ladybird/Userland/Libraries/LibJS/Bytecode/Op.cpp

874 lines
32 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/HashTable.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Runtime/AbstractOperations.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/DeclarativeEnvironment.h>
#include <LibJS/Runtime/ECMAScriptFunctionObject.h>
#include <LibJS/Runtime/Environment.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Iterator.h>
#include <LibJS/Runtime/IteratorOperations.h>
#include <LibJS/Runtime/RegExpObject.h>
#include <LibJS/Runtime/Value.h>
namespace JS::Bytecode {
String Instruction::to_string(Bytecode::Executable const& executable) const
{
#define __BYTECODE_OP(op) \
case Instruction::Type::op: \
return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
switch (type()) {
ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
default:
VERIFY_NOT_REACHED();
}
#undef __BYTECODE_OP
}
}
namespace JS::Bytecode::Op {
void Load::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = interpreter.reg(m_src);
}
void LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = m_value;
}
void Store::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.reg(m_dst) = interpreter.accumulator();
}
static ThrowCompletionOr<Value> abstract_inequals(GlobalObject& global_object, Value src1, Value src2)
{
return Value(!TRY(is_loosely_equal(global_object, src1, src2)));
}
static ThrowCompletionOr<Value> abstract_equals(GlobalObject& global_object, Value src1, Value src2)
{
return Value(TRY(is_loosely_equal(global_object, src1, src2)));
}
static ThrowCompletionOr<Value> typed_inequals(GlobalObject&, Value src1, Value src2)
{
return Value(!is_strictly_equal(src1, src2));
}
static ThrowCompletionOr<Value> typed_equals(GlobalObject&, Value src1, Value src2)
{
return Value(is_strictly_equal(src1, src2));
}
#define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
void OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
auto lhs = interpreter.reg(m_lhs_reg); \
auto rhs = interpreter.accumulator(); \
auto result_or_error = op_snake_case(interpreter.global_object(), lhs, rhs); \
if (result_or_error.is_error()) \
return; \
interpreter.accumulator() = result_or_error.release_value(); \
} \
String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
{ \
return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
}
JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
static ThrowCompletionOr<Value> not_(GlobalObject&, Value value)
{
return Value(!value.to_boolean());
}
static ThrowCompletionOr<Value> typeof_(GlobalObject& global_object, Value value)
{
return Value(js_string(global_object.vm(), value.typeof()));
}
#define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
void OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
auto result_or_error = op_snake_case(interpreter.global_object(), interpreter.accumulator()); \
if (result_or_error.is_error()) \
return; \
interpreter.accumulator() = result_or_error.release_value(); \
} \
String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
{ \
return #OpTitleCase; \
}
JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
void NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
}
void NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
Vector<Value> elements;
elements.ensure_capacity(m_element_count);
for (size_t i = 0; i < m_element_count; i++)
elements.append(interpreter.reg(m_elements[i]));
interpreter.accumulator() = Array::create_from(interpreter.global_object(), elements);
}
// FIXME: Since the accumulator is a Value, we store an object there and have to convert back and forth between that an Iterator records. Not great.
// Make sure to put this into the accumulator before the iterator object disappears from the stack to prevent the members from being GC'd.
