ladybird/Userland/Libraries/LibGfx/ImageFormats/JPEGLoader.cpp

1833 lines
71 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020, the SerenityOS developers.
* Copyright (c) 2022-2023, Lucas Chollet <lucas.chollet@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
2023-01-25 20:19:05 +01:00
#include <AK/Endian.h>
#include <AK/Error.h>
#include <AK/FixedArray.h>
#include <AK/HashMap.h>
#include <AK/Math.h>
2023-01-25 20:19:05 +01:00
#include <AK/MemoryStream.h>
#include <AK/String.h>
#include <AK/Try.h>
#include <AK/Vector.h>
#include <LibGfx/ImageFormats/JPEGLoader.h>
#define JPEG_INVALID 0X0000
// These names are defined in B.1.1.3 - Marker assignments
#define JPEG_APPN0 0XFFE0
#define JPEG_APPN1 0XFFE1
#define JPEG_APPN2 0XFFE2
#define JPEG_APPN3 0XFFE3
#define JPEG_APPN4 0XFFE4
#define JPEG_APPN5 0XFFE5
#define JPEG_APPN6 0XFFE6
#define JPEG_APPN7 0XFFE7
#define JPEG_APPN8 0XFFE8
#define JPEG_APPN9 0XFFE9
#define JPEG_APPN10 0XFFEA
#define JPEG_APPN11 0XFFEB
#define JPEG_APPN12 0XFFEC
#define JPEG_APPN13 0XFFED
#define JPEG_APPN14 0xFFEE
#define JPEG_APPN15 0xFFEF
#define JPEG_RESERVED1 0xFFF1
#define JPEG_RESERVED2 0xFFF2
#define JPEG_RESERVED3 0xFFF3
#define JPEG_RESERVED4 0xFFF4
#define JPEG_RESERVED5 0xFFF5
#define JPEG_RESERVED6 0xFFF6
#define JPEG_RESERVED7 0xFFF7
#define JPEG_RESERVED8 0xFFF8
#define JPEG_RESERVED9 0xFFF9
#define JPEG_RESERVEDA 0xFFFA
#define JPEG_RESERVEDB 0xFFFB
#define JPEG_RESERVEDC 0xFFFC
#define JPEG_RESERVEDD 0xFFFD
#define JPEG_RST0 0xFFD0
#define JPEG_RST1 0xFFD1
#define JPEG_RST2 0xFFD2
#define JPEG_RST3 0xFFD3
#define JPEG_RST4 0xFFD4
#define JPEG_RST5 0xFFD5
#define JPEG_RST6 0xFFD6
#define JPEG_RST7 0xFFD7
#define JPEG_ZRL 0xF0
#define JPEG_DHP 0xFFDE
#define JPEG_EXP 0xFFDF
#define JPEG_DAC 0XFFCC
#define JPEG_DHT 0XFFC4
#define JPEG_DQT 0XFFDB
#define JPEG_EOI 0xFFD9
#define JPEG_DRI 0XFFDD
#define JPEG_SOF0 0XFFC0
#define JPEG_SOF2 0xFFC2
#define JPEG_SOF15 0xFFCF
#define JPEG_SOI 0XFFD8
#define JPEG_SOS 0XFFDA
#define JPEG_COM 0xFFFE
namespace Gfx {
constexpr static u8 zigzag_map[64] {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63
};
using Marker = u16;
/**
* MCU means group of data units that are coded together. A data unit is an 8x8
* block of component data. In interleaved scans, number of non-interleaved data
* units of a component C is Ch * Cv, where Ch and Cv represent the horizontal &
* vertical subsampling factors of the component, respectively. A MacroBlock is
* an 8x8 block of RGB values before encoding, and 8x8 block of YCbCr values when
* we're done decoding the huffman stream.
