
}
// F. Name From Content: Otherwise, if the current node's role allows name from content, or if the current node
// is referenced by aria-labelledby, aria-describedby, or is a native host language text alternative element
// (e.g. label in HTML), or is a descendant of a native host language text alternative element:
if ((role.has_value() && ARIA::allows_name_from_content(role.value())) || element->is_referenced() || is_descendant == IsDescendant::Yes) {
// i. Set the accumulated text to the empty string.
total_accumulated_text.clear();
// ii. Name From Generated Content: Check for CSS generated textual content associated with the current node
// and include it in the accumulated text. The CSS ::before and ::after pseudo elements [CSS2] can provide
// textual content for elements that have a content model.
// a. For ::before pseudo elements, User agents MUST prepend CSS textual content, without a space, to the textual
// content of the current node.
// b. For ::after pseudo elements, User agents MUST append CSS textual content, without a space, to the textual
// content of the current node. NOTE: The code for handling the ::after pseudo elements case is further below,
// following the “iii. For each child node of the current node” code.
if (auto before = element->get_pseudo_element_node(CSS::Selector::PseudoElement::Type::Before)) {
if (before->computed_values().content().alt_text.has_value())
total_accumulated_text.append(before->computed_values().content().alt_text.release_value());
else
total_accumulated_text.append(before->computed_values().content().data);
}
// iii. Determine Child Nodes: Determine the rendered child nodes of the current node:
// iii. Determine Child Nodes: Determine the rendered child nodes of the current node:
// c. [Otherwise,] set the rendered child nodes to be the child nodes of the current node.
auto child_nodes = current_node->children_as_vector();
// a. If the current node has an attached shadow root, set the rendered child nodes to be the child nodes of
// the shadow root.
if (element->is_shadow_host() && element->shadow_root() && element->shadow_root()->is_connected())
child_nodes = element->shadow_root()->children_as_vector();
// b. Otherwise, if the current node is a slot with assigned nodes, set the rendered child nodes to be the
// assigned nodes of the current node.
if (element->is_html_slot_element()) {
total_accumulated_text.append(element->text_content().value());
child_nodes = static_cast<HTML::HTMLSlotElement const*>(element)->assigned_nodes();
}
// iv. Name From Each Child: For each rendered child node of the current node
for (auto& child_node : child_nodes) {
if (!child_node->is_element() && !child_node->is_text())
continue;
bool should_add_space = true;
const_cast<DOM::Document&>(document).update_layout();
auto const* layout_node = child_node->layout_node();
if (layout_node) {
auto display = layout_node->display();
if (display.is_inline_outside() && display.is_flow_inside()) {
should_add_space = false;
}
}
if (visited_nodes.contains(child_node->unique_id()))
continue;
// a. Set the current node to the child node.
current_node = child_node;
// b. Compute the text alternative of the current node beginning with step 2. Set the result to that text alternative.
auto result = MUST(current_node->name_or_description(target, document, visited_nodes, IsDescendant::Yes, should_compute_role));
// J. Append a space character and the result of each step above to the total accumulated text.
// AD-HOC: Doing the space-adding here is in a different order from what the spec states.
if (should_add_space)
total_accumulated_text.append(' ');
// c. Append the result to the accumulated text.
total_accumulated_text.append(result);
}
// NOTE: See step ii.b above.
if (auto after = element->get_pseudo_element_node(CSS::Selector::PseudoElement::Type::After)) {
if (after->computed_values().content().alt_text.has_value())
total_accumulated_text.append(after->computed_values().content().alt_text.release_value());
else
total_accumulated_text.append(after->computed_values().content().data);
}
// v. Return the accumulated text if it is not the empty string ("").
if (!total_accumulated_text.is_empty())
return total_accumulated_text.to_string();
// Important: Each node in the subtree is consulted only once. If text has been collected from a descendant,
// but is referenced by another IDREF in some descendant node, then that second, or subsequent, reference is
// not followed. This is done to avoid infinite loops.
}
}
// G. Text Node: Otherwise, if the current node is a Text Node, return its textual contents.
