ladybird/Services/RequestServer/Cache/CacheEntry.cpp

341 lines
11 KiB
C++
Raw Normal View History

LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
/*
* Copyright (c) 2025, Tim Flynn <trflynn89@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ScopeGuard.h>
#include <LibCore/Notifier.h>
#include <LibCore/System.h>
#include <LibFileSystem/FileSystem.h>
#include <RequestServer/Cache/CacheEntry.h>
#include <RequestServer/Cache/CacheIndex.h>
#include <RequestServer/Cache/DiskCache.h>
#include <RequestServer/Cache/Utilities.h>
namespace RequestServer {
static LexicalPath path_for_cache_key(LexicalPath const& cache_directory, u64 cache_key)
{
return cache_directory.append(MUST(String::formatted("{:016x}", cache_key)));
}
ErrorOr<CacheHeader> CacheHeader::read_from_stream(Stream& stream)
{
CacheHeader header;
header.magic = TRY(stream.read_value<u32>());
header.version = TRY(stream.read_value<u32>());
header.url_size = TRY(stream.read_value<u32>());
header.url_hash = TRY(stream.read_value<u32>());
header.status_code = TRY(stream.read_value<u32>());
header.reason_phrase_size = TRY(stream.read_value<u32>());
header.reason_phrase_hash = TRY(stream.read_value<u32>());
return header;
}
ErrorOr<void> CacheHeader::write_to_stream(Stream& stream) const
{
TRY(stream.write_value(magic));
TRY(stream.write_value(version));
TRY(stream.write_value(url_size));
TRY(stream.write_value(url_hash));
TRY(stream.write_value(status_code));
TRY(stream.write_value(reason_phrase_size));
TRY(stream.write_value(reason_phrase_hash));
return {};
}
ErrorOr<void> CacheFooter::write_to_stream(Stream& stream) const
{
TRY(stream.write_value(data_size));
TRY(stream.write_value(crc32));
return {};
}
ErrorOr<CacheFooter> CacheFooter::read_from_stream(Stream& stream)
{
CacheFooter footer;
footer.data_size = TRY(stream.read_value<u64>());
footer.crc32 = TRY(stream.read_value<u32>());
return footer;
}
CacheEntry::CacheEntry(DiskCache& disk_cache, CacheIndex& index, u64 cache_key, String url, LexicalPath path, CacheHeader cache_header)
: m_disk_cache(disk_cache)
, m_index(index)
, m_cache_key(cache_key)
, m_url(move(url))
, m_path(move(path))
, m_cache_header(cache_header)
{
}
void CacheEntry::remove()
{
(void)FileSystem::remove(m_path.string(), FileSystem::RecursionMode::Disallowed);
m_index.remove_entry(m_cache_key);
}
void CacheEntry::close_and_destroy_cache_entry()
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
{
m_disk_cache.cache_entry_closed({}, *this);
}
ErrorOr<NonnullOwnPtr<CacheEntryWriter>> CacheEntryWriter::create(DiskCache& disk_cache, CacheIndex& index, u64 cache_key, String url, UnixDateTime request_time)
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
{
auto path = path_for_cache_key(disk_cache.cache_directory(), cache_key);
auto unbuffered_file = TRY(Core::File::open(path.string(), Core::File::OpenMode::Write));
auto file = TRY(Core::OutputBufferedFile::create(move(unbuffered_file)));
CacheHeader cache_header;
cache_header.url_size = url.byte_count();
cache_header.url_hash = url.hash();
return adopt_own(*new CacheEntryWriter { disk_cache, index, cache_key, move(url), move(path), move(file), cache_header, request_time });
}
CacheEntryWriter::CacheEntryWriter(DiskCache& disk_cache, CacheIndex& index, u64 cache_key, String url, LexicalPath path, NonnullOwnPtr<Core::OutputBufferedFile> file, CacheHeader cache_header, UnixDateTime request_time)
: CacheEntry(disk_cache, index, cache_key, move(url), move(path), cache_header)
, m_file(move(file))
, m_request_time(request_time)
, m_response_time(UnixDateTime::now())
{
}
ErrorOr<void> CacheEntryWriter::write_status_and_reason(u32 status_code, Optional<String> reason_phrase, HTTP::HeaderMap const& response_headers)
{
if (m_marked_for_deletion) {
close_and_destroy_cache_entry();
return Error::from_string_literal("Cache entry has been deleted");
}
m_cache_header.status_code = status_code;
if (reason_phrase.has_value()) {
m_cache_header.reason_phrase_size = reason_phrase->byte_count();
m_cache_header.reason_phrase_hash = reason_phrase->hash();
}
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
auto result = [&]() -> ErrorOr<void> {
if (!is_cacheable(status_code, response_headers))
return Error::from_string_literal("Response is not cacheable");
if (auto freshness = calculate_freshness_lifetime(response_headers); freshness.is_negative() || freshness.is_zero())
return Error::from_string_literal("Response has already expired");
TRY(m_file->write_value(m_cache_header));