static Object* iterator_to_object(GlobalObject& global_object, Iterator iterator)
{
auto& vm = global_object.vm();
auto* object = Object::create(global_object, nullptr);
object->define_direct_property(vm.names.iterator, iterator.iterator, 0);
object->define_direct_property(vm.names.next, iterator.next_method, 0);
object->define_direct_property(vm.names.done, Value(iterator.done), 0);
return object;
}
static Iterator object_to_iterator(GlobalObject& global_object, Object& object)
{
auto& vm = global_object.vm();
return Iterator {
.iterator = &MUST(object.get(vm.names.iterator)).as_object(),
.next_method = MUST(object.get(vm.names.next)),
.done = MUST(object.get(vm.names.done)).as_bool()
};
}
void IteratorToArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& global_object = interpreter.global_object();
auto iterator_object_or_error = interpreter.accumulator().to_object(global_object);
if (iterator_object_or_error.is_error())
return;
auto iterator = object_to_iterator(global_object, *iterator_object_or_error.release_value());
auto* array = MUST(Array::create(global_object, 0));
size_t index = 0;
while (true) {
auto iterator_result_or_error = iterator_next(global_object, iterator);
if (iterator_result_or_error.is_error())
return;
auto* iterator_result = iterator_result_or_error.release_value();
auto complete_or_error = iterator_complete(global_object, *iterator_result);
if (complete_or_error.is_error())
return;
auto complete = complete_or_error.release_value();
if (complete) {
interpreter.accumulator() = array;
return;
}
auto value_or_error = iterator_value(global_object, *iterator_result);
if (value_or_error.is_error())
return;
auto value = value_or_error.release_value();
MUST(array->create_data_property_or_throw(index, value));
index++;
}
}
void NewString::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
}
void NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = Object::create(interpreter.global_object(), interpreter.global_object().object_prototype());
}
void NewRegExp::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto source = interpreter.current_executable().get_string(m_source_index);
auto flags = interpreter.current_executable().get_string(m_flags_index);
auto regexp_or_error = regexp_create(interpreter.global_object(), js_string(interpreter.vm(), source), js_string(interpreter.vm(), flags));
if (regexp_or_error.is_error())
return;
interpreter.accumulator() = regexp_or_error.value();
}
void CopyObjectExcludingProperties::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto from_object_or_error = interpreter.reg(m_from_object).to_object(interpreter.global_object());
if (from_object_or_error.is_error())
return;
auto* from_object = from_object_or_error.release_value();
auto* to_object = Object::create(interpreter.global_object(), interpreter.global_object().object_prototype());
HashTable<Value, ValueTraits> excluded_names;
for (size_t i = 0; i < m_excluded_names_count; ++i) {
excluded_names.set(interpreter.reg(m_excluded_names[i]));
if (interpreter.vm().exception())
return;
}
auto own_keys_or_error = from_object->internal_own_property_keys();
if (own_keys_or_error.is_error())
LibJS: Rewrite most of Object for spec compliance :^) This is a huge patch, I know. In hindsight this perhaps could've been done slightly more incremental, but I started and then fixed everything until it worked, and here we are. I tried splitting of some completely unrelated changes into separate commits, however. Anyway. This is a rewrite of most of Object, and by extension large parts of Array, Proxy, Reflect, String, TypedArray, and some other things. What we already had worked fine for about 90% of things, but getting the last 10% right proved to be increasingly difficult with the current code that sort of grew organically and is only very loosely based on the spec - this became especially obvious when we started fixing a large number of test262 failures. Key changes include: - 1:1 matching function names and parameters of all object-related functions, to avoid ambiguity. Previously we had things like put(), which the spec doesn't have - as a result it wasn't always clear which need to be used. - Better separation between object abstract operations and internal methods - the former are always the same, the latter can be overridden (and are therefore virtual). The internal methods (i.e. [[Foo]] in the spec) are now prefixed with 'internal_' for clarity - again, it was previously not always clear which AO a certain method represents, get() could've been both Get and [[Get]] (I don't know which one it was closer to right now). Note that some of the old names have been kept until all code relying on them is updated, but they are now simple wrappers around the closest matching standard abstract operation. - Simplifications of the storage layer: functions that write values to storage are now prefixed with 'storage_' to make their purpose clear, and as they are not part of the spec they should not contain any steps specified by it. Much functionality is now covered by the layers above it and was removed (e.g. handling of accessors, attribute checks). - PropertyAttributes has been