2020-12-01 19:55:41 +01:00
|
|
|
/*
|
2021-04-26 17:13:04 +02:00
|
|
|
* Copyright (c) 2018-2021, the SerenityOS developers.
|
2020-12-01 19:55:41 +01:00
|
|
|
*
|
2021-04-22 01:24:48 -07:00
|
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
2020-12-01 19:55:41 +01:00
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
2020-12-02 15:44:45 +01:00
|
|
|
#include <AK/ByteBuffer.h>
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
#include <AK/NonnullOwnPtr.h>
|
|
|
|
|
#include <AK/NonnullRefPtr.h>
|
2020-12-01 19:55:41 +01:00
|
|
|
#include <AK/RefCounted.h>
|
|
|
|
|
#include <AK/RefPtr.h>
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
#include <AK/Result.h>
|
2020-12-01 19:55:41 +01:00
|
|
|
#include <AK/StringView.h>
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
#include <AK/Try.h>
|
2021-01-21 20:55:37 +01:00
|
|
|
#include <LibAudio/Buffer.h>
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
#include <LibAudio/LoaderError.h>
|
2020-12-01 19:55:41 +01:00
|
|
|
#include <LibCore/File.h>
|
|
|
|
|
|
|
|
|
|
namespace Audio {
|
|
|
|
|
|
2021-06-24 23:56:28 +02:00
|
|
|
static const String empty_string = "";
|
|
|
|
|
static String no_plugin_error = "No loader plugin available";
|
|
|
|
|
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
using LoaderSamples = Result<NonnullRefPtr<Buffer>, LoaderError>;
|
|
|
|
|
using MaybeLoaderError = Result<void, LoaderError>;
|
|
|
|
|
|
2020-12-01 19:55:41 +01:00
|
|
|
class LoaderPlugin {
|
|
|
|
|
public:
|
|
|
|
|
virtual ~LoaderPlugin() { }
|
|
|
|
|
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
virtual MaybeLoaderError initialize() = 0;
|
2020-12-01 19:55:41 +01:00
|
|
|
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
virtual LoaderSamples get_more_samples(size_t max_bytes_to_read_from_input = 128 * KiB) = 0;
|
2020-12-01 19:55:41 +01:00
|
|
|
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
virtual MaybeLoaderError reset() = 0;
|
2021-06-05 17:14:55 -07:00
|
|
|
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
virtual MaybeLoaderError seek(const int sample_index) = 0;
|
2020-12-01 19:55:41 +01:00
|
|
|
|
2021-06-10 10:59:00 -07:00
|
|
|
// total_samples() and loaded_samples() should be independent
|
|
|
|
|
// of the number of channels.
|
|
|
|
|
//
|
|
|
|
|
// For example, with a three-second-long, stereo, 44.1KHz audio file:
|
|
|
|
|
// num_channels() should return 2
|
|
|
|
|
// sample_rate() should return 44100 (each channel is sampled at this rate)
|
|
|
|
|
// total_samples() should return 132300 (sample_rate * three seconds)
|
2020-12-01 19:55:41 +01:00
|
|
|
virtual int loaded_samples() = 0;
|
|
|
|
|
virtual int total_samples() = 0;
|
|
|
|
|
virtual u32 sample_rate() = 0;
|
|
|
|
|
virtual u16 num_channels() = 0;
|
2021-06-10 10:59:00 -07:00
|
|
|
|
2022-01-14 12:32:42 +01:00
|
|
|
// Human-readable name of the file format, of the form <full abbreviation> (.<ending>)
|
|
|
|
|
virtual String format_name() = 0;
|
2021-04-26 17:13:04 +02:00
|
|
|
virtual PcmSampleFormat pcm_format() = 0;
|
2020-12-01 19:55:41 +01:00
|
|
|
virtual RefPtr<Core::File> file() = 0;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
class Loader : public RefCounted<Loader> {
|
|
|
|
|
public:
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
static Result<NonnullRefPtr<Loader>, LoaderError> create(StringView path) { return adopt_ref(*new Loader(TRY(try_create(path)))); }
|
|
|
|
|
static Result<NonnullRefPtr<Loader>, LoaderError> create(ByteBuffer const& buffer) { return adopt_ref(*new Loader(TRY(try_create(buffer)))); }
|
|
|
|
|
|
|
|
|
|
LoaderSamples get_more_samples(size_t max_bytes_to_read_from_input = 128 * KiB) const { return m_plugin->get_more_samples(max_bytes_to_read_from_input); }
|
|
|
|
|
|
|
|
|
|
MaybeLoaderError reset() const { return m_plugin->reset(); }
|
|
|
|
|
MaybeLoaderError seek(const int position) const { return m_plugin->seek(position); }
|
|
|
|
|
|
|
|
|
|
int loaded_samples() const { return m_plugin->loaded_samples(); }
|
|
|
|
|
int total_samples() const { return m_plugin->total_samples(); }
|
|
|
|
|
u32 sample_rate() const { return m_plugin->sample_rate(); }
|
|
|
|
|
u16 num_channels() const { return m_plugin->num_channels(); }
|
2022-01-14 12:32:42 +01:00
|
|
|
String format_name() const { return m_plugin->format_name(); }
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
u16 bits_per_sample() const { return pcm_bits_per_sample(m_plugin->pcm_format()); }
|
|
|
|
|
RefPtr<Core::File> file() const { return m_plugin->file(); }
|
2020-12-01 19:55:41 +01:00
|
|
|
|
|
|
|
|
private:
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
static Result<NonnullOwnPtr<LoaderPlugin>, LoaderError> try_create(StringView path);
|
|
|
|
|
static Result<NonnullOwnPtr<LoaderPlugin>, LoaderError> try_create(ByteBuffer const& buffer);
|
|
|
|
|
|
|
|
|
|
explicit Loader(NonnullOwnPtr<LoaderPlugin>);
|
2020-12-01 19:55:41 +01:00
|
|
|
|
LibAudio: New error propagation API in Loader and Buffer
Previously, a libc-like out-of-line error information was used in the
loader and its plugins. Now, all functions that may fail to do their job
return some sort of Result. The universally-used error type ist the new
LoaderError, which can contain information about the general error
category (such as file format, I/O, unimplemented features), an error
description, and location information, such as file index or sample
index.
Additionally, the loader plugins try to do as little work as possible in
their constructors. Right after being constructed, a user should call
initialize() and check the errors returned from there. (This is done
transparently by Loader itself.) If a constructor caused an error, the
call to initialize should check and return it immediately.
This opportunity was used to rework a lot of the internal error
propagation in both loader classes, especially FlacLoader. Therefore, a
couple of other refactorings may have sneaked in as well.
The adoption of LibAudio users is minimal. Piano's adoption is not
important, as the code will receive major refactoring in the near future
anyways. SoundPlayer's adoption is also less important, as changes to
refactor it are in the works as well. aplay's adoption is the best and
may serve as an example for other users. It also includes new buffering
behavior.
Buffer also gets some attention, making it OOM-safe and thereby also
propagating its errors to the user.
2021-11-27 17:00:19 +01:00
|
|
|
mutable NonnullOwnPtr<LoaderPlugin> m_plugin;
|
2020-12-01 19:55:41 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
}
|