TRY(m_file->write_until_depleted(m_url));
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
if (reason_phrase.has_value())
TRY(m_file->write_until_depleted(*reason_phrase));
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
return {};
}();
if (result.is_error()) {
dbgln("\033[31;1mUnable to write status/reason to cache entry for\033[0m {}: {}", m_url, result.error());
remove();
close_and_destroy_cache_entry();
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
return result.release_error();
}
return {};
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
}
ErrorOr<void> CacheEntryWriter::write_data(ReadonlyBytes data)
{
if (m_marked_for_deletion) {
close_and_destroy_cache_entry();
return Error::from_string_literal("Cache entry has been deleted");
}
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
if (auto result = m_file->write_until_depleted(data); result.is_error()) {
dbgln("\033[31;1mUnable to write data to cache entry for\033[0m {}: {}", m_url, result.error());
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
remove();
close_and_destroy_cache_entry();
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
return result.release_error();
}
m_cache_footer.data_size += data.size();
// FIXME: Update the crc.
return {};
}
ErrorOr<void> CacheEntryWriter::flush(HTTP::HeaderMap response_headers)
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
{
ScopeGuard guard { [&]() { close_and_destroy_cache_entry(); } };
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
if (m_marked_for_deletion)
return Error::from_string_literal("Cache entry has been deleted");
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
if (auto result = m_file->write_value(m_cache_footer); result.is_error()) {
dbgln("\033[31;1mUnable to flush cache entry for\033[0m {}: {}", m_url, result.error());
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
remove();
return result.release_error();
}
m_index.create_entry(m_cache_key, m_url, move(response_headers), m_cache_footer.data_size, m_request_time, m_response_time);
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
dbgln("\033[34;1mFinished caching\033[0m {} ({} bytes)", m_url, m_cache_footer.data_size);
return {};
}
ErrorOr<NonnullOwnPtr<CacheEntryReader>> CacheEntryReader::create(DiskCache& disk_cache, CacheIndex& index, u64 cache_key, HTTP::HeaderMap response_headers, u64 data_size)
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
{
auto path = path_for_cache_key(disk_cache.cache_directory(), cache_key);
auto file = TRY(Core::File::open(path.string(), Core::File::OpenMode::Read));
auto fd = file->fd();
CacheHeader cache_header;
String url;
Optional<String> reason_phrase;
auto result = [&]() -> ErrorOr<void> {
cache_header = TRY(file->read_value<CacheHeader>());
if (cache_header.magic != CacheHeader::CACHE_MAGIC)
return Error::from_string_literal("Magic value mismatch");
if (cache_header.version != CACHE_VERSION)
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
return Error::from_string_literal("Version mismatch");
url = TRY(String::from_stream(*file, cache_header.url_size));
if (url.hash() != cache_header.url_hash)
return Error::from_string_literal("URL hash mismatch");
if (cache_header.reason_phrase_size != 0) {
reason_phrase = TRY(String::from_stream(*file, cache_header.reason_phrase_size));
if (reason_phrase->hash() != cache_header.reason_phrase_hash)
return Error::from_string_literal("Reason phrase hash mismatch");
}
return {};
}();
if (result.is_error()) {
(void)FileSystem::remove(path.string(), FileSystem::RecursionMode::Disallowed);
return result.release_error();
}
auto data_offset = sizeof(CacheHeader) + cache_header.url_size + cache_header.reason_phrase_size;
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
return adopt_own(*new CacheEntryReader { disk_cache, index, cache_key, move(url), move(path), move(file), fd, cache_header, move(reason_phrase), move(response_headers), data_offset, data_size });
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
}
CacheEntryReader::CacheEntryReader(DiskCache& disk_cache, CacheIndex& index, u64 cache_key, String url, LexicalPath path, NonnullOwnPtr<Core::File> file, int fd, CacheHeader cache_header, Optional<String> reason_phrase, HTTP::HeaderMap response_headers, u64 data_offset, u64 data_size)
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
: CacheEntry(disk_cache, index, cache_key, move(url), move(path), cache_header)
, m_file(move(file))
, m_fd(fd)
, m_reason_phrase(move(reason_phrase))
, m_response_headers(move(response_headers))