greatly simplified, and is being replaced by PropertyDescriptor - a concept similar to the current implementation, but more aligned with the actual spec. See the commit message of the previous commit where it was introduced for details. - As a bonus, and since I had to look at the spec a whole lot anyway, I introduced more inline comments with the exact steps from the spec - this makes it super easy to verify correctness. - East-const all the things. As a result of all of this, things are much more correct but a bit slower now. Retaining speed wasn't a consideration at all, I have done no profiling of the new code - there might be low hanging fruits, which we can then harvest separately. Special thanks to Idan for helping me with this by tracking down bugs, updating everything outside of LibJS to work with these changes (LibWeb, Spreadsheet, HackStudio), as well as providing countless patches to fix regressions I introduced - there still are very few (we got it down to 5), but we also get many new passing test262 tests in return. :^) Co-authored-by: Idan Horowitz <idan.horowitz@gmail.com>
2021-07-04 18:14:16 +01:00
return;
auto own_keys = own_keys_or_error.release_value();
for (auto& key : own_keys) {
if (!excluded_names.contains(key)) {
auto property_name_or_error = key.to_property_key(interpreter.global_object());
if (property_name_or_error.is_error())
return;
PropertyKey property_name = property_name_or_error.release_value();
auto property_value_or_error = from_object->get(property_name);
if (property_value_or_error.is_error())
return;
auto property_value = property_value_or_error.release_value();
to_object->define_direct_property(property_name, property_value, JS::default_attributes);
}
}
interpreter.accumulator() = to_object;
}
void ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto result_or_error = add(interpreter.global_object(), interpreter.reg(m_lhs), interpreter.accumulator());
if (result_or_error.is_error())
return;
interpreter.reg(m_lhs) = result_or_error.release_value();
}
void GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto reference = [&] {
auto const& string = interpreter.current_executable().get_identifier(m_identifier);
if (m_cached_environment_coordinate.has_value()) {
auto* environment = interpreter.vm().running_execution_context().lexical_environment;
for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
environment = environment->outer_environment();
VERIFY(environment);
VERIFY(environment->is_declarative_environment());
if (!environment->is_permanently_screwed_by_eval()) {
return Reference { *environment, string, interpreter.vm().in_strict_mode(), m_cached_environment_coordinate };
}
m_cached_environment_coordinate = {};
}
auto reference_or_error = interpreter.vm().resolve_binding(string);
if (reference_or_error.is_throw_completion()) {
interpreter.vm().throw_exception(interpreter.global_object(), *reference_or_error.release_error().value());
return Reference {};
}
auto reference = reference_or_error.release_value();
if (reference.environment_coordinate().has_value())
m_cached_environment_coordinate = reference.environment_coordinate();
return reference;
}();
if (interpreter.vm().exception())
LibJS: Make scoping follow the spec Before this we used an ad-hoc combination of references and 'variables' stored in a hashmap. This worked in most cases but is not spec like. Additionally hoisting, dynamically naming functions and scope analysis was not done properly. This patch fixes all of that by: - Implement BindingInitialization for destructuring assignment. - Implementing a new ScopePusher which tracks the lexical and var scoped declarations. This hoists functions to the top level if no lexical declaration name overlaps. Furthermore we do checking of redeclarations in the ScopePusher now requiring less checks all over the place. - Add methods for parsing the directives and statement lists instead of having that code duplicated in multiple places. This allows declarations to pushed to the appropriate scope more easily. - Remove the non spec way of storing 'variables' in DeclarativeEnvironment and make Reference follow the spec instead of checking both the bindings and 'variables'. - Remove all scoping related things from the Interpreter. And instead use environments as specified by the spec. This also includes fixing that NativeFunctions did not produce a valid FunctionEnvironment which could cause issues with callbacks and eval. All FunctionObjects now have a valid NewFunctionEnvironment implementation. - Remove execute_statements from Interpreter and instead use ASTNode::execute everywhere this simplifies AST.cpp as you no longer need to worry about which method to call. - Make ScopeNodes setup their own environment. This uses four different methods specified by the spec {Block, Function, Eval, Global}DeclarationInstantiation with the annexB extensions. - Implement and use NamedEvaluation where specified. Additionally there are fixes to things exposed by these changes to eval, {for, for-in, for-of} loops and assignment. Finally it also fixes some tests in test-js which where passing before but not now that we have correct behavior :^).