*/
struct Macroblock {
union {
i16 y[64] = { 0 };
i16 r[64];
};
union {
i16 cb[64] = { 0 };
i16 g[64];
};
union {
i16 cr[64] = { 0 };
i16 b[64];
};
i16 k[64] = { 0 };
};
struct MacroblockMeta {
u32 total { 0 };
u32 padded_total { 0 };
u32 hcount { 0 };
u32 vcount { 0 };
u32 hpadded_count { 0 };
u32 vpadded_count { 0 };
};
// In the JPEG format, components are defined first at the frame level, then
// referenced in each scan and aggregated with scan-specific information. The
// two following structs mimic this hierarchy.
struct Component {
// B.2.2 - Frame header syntax
u8 id { 0 }; // Ci, Component identifier
u8 hsample_factor { 1 }; // Hi, Horizontal sampling factor
u8 vsample_factor { 1 }; // Vi, Vertical sampling factor
u8 quantization_table_id { 0 }; // Tqi, Quantization table destination selector
// The JPEG specification does not specify which component corresponds to
// Y, Cb or Cr. This field (actually the index in the parent Vector) will
// act as an authority to determine the *real* component.
// Please note that this is implementation specific.
u8 index { 0 };
};
struct ScanComponent {
// B.2.3 - Scan header syntax
Component& component;
u8 dc_destination_id { 0 }; // Tdj, DC entropy coding table destination selector
u8 ac_destination_id { 0 }; // Taj, AC entropy coding table destination selector
};
struct StartOfFrame {
// Of these, only the first 3 are in mainstream use, and refers to SOF0-2.
enum class FrameType {
Baseline_DCT = 0,
Extended_Sequential_DCT = 1,
Progressive_DCT = 2,
Sequential_Lossless = 3,
Differential_Sequential_DCT = 5,
Differential_Progressive_DCT = 6,
Differential_Sequential_Lossless = 7,
Extended_Sequential_DCT_Arithmetic = 9,
Progressive_DCT_Arithmetic = 10,
Sequential_Lossless_Arithmetic = 11,
Differential_Sequential_DCT_Arithmetic = 13,
Differential_Progressive_DCT_Arithmetic = 14,
Differential_Sequential_Lossless_Arithmetic = 15,
};
FrameType type { FrameType::Baseline_DCT };
u8 precision { 0 };
u16 height { 0 };
u16 width { 0 };
};
struct HuffmanTableSpec {
u8 type { 0 };
u8 destination_id { 0 };
u8 code_counts[16] = { 0 };
Vector<u8> symbols;
Vector<u16> codes;
};
struct HuffmanStreamState {
Vector<u8> stream;
u8 bit_offset { 0 };
size_t byte_offset { 0 };
};
struct ICCMultiChunkState {
u8 seen_number_of_icc_chunks { 0 };
FixedArray<ByteBuffer> chunks;
};
struct Scan {
// B.2.3 - Scan header syntax
Vector<ScanComponent, 4> components;
u8 spectral_selection_start {}; // Ss
u8 spectral_selection_end {}; // Se
u8 successive_approximation_high {}; // Ah
u8 successive_approximation_low {}; // Al
HuffmanStreamState huffman_stream;
u64 end_of_bands_run_count { 0 };
// See the note on Figure B.4 - Scan header syntax
bool are_components_interleaved() const
{
return components.size() != 1;
}
};
enum class ColorTransform {
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
CmykOrRgb = 0,
YCbCr = 1,
YCCK = 2,
};
struct JPEGLoadingContext {
enum State {
NotDecoded = 0,
Error,
FrameDecoded,
HeaderDecoded,
BitmapDecoded
};
State state { State::NotDecoded };
Array<Optional<Array<u16, 64>>, 4> quantization_tables {};
StartOfFrame frame;
u8 hsample_factor { 0 };
u8 vsample_factor { 0 };
Scan current_scan;
Vector<Component, 4> components;
RefPtr<Gfx::Bitmap> bitmap;
u16 dc_restart_interval { 0 };
HashMap<u8, HuffmanTableSpec> dc_tables;
HashMap<u8, HuffmanTableSpec> ac_tables;
Array<i32, 4> previous_dc_values {};
MacroblockMeta mblock_meta;
2023-01-25 20:19:05 +01:00
OwnPtr<FixedMemoryStream> stream;
Optional<ColorTransform> color_transform {};
Optional<ICCMultiChunkState> icc_multi_chunk_state;
Optional<ByteBuffer> icc_data;
};
static void generate_huffman_codes(HuffmanTableSpec& table)
{
unsigned code = 0;
for (auto number_of_codes : table.code_counts) {
for (int i = 0; i < number_of_codes; i++)
table.codes.append(code++);
code <<= 1;
}
}
static ErrorOr<size_t> read_huffman_bits(HuffmanStreamState& hstream, size_t count = 1)
{
if (count > (8 * sizeof(size_t))) {
dbgln_if(JPEG_DEBUG, "Can't read {} bits at once!", count);
return Error::from_string_literal("Reading too much huffman bits at once");
}
size_t value = 0;
while (count--) {
if (hstream.byte_offset >= hstream.stream.size()) {
dbgln_if(JPEG_DEBUG, "Huffman stream exhausted. This could be an error!");
return Error::from_string_literal("Huffman stream exhausted.");
}
u8 current_byte = hstream.stream[hstream.byte_offset];
u8 current_bit = 1u & (u32)(current_byte >> (7 - hstream.bit_offset)); // MSB first.