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
, m_data_offset(data_offset)
, m_data_size(data_size)
{
}
void CacheEntryReader::pipe_to(int pipe_fd, Function<void(u64)> on_complete, Function<void(u64)> on_error)
{
VERIFY(m_pipe_fd == -1);
m_pipe_fd = pipe_fd;
m_on_pipe_complete = move(on_complete);
m_on_pipe_error = move(on_error);
if (m_marked_for_deletion) {
pipe_error(Error::from_string_literal("Cache entry has been deleted"));
return;
}
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
m_pipe_write_notifier = Core::Notifier::construct(m_pipe_fd, Core::NotificationType::Write);
m_pipe_write_notifier->set_enabled(false);
m_pipe_write_notifier->on_activation = [this]() {
m_pipe_write_notifier->set_enabled(false);
pipe_without_blocking();
};
pipe_without_blocking();
}
void CacheEntryReader::pipe_without_blocking()
{
if (m_marked_for_deletion) {
pipe_error(Error::from_string_literal("Cache entry has been deleted"));
return;
}
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
auto result = Core::System::transfer_file_through_pipe(m_fd, m_pipe_fd, m_data_offset + m_bytes_piped, m_data_size - m_bytes_piped);
if (result.is_error()) {
if (result.error().code() != EAGAIN && result.error().code() != EWOULDBLOCK)
pipe_error(result.release_error());
else
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
m_pipe_write_notifier->set_enabled(true);
return;
}
m_bytes_piped += result.value();
if (m_bytes_piped == m_data_size) {
pipe_complete();
return;
}
pipe_without_blocking();
}
void CacheEntryReader::pipe_complete()
{
if (auto result = read_and_validate_footer(); result.is_error()) {
dbgln("\033[31;1mError validating cache entry for\033[0m {}: {}", m_url, result.error());
remove();
if (m_on_pipe_error)
m_on_pipe_error(m_bytes_piped);
} else {
m_index.update_last_access_time(m_cache_key);
if (m_on_pipe_complete)
m_on_pipe_complete(m_bytes_piped);
}
close_and_destroy_cache_entry();
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
}
void CacheEntryReader::pipe_error(Error error)
{
dbgln("\033[31;1mError transferring cache to pipe for\033[0m {}: {}", m_url, error);
// FIXME: We may not want to actually remove the cache file for all errors. For now, let's assume the file is not
// useable at this point and remove it.
remove();
if (m_on_pipe_error)
m_on_pipe_error(m_bytes_piped);
close_and_destroy_cache_entry();
}
LibRequests+RequestServer: Begin implementing an HTTP disk cache This adds a disk cache for HTTP responses received from the network. For now, we take a rather conservative approach to caching. We don't cache a response until we're 100% sure it is cacheable (there are heuristics we can implement in the future based on the absence of specific headers). The cache is broken into 2 categories of files: 1. An index file. This is a SQL database containing metadata about each cache entry (URL, timestamps, etc.). 2. Cache files. Each cached response is in its own file. The file is an amalgamation of all info needed to reconstruct an HTTP response. This includes the status code, headers, body, etc. A cache entry is created once we receive the headers for a response. The index, however, is not updated at this point. We stream the body into the cache entry as it is received. Once we've successfully cached the entire body, we create an index entry in the database. If any of these steps failed along the way, the cache entry is removed and the index is left untouched. Subsequent requests are checked for cache hits from the index. If a hit is found, we read just enough of the cache entry to inform WebContent of the status code and headers. The body of the response is piped to WC via syscalls, such that the transfer happens entirely in the kernel; no need to allocate the memory for the body in userspace (WC still allocates a buffer to hold the data, of course). If an error occurs while piping the body, we currently error out the request. There is a FIXME to switch to a network request. Cache hits are also validated for freshness before they are used. If a response has expired, we remove it and its index entry, and proceed with a network request.
2025-10-07 19:59:21 -04:00
ErrorOr<void> CacheEntryReader::read_and_validate_footer()
{
TRY(m_file->seek(m_data_offset + m_data_size, SeekMode::SetPosition));
m_cache_footer = TRY(m_file->read_value<CacheFooter>());
if (m_cache_footer.data_size != m_data_size)
return Error::from_string_literal("Invalid data size in footer");
// FIXME: Validate the crc.
return {};
}
}