2021-09-22 12:44:56 +02:00
return;
auto value_or_error = reference.get_value(interpreter.global_object());
if (value_or_error.is_error())
return;
interpreter.accumulator() = value_or_error.release_value();
}
void SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
LibJS: Make scoping follow the spec Before this we used an ad-hoc combination of references and 'variables' stored in a hashmap. This worked in most cases but is not spec like. Additionally hoisting, dynamically naming functions and scope analysis was not done properly. This patch fixes all of that by: - Implement BindingInitialization for destructuring assignment. - Implementing a new ScopePusher which tracks the lexical and var scoped declarations. This hoists functions to the top level if no lexical declaration name overlaps. Furthermore we do checking of redeclarations in the ScopePusher now requiring less checks all over the place. - Add methods for parsing the directives and statement lists instead of having that code duplicated in multiple places. This allows declarations to pushed to the appropriate scope more easily. - Remove the non spec way of storing 'variables' in DeclarativeEnvironment and make Reference follow the spec instead of checking both the bindings and 'variables'. - Remove all scoping related things from the Interpreter. And instead use environments as specified by the spec. This also includes fixing that NativeFunctions did not produce a valid FunctionEnvironment which could cause issues with callbacks and eval. All FunctionObjects now have a valid NewFunctionEnvironment implementation. - Remove execute_statements from Interpreter and instead use ASTNode::execute everywhere this simplifies AST.cpp as you no longer need to worry about which method to call. - Make ScopeNodes setup their own environment. This uses four different methods specified by the spec {Block, Function, Eval, Global}DeclarationInstantiation with the annexB extensions. - Implement and use NamedEvaluation where specified. Additionally there are fixes to things exposed by these changes to eval, {for, for-in, for-of} loops and assignment. Finally it also fixes some tests in test-js which where passing before but not now that we have correct behavior :^).
2021-09-22 12:44:56 +02:00
auto& vm = interpreter.vm();
auto reference_or_error = vm.resolve_binding(interpreter.current_executable().get_identifier(m_identifier));
if (reference_or_error.is_throw_completion()) {
interpreter.vm().throw_exception(interpreter.global_object(), *reference_or_error.release_error().value());
LibJS: Make scoping follow the spec Before this we used an ad-hoc combination of references and 'variables' stored in a hashmap. This worked in most cases but is not spec like. Additionally hoisting, dynamically naming functions and scope analysis was not done properly. This patch fixes all of that by: - Implement BindingInitialization for destructuring assignment. - Implementing a new ScopePusher which tracks the lexical and var scoped declarations. This hoists functions to the top level if no lexical declaration name overlaps. Furthermore we do checking of redeclarations in the ScopePusher now requiring less checks all over the place. - Add methods for parsing the directives and statement lists instead of having that code duplicated in multiple places. This allows declarations to pushed to the appropriate scope more easily. - Remove the non spec way of storing 'variables' in DeclarativeEnvironment and make Reference follow the spec instead of checking both the bindings and 'variables'. - Remove all scoping related things from the Interpreter. And instead use environments as specified by the spec. This also includes fixing that NativeFunctions did not produce a valid FunctionEnvironment which could cause issues with callbacks and eval. All FunctionObjects now have a valid NewFunctionEnvironment implementation. - Remove execute_statements from Interpreter and instead use ASTNode::execute everywhere this simplifies AST.cpp as you no longer need to worry about which method to call. - Make ScopeNodes setup their own environment. This uses four different methods specified by the spec {Block, Function, Eval, Global}DeclarationInstantiation with the annexB extensions. - Implement and use NamedEvaluation where specified. Additionally there are fixes to things exposed by these changes to eval, {for, for-in, for-of} loops and assignment. Finally it also fixes some tests in test-js which where passing before but not now that we have correct behavior :^).
2021-09-22 12:44:56 +02:00
return;
}
LibJS: Make scoping follow the spec Before this we used an ad-hoc combination of references and 'variables' stored in a hashmap. This worked in most cases but is not spec like. Additionally hoisting, dynamically naming functions and scope analysis was not done properly. This patch fixes all of that by: - Implement BindingInitialization for destructuring assignment. - Implementing a new ScopePusher which tracks the lexical and var scoped declarations. This hoists functions to the top level if no lexical declaration name overlaps. Furthermore we do checking of redeclarations in the ScopePusher now requiring less checks all over the place. - Add methods for parsing the directives and statement lists instead of having that code duplicated in multiple places. This allows declarations to pushed to the appropriate scope more easily. - Remove the non spec way of storing 'variables' in DeclarativeEnvironment and make Reference follow the spec instead of checking both the bindings and 'variables'. - Remove all scoping related things from the Interpreter. And instead use environments as specified by the spec. This also includes fixing that NativeFunctions did not produce a valid FunctionEnvironment which could cause issues with callbacks and eval. All FunctionObjects now have a valid NewFunctionEnvironment implementation. - Remove execute_statements from Interpreter and instead use ASTNode::execute everywhere this simplifies AST.cpp as you no longer need to worry about which method to call. - Make ScopeNodes setup their own environment. This uses four different methods specified by the spec {Block, Function, Eval, Global}DeclarationInstantiation with the annexB extensions. - Implement and use NamedEvaluation where specified. Additionally there are fixes to things exposed by these changes to eval, {for, for-in, for-of} loops and assignment. Finally it also fixes some tests in test-js which where passing before but not now that we have correct behavior :^).