hstream.bit_offset++;
value = (value << 1) | (size_t)current_bit;
if (hstream.bit_offset == 8) {
hstream.byte_offset++;
hstream.bit_offset = 0;
}
}
return value;
}
static ErrorOr<u8> get_next_symbol(HuffmanStreamState& hstream, HuffmanTableSpec const& table)
{
unsigned code = 0;
size_t code_cursor = 0;
for (int i = 0; i < 16; i++) { // Codes can't be longer than 16 bits.
auto result = TRY(read_huffman_bits(hstream));
code = (code << 1) | (i32)result;
for (int j = 0; j < table.code_counts[i]; j++) {
if (code == table.codes[code_cursor])
return table.symbols[code_cursor];
code_cursor++;
}
}
dbgln_if(JPEG_DEBUG, "If you're seeing this...the jpeg decoder needs to support more kinds of JPEGs!");
return Error::from_string_literal("This kind of JPEG is not yet supported by the decoder");
}
static inline auto* get_component(Macroblock& block, unsigned component)
{
switch (component) {
case 0:
return block.y;
case 1:
return block.cb;
case 2:
return block.cr;
case 3:
return block.k;
default:
VERIFY_NOT_REACHED();
}
}
static ErrorOr<void> refine_coefficient(Scan& scan, auto& coefficient)
{
// G.1.2.3 - Coding model for subsequent scans of successive approximation
// See the correction bit from rule b.
u8 const bit = TRY(read_huffman_bits(scan.huffman_stream, 1));
if (bit == 1)
coefficient |= 1 << scan.successive_approximation_low;
return {};
}
static ErrorOr<void> add_dc(JPEGLoadingContext& context, Macroblock& macroblock, ScanComponent const& scan_component)
{
auto maybe_table = context.dc_tables.get(scan_component.dc_destination_id);
if (!maybe_table.has_value()) {
dbgln_if(JPEG_DEBUG, "Unable to find a DC table with id: {}", scan_component.dc_destination_id);
return Error::from_string_literal("Unable to find corresponding DC table");
}
auto& dc_table = maybe_table.value();
auto& scan = context.current_scan;
auto* select_component = get_component(macroblock, scan_component.component.index);
auto& coefficient = select_component[0];
if (context.current_scan.successive_approximation_high > 0) {
TRY(refine_coefficient(scan, coefficient));
return {};
}
// For DC coefficients, symbol encodes the length of the coefficient.
auto dc_length = TRY(get_next_symbol(scan.huffman_stream, dc_table));
if (dc_length > 11) {
dbgln_if(JPEG_DEBUG, "DC coefficient too long: {}!", dc_length);
return Error::from_string_literal("DC coefficient too long");
}
// DC coefficients are encoded as the difference between previous and current DC values.
i32 dc_diff = TRY(read_huffman_bits(scan.huffman_stream, dc_length));
// If MSB in diff is 0, the difference is -ve. Otherwise +ve.
if (dc_length != 0 && dc_diff < (1 << (dc_length - 1)))
dc_diff -= (1 << dc_length) - 1;
auto& previous_dc = context.previous_dc_values[scan_component.component.index];
previous_dc += dc_diff;
coefficient = previous_dc << scan.successive_approximation_low;
return {};
}
static ErrorOr<bool> read_eob(Scan& scan, u32 symbol)
{
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
// Note: We also use it for non-progressive encoding as it supports both EOB and ZRL
if (auto const eob = symbol & 0x0F; eob == 0 && symbol != JPEG_ZRL) {
// We encountered an EOB marker
auto const eob_base = symbol >> 4;
auto const additional_value = TRY(read_huffman_bits(scan.huffman_stream, eob_base));
scan.end_of_bands_run_count = additional_value + (1 << eob_base) - 1;
// end_of_bands_run_count is decremented at the end of `build_macroblocks`.