//
// AD-HOC: The spec doesnt require ascending through the parent node and ancestor nodes of every text node we
// reach — the way were doing there. But we implement it this way because the spec algorithm as written doesnt
// appear to achieve what it seems to be intended to achieve. Specifically, the spec algorithm as written doesnt
// cause traversal through element subtrees in way thats necessary to check for descendants that are referenced by
// aria-labelledby or aria-describedby and/or un-hidden. See the comment for substep A above.
if (is_text() && (!parent_element() || (parent_element()->is_referenced() || !parent_element()->is_hidden() || !parent_element()->has_hidden_ancestor() || parent_element()->has_referenced_and_hidden_ancestor()))) {
if (layout_node() && layout_node()->is_text_node())
return as<Layout::TextNode>(layout_node())->text_for_rendering();
return text_content().release_value();
}
// H. Otherwise, if the current node is a descendant of an element whose Accessible Name or Accessible Description
// is being computed, and contains descendants, proceed to 2F.i.
//
// AD-HOC: We dont implement this step here — because is essentially unreachable code in the spec algorithm.
// We could never get here without descending through every subtree of an element whose Accessible Name or
// Accessible Description is being computed. And in our implementation of substep F about, were anyway already
// recursively descending through all the child nodes of every element whose Accessible Name or Accessible
// Description is being computed, in a way that never leads to this substep H every being hit.
// I. Otherwise, if the current node has a Tooltip attribute, return its value.
//
// https://www.w3.org/TR/accname-1.2/#dfn-tooltip-attribute
// Any host language attribute that would result in a user agent generating a tooltip such as in response to a mouse
// hover in desktop user agents.
// FIXME: Support SVG tooltips and CSS tooltips
if (is<HTML::HTMLElement>(this)) {
auto const* element = static_cast<HTML::HTMLElement const*>(this);
auto tooltip = element->title();
if (tooltip.has_value() && !tooltip->is_empty())
return tooltip.release_value();
}
// 3. After all steps are completed, the total accumulated text is used as the accessible name or accessible description
// of the element that initiated the computation.
return total_accumulated_text.to_string();
}
// https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_name
ErrorOr<String> Node::accessible_name(Document const& document, ShouldComputeRole should_compute_role) const
{
HashTable<UniqueNodeID> visited_nodes;
// User agents MUST compute an accessible name using the rules outlined below in the section titled Accessible Name and Description Computation.
return name_or_description(NameOrDescription::Name, document, visited_nodes, IsDescendant::No, should_compute_role);
}
// https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_description
ErrorOr<String> Node::accessible_description(Document const& document) const
{
// If aria-describedby is present, user agents MUST compute the accessible description by concatenating the text alternatives for elements referenced by an aria-describedby attribute on the current element.
// The text alternatives for the referenced elements are computed using a number of methods, outlined below in the section titled Accessible Name and Description Computation.
if (!is_element())
return String {};
auto const* element = static_cast<Element const*>(this);
auto described_by = element->aria_described_by();
if (!described_by.has_value())
return String {};
HashTable<UniqueNodeID> visited_nodes;
StringBuilder builder;
auto id_list = described_by->bytes_as_string_view().split_view_if(Infra::is_ascii_whitespace);
for (auto const& id : id_list) {
if (auto description_element = document.get_element_by_id(MUST(FlyString::from_utf8(id)))) {
auto description = TRY(
description_element->name_or_description(NameOrDescription::Description, document,
visited_nodes));
if (!description.is_empty()) {
if (builder.is_empty()) {
builder.append(description);
} else {
builder.append(" "sv);
builder.append(description);
}
}
}
}
return builder.to_string();
}
Optional<StringView> Node::first_valid_id(StringView value, Document const& document)
{
auto id_list = value.split_view_if(Infra::is_ascii_whitespace);
for (auto const& id : id_list) {
if (document.get_element_by_id(MUST(FlyString::from_utf8(id))))
return id;
}
return {};
}
void Node::add_registered_observer(RegisteredObserver& registered_observer)
{
if (!m_registered_observer_list)
m_registered_observer_list = make<Vector<GC::Ref<RegisteredObserver>>>();
m_registered_observer_list->append(registered_observer);
}
}
namespace IPC {
template<>
ErrorOr<void> encode(Encoder& encoder, Web::UniqueNodeID const& value)
{
return encode(encoder, value.value());
}
template<>
ErrorOr<Web::UniqueNodeID> decode(Decoder& decoder)
{
auto value = TRY(decoder.decode<i64>());
return Web::UniqueNodeID(value);
}
}