2021-09-22 12:44:56 +02:00
auto reference = reference_or_error.release_value();
// TODO: ThrowCompletionOr<void> return
(void)reference.put_value(interpreter.global_object(), interpreter.accumulator());
}
void GetById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto object_or_error = interpreter.accumulator().to_object(interpreter.global_object());
if (object_or_error.is_error())
return;
auto* object = object_or_error.release_value();
auto value_or_error = object->get(interpreter.current_executable().get_identifier(m_property));
if (value_or_error.is_error())
return;
interpreter.accumulator() = value_or_error.release_value();
}
void PutById::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto object_or_error = interpreter.reg(m_base).to_object(interpreter.global_object());
if (object_or_error.is_error())
return;
auto* object = object_or_error.release_value();
MUST(object->set(interpreter.current_executable().get_identifier(m_property), interpreter.accumulator(), Object::ShouldThrowExceptions::Yes));
}
void Jump::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.jump(*m_true_target);
}
void ResolveThisBinding::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto value_or_error = interpreter.vm().resolve_this_binding(interpreter.global_object());
if (value_or_error.is_error())
return;
interpreter.accumulator() = value_or_error.release_value();
}
void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (m_true_target.has_value() && &m_true_target->block() == &from)
m_true_target = Label { to };
if (m_false_target.has_value() && &m_false_target->block() == &from)
m_false_target = Label { to };
}
void JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
{
VERIFY(m_true_target.has_value());
VERIFY(m_false_target.has_value());
auto result = interpreter.accumulator();
if (result.to_boolean())
interpreter.jump(m_true_target.value());
else
interpreter.jump(m_false_target.value());
}
void JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
{
VERIFY(m_true_target.has_value());
VERIFY(m_false_target.has_value());
auto result = interpreter.accumulator();
if (result.is_nullish())
interpreter.jump(m_true_target.value());
else
interpreter.jump(m_false_target.value());
}
2021-06-13 12:24:40 -07:00
void JumpUndefined::execute_impl(Bytecode::Interpreter& interpreter) const
{
VERIFY(m_true_target.has_value());
VERIFY(m_false_target.has_value());
auto result = interpreter.accumulator();
if (result.is_undefined())
interpreter.jump(m_true_target.value());
else
interpreter.jump(m_false_target.value());
}
void Call::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto callee = interpreter.reg(m_callee);
if (!callee.is_function()) {
interpreter.vm().throw_exception<TypeError>(interpreter.global_object(), ErrorType::IsNotA, callee.to_string_without_side_effects(), "function"sv);
return;
}
auto& function = callee.as_function();
auto this_value = interpreter.reg(m_this_value);
Value return_value;
if (m_argument_count == 0 && m_type == CallType::Call) {
auto return_value_or_error = call(interpreter.global_object(), function, this_value);
if (!return_value_or_error.is_error())
return_value = return_value_or_error.release_value();
} else {
MarkedValueList argument_values { interpreter.vm().heap() };
for (size_t i = 0; i < m_argument_count; ++i) {
argument_values.append(interpreter.reg(m_arguments[i]));
}
if (m_type == CallType::Call) {
auto return_value_or_error = call(interpreter.global_object(), function, this_value, move(argument_values));
if (return_value_or_error.is_error())
return;
return_value = return_value_or_error.release_value();
} else {
auto return_value_or_error = construct(interpreter.global_object(), function, move(argument_values));
if (return_value_or_error.is_error())
return;
return_value = return_value_or_error.release_value();
}
}
interpreter.accumulator() = return_value;
}
void NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
interpreter.accumulator() = ECMAScriptFunctionObject::create(interpreter.global_object(), m_function_node.name(), m_function_node.source_text(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.lexical_environment(), vm.running_execution_context().private_environment, m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.might_need_arguments_object(), m_function_node.is_arrow_function());
}