// And we need to now that we reached End of Block in `add_ac`.
++scan.end_of_bands_run_count;
return true;
}
return false;
}
static bool is_progressive(StartOfFrame::FrameType frame_type)
{
return frame_type == StartOfFrame::FrameType::Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Progressive_DCT_Arithmetic
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT_Arithmetic;
}
static ErrorOr<void> add_ac(JPEGLoadingContext& context, Macroblock& macroblock, ScanComponent const& scan_component)
{
auto maybe_table = context.ac_tables.get(scan_component.ac_destination_id);
if (!maybe_table.has_value()) {
dbgln_if(JPEG_DEBUG, "Unable to find a AC table with id: {}", scan_component.ac_destination_id);
return Error::from_string_literal("Unable to find corresponding AC table");
}
auto& ac_table = maybe_table.value();
auto* select_component = get_component(macroblock, scan_component.component.index);
auto& scan = context.current_scan;
// Compute the AC coefficients.
// 0th coefficient is the dc, which is already handled
auto first_coefficient = max(1, scan.spectral_selection_start);
u32 to_skip = 0;
Optional<u8> saved_symbol;
Optional<u8> saved_bit_for_rule_a;
bool in_zrl = false;
for (int j = first_coefficient; j <= scan.spectral_selection_end; ++j) {
auto& coefficient = select_component[zigzag_map[j]];
// AC symbols encode 2 pieces of information, the high 4 bits represent
// number of zeroes to be stuffed before reading the coefficient. Low 4
// bits represent the magnitude of the coefficient.
if (!in_zrl && scan.end_of_bands_run_count == 0 && !saved_symbol.has_value()) {
saved_symbol = TRY(get_next_symbol(scan.huffman_stream, ac_table));
if (!TRY(read_eob(scan, *saved_symbol))) {
to_skip = *saved_symbol >> 4;
in_zrl = *saved_symbol == JPEG_ZRL;
if (in_zrl) {
to_skip++;
saved_symbol.clear();
}
if (!in_zrl && is_progressive(context.frame.type) && scan.successive_approximation_high != 0) {
// G.1.2.3 - Coding model for subsequent scans of successive approximation
// Bit sign from rule a
saved_bit_for_rule_a = TRY(read_huffman_bits(scan.huffman_stream, 1));
}
}
}
if (coefficient != 0) {
TRY(refine_coefficient(scan, coefficient));
continue;
}
if (to_skip > 0) {
--to_skip;
if (to_skip == 0)
in_zrl = false;
continue;
}
if (scan.end_of_bands_run_count > 0)
continue;
if (is_progressive(context.frame.type) && scan.successive_approximation_high != 0) {
// G.1.2.3 - Coding model for subsequent scans of successive approximation
if (auto const low_bits = *saved_symbol & 0x0F; low_bits != 1) {
dbgln_if(JPEG_DEBUG, "AC coefficient low bits isn't equal to 1: {}!", low_bits);
return Error::from_string_literal("AC coefficient low bits isn't equal to 1");
}
coefficient = (*saved_bit_for_rule_a == 0 ? -1 : 1) << scan.successive_approximation_low;
saved_bit_for_rule_a.clear();
} else {
// F.1.2.2 - Huffman encoding of AC coefficients
u8 const coeff_length = *saved_symbol & 0x0F;
if (coeff_length > 10) {
dbgln_if(JPEG_DEBUG, "AC coefficient too long: {}!", coeff_length);
return Error::from_string_literal("AC coefficient too long");
}
if (coeff_length != 0) {
i32 ac_coefficient = TRY(read_huffman_bits(scan.huffman_stream, coeff_length));
if (ac_coefficient < (1 << (coeff_length - 1)))
ac_coefficient -= (1 << coeff_length) - 1;
coefficient = ac_coefficient * (1 << scan.successive_approximation_low);
}
}
saved_symbol.clear();
}
if (to_skip > 0) {
dbgln_if(JPEG_DEBUG, "Run-length exceeded boundaries. Cursor: {}, Skipping: {}!", scan.spectral_selection_end + to_skip, to_skip);
return Error::from_string_literal("Run-length exceeded boundaries");
}
return {};
}
/**
* Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr.
* Depending on the sampling factors, we may not see triples of y, cb, cr in that
* order. If sample factors differ from one, we'll read more than one block of y-
* coefficients before we get to read a cb-cr block.
* In the function below, `hcursor` and `vcursor` denote the location of the block
* we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors
* that iterate over the vertical and horizontal subsampling factors, respectively.
* When we finish one iteration of the innermost loop, we'll have the coefficients
* of one of the components of block at position `macroblock_index`. When the outermost
* loop finishes first iteration, we'll have all the luminance coefficients for all the
* macroblocks that share the chrominance data. Next two iterations (assuming that
* we are dealing with three components) will fill up the blocks with chroma data.
*/
static ErrorOr<void> build_macroblocks(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks, u32 hcursor, u32 vcursor)
{
for (auto const& scan_component : context.current_scan.components) {
for (u8 vfactor_i = 0; vfactor_i < scan_component.component.vsample_factor; vfactor_i++) {
for (u8 hfactor_i = 0; hfactor_i < scan_component.component.hsample_factor; hfactor_i++) {
// A.2.3 - Interleaved order
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
if (!context.current_scan.are_components_interleaved()) {
macroblock_index = vcursor * context.mblock_meta.hpadded_count + (hfactor_i + (hcursor * scan_component.component.vsample_factor) + (vfactor_i * scan_component.component.hsample_factor));
// A.2.4 Completion of partial MCU
// If the component is [and only if!] to be interleaved, the encoding process
// shall also extend the number of samples by one or more additional blocks.
// Horizontally
if (macroblock_index >= context.mblock_meta.hcount && macroblock_index % context.mblock_meta.hpadded_count >= context.mblock_meta.hcount)
continue;
// Vertically
if (macroblock_index >= context.mblock_meta.hpadded_count * context.mblock_meta.vcount)
continue;
}
Macroblock& block = macroblocks[macroblock_index];
if (context.current_scan.spectral_selection_start == 0)
TRY(add_dc(context, block, scan_component));
if (context.current_scan.spectral_selection_end != 0)
TRY(add_ac(context, block, scan_component));
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
if (context.current_scan.end_of_bands_run_count > 0) {
--context.current_scan.end_of_bands_run_count;
continue;
}
}
}
}
return {};
}
static bool is_dct_based(StartOfFrame::FrameType frame_type)
{
return frame_type == StartOfFrame::FrameType::Baseline_DCT
|| frame_type == StartOfFrame::FrameType::Extended_Sequential_DCT
|| frame_type == StartOfFrame::FrameType::Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Differential_Sequential_DCT
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT
|| frame_type == StartOfFrame::FrameType::Progressive_DCT_Arithmetic
|| frame_type == StartOfFrame::FrameType::Differential_Sequential_DCT_Arithmetic
|| frame_type == StartOfFrame::FrameType::Differential_Progressive_DCT_Arithmetic;
}
static void reset_decoder(JPEGLoadingContext& context)
{
// G.1.2.2 - Progressive encoding of AC coefficients with Huffman coding
context.current_scan.end_of_bands_run_count = 0;
// E.2.4 Control procedure for decoding a restart interval
if (is_dct_based(context.frame.type)) {
context.previous_dc_values = {};
return;
}
VERIFY_NOT_REACHED();
}
static ErrorOr<void> decode_huffman_stream(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
// Compute huffman codes for DC and AC tables.