void Return::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
}
void Increment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto old_value_or_error = interpreter.accumulator().to_numeric(interpreter.global_object());
if (old_value_or_error.is_error())
return;
auto old_value = old_value_or_error.release_value();
if (old_value.is_number())
interpreter.accumulator() = Value(old_value.as_double() + 1);
else
interpreter.accumulator() = js_bigint(interpreter.vm().heap(), old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
}
void Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto old_value_or_error = interpreter.accumulator().to_numeric(interpreter.global_object());
if (old_value_or_error.is_error())
return;
auto old_value = old_value_or_error.release_value();
if (old_value.is_number())
interpreter.accumulator() = Value(old_value.as_double() - 1);
else
interpreter.accumulator() = js_bigint(interpreter.vm().heap(), old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
}
void Throw::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.vm().throw_exception(interpreter.global_object(), interpreter.accumulator());
}
void EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
{
interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
interpreter.jump(m_entry_point);
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
}
void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (&m_entry_point.block() == &from)
m_entry_point = Label { to };
if (m_handler_target.has_value() && &m_handler_target->block() == &from)
m_handler_target = Label { to };
if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
m_finalizer_target = Label { to };
}
void FinishUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.leave_unwind_context();
interpreter.jump(m_next_target);
}
void FinishUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (&m_next_target.block() == &from)
m_next_target = Label { to };
}
void LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
{
interpreter.leave_unwind_context();
}
void ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
{
interpreter.continue_pending_unwind(m_resume_target);
}
void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (&m_resume_target.block() == &from)
m_resume_target = Label { to };
}
void PushDeclarativeEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
LibJS: Make scoping follow the spec Before this we used an ad-hoc combination of references and 'variables' stored in a hashmap. This worked in most cases but is not spec like. Additionally hoisting, dynamically naming functions and scope analysis was not done properly. This patch fixes all of that by: - Implement BindingInitialization for destructuring assignment. - Implementing a new ScopePusher which tracks the lexical and var scoped declarations. This hoists functions to the top level if no lexical declaration name overlaps. Furthermore we do checking of redeclarations in the ScopePusher now requiring less checks all over the place. - Add methods for parsing the directives and statement lists instead of having that code duplicated in multiple places. This allows declarations to pushed to the appropriate scope more easily. - Remove the non spec way of storing 'variables' in DeclarativeEnvironment and make Reference follow the spec instead of checking both the bindings and 'variables'. - Remove all scoping related things from the Interpreter. And instead use environments as specified by the spec. This also includes fixing that NativeFunctions did not produce a valid FunctionEnvironment which could cause issues with callbacks and eval. All FunctionObjects now have a valid NewFunctionEnvironment implementation. - Remove execute_statements from Interpreter and instead use ASTNode::execute everywhere this simplifies AST.cpp as you no longer need to worry about which method to call. - Make ScopeNodes setup their own environment. This uses four different methods specified by the spec {Block, Function, Eval, Global}DeclarationInstantiation with the annexB extensions. - Implement and use NamedEvaluation where specified. Additionally there are fixes to things exposed by these changes to eval, {for, for-in, for-of} loops and assignment. Finally it also fixes some tests in test-js which where passing before but not now that we have correct behavior :^).