for (auto it = context.dc_tables.begin(); it != context.dc_tables.end(); ++it)
generate_huffman_codes(it->value);
for (auto it = context.ac_tables.begin(); it != context.ac_tables.end(); ++it)
generate_huffman_codes(it->value);
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
auto& huffman_stream = context.current_scan.huffman_stream;
if (context.dc_restart_interval > 0) {
if (i != 0 && i % (context.dc_restart_interval * context.vsample_factor * context.hsample_factor) == 0) {
reset_decoder(context);
// Restart markers are stored in byte boundaries. Advance the huffman stream cursor to
// the 0th bit of the next byte.
if (huffman_stream.byte_offset < huffman_stream.stream.size()) {
if (huffman_stream.bit_offset > 0) {
huffman_stream.bit_offset = 0;
huffman_stream.byte_offset++;
}
// Skip the restart marker (RSTn).
huffman_stream.byte_offset++;
}
}
}
if (auto result = build_macroblocks(context, macroblocks, hcursor, vcursor); result.is_error()) {
if constexpr (JPEG_DEBUG) {
dbgln("Failed to build Macroblock {}: {}", i, result.error());
dbgln("Huffman stream byte offset {}", huffman_stream.byte_offset);
dbgln("Huffman stream bit offset {}", huffman_stream.bit_offset);
}
return result.release_error();
}
}
}
return {};
}
static bool is_frame_marker(Marker const marker)
{
// B.1.1.3 - Marker assignments
bool const is_sof_marker = marker >= JPEG_SOF0 && marker <= JPEG_SOF15;
// Start of frame markers are valid for JPEG_SOF0 to JPEG_SOF15 except number 4, 8 (reserved) and 12.
bool const is_defined_marker = marker != JPEG_DHT && marker != 0xFFC8 && marker != JPEG_DAC;
return is_sof_marker && is_defined_marker;
}
static inline bool is_supported_marker(Marker const marker)
{
if (marker >= JPEG_APPN0 && marker <= JPEG_APPN15) {
if (marker != JPEG_APPN0 && marker != JPEG_APPN14)
dbgln_if(JPEG_DEBUG, "{:#04x} not supported yet. The decoder may fail!", marker);
return true;
}
if (marker >= JPEG_RESERVED1 && marker <= JPEG_RESERVEDD)
return true;
if (marker >= JPEG_RST0 && marker <= JPEG_RST7)
return true;
switch (marker) {
case JPEG_COM:
case JPEG_DHP:
case JPEG_EXP:
case JPEG_DHT:
case JPEG_DQT:
case JPEG_DRI:
case JPEG_EOI:
case JPEG_SOF0:
case JPEG_SOF2:
case JPEG_SOI:
case JPEG_SOS:
return true;
}
if (is_frame_marker(marker))
dbgln_if(JPEG_DEBUG, "Decoding this frame-type (SOF{}) is not currently supported. Decoder will fail!", marker & 0xf);
return false;
}
static inline ErrorOr<Marker> read_marker_at_cursor(Stream& stream)
{
2023-01-21 09:20:45 +01:00
u16 marker = TRY(stream.read_value<BigEndian<u16>>());
if (is_supported_marker(marker))
return marker;
if (marker != 0xFFFF)
return JPEG_INVALID;
u8 next;
do {
2023-01-21 09:20:45 +01:00
next = TRY(stream.read_value<u8>());
if (next == 0x00)
return JPEG_INVALID;
} while (next == 0xFF);
marker = 0xFF00 | (u16)next;
return is_supported_marker(marker) ? marker : JPEG_INVALID;
}
static ErrorOr<u16> read_effective_chunk_size(Stream& stream)
{
// The stored chunk size includes the size of `stored_size` itself.
u16 const stored_size = TRY(stream.read_value<BigEndian<u16>>());
if (stored_size < 2)
return Error::from_string_literal("Stored chunk size is too small");
return stored_size - 2;
}
static ErrorOr<void> read_start_of_scan(Stream& stream, JPEGLoadingContext& context)
{
// B.2.3 - Scan header syntax
if (context.state < JPEGLoadingContext::State::FrameDecoded)
return Error::from_string_literal("SOS found before reading a SOF");
[[maybe_unused]] u16 const bytes_to_read = TRY(read_effective_chunk_size(stream));
u8 const component_count = TRY(stream.read_value<u8>());
Scan current_scan;
current_scan.huffman_stream.stream.ensure_capacity(50 * KiB);
Optional<u8> last_read;
u8 component_read = 0;
for (auto& component : context.components) {
// See the Csj paragraph:
// [...] the ordering in the scan header shall follow the ordering in the frame header.