2021-09-22 12:44:56 +02:00
auto* environment = interpreter.vm().heap().allocate<DeclarativeEnvironment>(interpreter.global_object(), interpreter.vm().lexical_environment());
interpreter.vm().running_execution_context().lexical_environment = environment;
interpreter.vm().running_execution_context().variable_environment = environment;
}
void Yield::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto yielded_value = interpreter.accumulator().value_or(js_undefined());
auto object = JS::Object::create(interpreter.global_object(), nullptr);
object->define_direct_property("result", yielded_value, JS::default_attributes);
if (m_continuation_label.has_value())
object->define_direct_property("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))), JS::default_attributes);
else
object->define_direct_property("continuation", Value(0), JS::default_attributes);
interpreter.do_return(object);
}
void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
m_continuation_label = Label { to };
}
void GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto object_or_error = interpreter.reg(m_base).to_object(interpreter.global_object());
if (object_or_error.is_error())
return;
auto* object = object_or_error.release_value();
auto property_key_or_error = interpreter.accumulator().to_property_key(interpreter.global_object());
if (property_key_or_error.is_error())
return;
auto value_or_error = object->get(property_key_or_error.release_value());
if (value_or_error.is_error())
return;
interpreter.accumulator() = value_or_error.release_value();
}
void PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto object_or_error = interpreter.reg(m_base).to_object(interpreter.global_object());
if (object_or_error.is_error())
return;
auto* object = object_or_error.release_value();
auto property_key_or_error = interpreter.reg(m_property).to_property_key(interpreter.global_object());
if (property_key_or_error.is_error())
return;
MUST(object->set(property_key_or_error.release_value(), interpreter.accumulator(), Object::ShouldThrowExceptions::Yes));
}
void GetIterator::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto iterator_or_error = get_iterator(interpreter.global_object(), interpreter.accumulator());
if (iterator_or_error.is_error())
return;
interpreter.accumulator() = iterator_to_object(interpreter.global_object(), iterator_or_error.release_value());
}
void IteratorNext::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto iterator_object_or_error = interpreter.accumulator().to_object(interpreter.global_object());
if (iterator_object_or_error.is_error())
return;
auto iterator = object_to_iterator(interpreter.global_object(), *iterator_object_or_error.release_value());
auto iterator_result_or_error = iterator_next(interpreter.global_object(), iterator);
if (iterator_result_or_error.is_error())
return;
auto* iterator_result = iterator_result_or_error.release_value();
interpreter.accumulator() = iterator_result;
}
void IteratorResultDone::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto iterator_result_or_error = interpreter.accumulator().to_object(interpreter.global_object());
if (iterator_result_or_error.is_error())
return;
auto* iterator_result = iterator_result_or_error.release_value();
auto complete_or_error = iterator_complete(interpreter.global_object(), *iterator_result);
if (complete_or_error.is_error())
return;
auto complete = complete_or_error.release_value();
interpreter.accumulator() = Value(complete);
}
void IteratorResultValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto iterator_result_or_error = interpreter.accumulator().to_object(interpreter.global_object());
if (iterator_result_or_error.is_error())
return;
auto* iterator_result = iterator_result_or_error.release_value();
auto value_or_error = iterator_value(interpreter.global_object(), *iterator_result);
if (value_or_error.is_error())
return;
auto value = value_or_error.release_value();
interpreter.accumulator() = value;
}
void NewClass::execute_impl(Bytecode::Interpreter&) const
{
(void)m_class_expression;
TODO();
}
String Load::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("Load {}", m_src);
}
String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("LoadImmediate {}", m_value);
}
String Store::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("Store {}", m_dst);
}
String NewBigInt::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("NewBigInt \"{}\"", m_bigint.to_base(10));
}
String NewArray::to_string_impl(Bytecode::Executable const&) const
{
StringBuilder builder;
builder.append("NewArray");
if (m_element_count != 0) {
builder.append(" [");
for (size_t i = 0; i < m_element_count; ++i) {
builder.appendff("{}", m_elements[i]);
if (i != m_element_count - 1)
builder.append(',');
}
builder.append(']');
}
return builder.to_string();
}
String IteratorToArray::to_string_impl(const Bytecode::Executable&) const
{
return "IteratorToArray";
}
String NewString::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
}
String NewObject::to_string_impl(Bytecode::Executable const&) const
{
return "NewObject";
}
String NewRegExp::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("NewRegExp source:{} (\"{}\") flags:{} (\"{}\")", m_source_index, executable.get_string(m_source_index), m_flags_index, executable.get_string(m_flags_index));
}
String CopyObjectExcludingProperties::to_string_impl(const Bytecode::Executable&) const
{
StringBuilder builder;
builder.appendff("CopyObjectExcludingProperties from:{}", m_from_object);
if (m_excluded_names_count != 0) {
builder.append(" excluding:[");
for (size_t i = 0; i < m_excluded_names_count; ++i) {
builder.appendff("{}", m_excluded_names[i]);
if (i != m_excluded_names_count - 1)
builder.append(',');
}
builder.append(']');
}
return builder.to_string();
}
String ConcatString::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("ConcatString {}", m_lhs);
}
String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("GetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
}
String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("SetVariable {} ({})", m_identifier, executable.identifier_table->get(m_identifier));
}
String PutById::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("PutById base:{}, property:{} ({})", m_base, m_property, executable.identifier_table->get(m_property));
}
String GetById::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("GetById {} ({})", m_property, executable.identifier_table->get(m_property));
}
String Jump::to_string_impl(Bytecode::Executable const&) const
{
if (m_true_target.has_value())
return String::formatted("Jump {}", *m_true_target);
return String::formatted("Jump <empty>");
}
String JumpConditional::to_string_impl(Bytecode::Executable const&) const
{
auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
}
String JumpNullish::to_string_impl(Bytecode::Executable const&) const
{
auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
}
2021-06-13 12:24:40 -07:00
String JumpUndefined::to_string_impl(Bytecode::Executable const&) const
{
auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
return String::formatted("JumpUndefined undefined:{} not undefined:{}", true_string, false_string);
}
String Call::to_string_impl(Bytecode::Executable const&) const
{
StringBuilder builder;
builder.appendff("Call callee:{}, this:{}", m_callee, m_this_value);
if (m_argument_count != 0) {
builder.append(", arguments:[");
for (size_t i = 0; i < m_argument_count; ++i) {
builder.appendff("{}", m_arguments[i]);
if (i != m_argument_count - 1)
builder.append(',');
}
builder.append(']');
}
return builder.to_string();
}
String NewFunction::to_string_impl(Bytecode::Executable const&) const
{
return "NewFunction";
}
String NewClass::to_string_impl(Bytecode::Executable const&) const
{
return "NewClass";
}
String Return::to_string_impl(Bytecode::Executable const&) const
{
return "Return";
}
String Increment::to_string_impl(Bytecode::Executable const&) const
{
return "Increment";
}
String Decrement::to_string_impl(Bytecode::Executable const&) const
{
return "Decrement";
}
String Throw::to_string_impl(Bytecode::Executable const&) const
{
return "Throw";
}
String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
{
auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
}
String FinishUnwind::to_string_impl(const Bytecode::Executable&) const
{
return String::formatted("FinishUnwind next:{}", m_next_target);
}
String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
{
return "LeaveUnwindContext";
}
String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
{
return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
}
String PushDeclarativeEnvironment::to_string_impl(const Bytecode::Executable& executable) const
{
StringBuilder builder;
builder.append("PushDeclarativeEnvironment");
if (!m_variables.is_empty()) {
builder.append(" {");
Vector<String> names;
for (auto& it : m_variables)
names.append(executable.get_string(it.key));
builder.join(", ", names);
builder.append("}");
}
return builder.to_string();
}
String Yield::to_string_impl(Bytecode::Executable const&) const
{
if (m_continuation_label.has_value())
return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
return String::formatted("Yield return");
}
String GetByValue::to_string_impl(const Bytecode::Executable&) const
{
return String::formatted("GetByValue base:{}", m_base);
}
String PutByValue::to_string_impl(const Bytecode::Executable&) const
{
return String::formatted("PutByValue base:{}, property:{}", m_base, m_property);
}
String GetIterator::to_string_impl(Executable const&) const
{
return "GetIterator";
}
String IteratorNext::to_string_impl(Executable const&) const
{
return "IteratorNext";
}
String IteratorResultDone::to_string_impl(Executable const&) const
{
return "IteratorResultDone";
}
String IteratorResultValue::to_string_impl(Executable const&) const
{
return "IteratorResultValue";
}
String ResolveThisBinding::to_string_impl(Bytecode::Executable const&) const
{
return "ResolveThisBinding"sv;
}
}