if (component_read == component_count)
break;
if (!last_read.has_value())
last_read = TRY(stream.read_value<u8>());
if (component.id != *last_read)
continue;
2023-01-21 09:20:45 +01:00
u8 table_ids = TRY(stream.read_value<u8>());
current_scan.components.empend(component, static_cast<u8>(table_ids >> 4), static_cast<u8>(table_ids & 0x0F));
component_read++;
last_read.clear();
}
if constexpr (JPEG_DEBUG) {
StringBuilder builder;
TRY(builder.try_append("Components in scan: "sv));
for (auto const& scan_component : current_scan.components) {
TRY(builder.try_append(TRY(String::number(scan_component.component.id))));
TRY(builder.try_append(' '));
}
dbgln(builder.string_view());
}
current_scan.spectral_selection_start = TRY(stream.read_value<u8>());
current_scan.spectral_selection_end = TRY(stream.read_value<u8>());
auto const successive_approximation = TRY(stream.read_value<u8>());
current_scan.successive_approximation_high = successive_approximation >> 4;
current_scan.successive_approximation_low = successive_approximation & 0x0F;
2023-01-21 09:20:45 +01:00
dbgln_if(JPEG_DEBUG, "Start of Selection: {}, End of Selection: {}, Successive Approximation High: {}, Successive Approximation Low: {}",
2023-02-22 23:55:32 -05:00
current_scan.spectral_selection_start,
current_scan.spectral_selection_end,
current_scan.successive_approximation_high,
current_scan.successive_approximation_low);
2023-02-22 23:55:32 -05:00
if (current_scan.spectral_selection_start > 63 || current_scan.spectral_selection_end > 63 || current_scan.successive_approximation_high > 13 || current_scan.successive_approximation_low > 13) {
dbgln_if(JPEG_DEBUG, "ERROR! Start of Selection: {}, End of Selection: {}, Successive Approximation High: {}, Successive Approximation Low: {}!",
current_scan.spectral_selection_start,
current_scan.spectral_selection_end,
current_scan.successive_approximation_high,
current_scan.successive_approximation_low);
return Error::from_string_literal("Spectral selection is not [0,63] or successive approximation is not null");
}
context.current_scan = move(current_scan);
return {};
}
static ErrorOr<void> read_restart_interval(Stream& stream, JPEGLoadingContext& context)
{
// B.2.4.4 - Restart interval definition syntax
u16 bytes_to_read = TRY(read_effective_chunk_size(stream));
if (bytes_to_read != 2) {
dbgln_if(JPEG_DEBUG, "Malformed DRI marker found!");
return Error::from_string_literal("Malformed DRI marker found");
}
context.dc_restart_interval = TRY(stream.read_value<BigEndian<u16>>());
return {};
}
static ErrorOr<void> read_huffman_table(Stream& stream, JPEGLoadingContext& context)
{
u16 bytes_to_read = TRY(read_effective_chunk_size(stream));
while (bytes_to_read > 0) {
HuffmanTableSpec table;
2023-01-21 09:20:45 +01:00
u8 table_info = TRY(stream.read_value<u8>());
u8 table_type = table_info >> 4;
u8 table_destination_id = table_info & 0x0F;
if (table_type > 1) {
dbgln_if(JPEG_DEBUG, "Unrecognized huffman table: {}!", table_type);
return Error::from_string_literal("Unrecognized huffman table");
}
if (table_destination_id > 1) {
dbgln_if(JPEG_DEBUG, "Invalid huffman table destination id: {}!", table_destination_id);
return Error::from_string_literal("Invalid huffman table destination id");
}
table.type = table_type;
table.destination_id = table_destination_id;
u32 total_codes = 0;
// Read code counts. At each index K, the value represents the number of K+1 bit codes in this header.
for (int i = 0; i < 16; i++) {
2023-01-21 09:20:45 +01:00
u8 count = TRY(stream.read_value<u8>());
total_codes += count;
table.code_counts[i] = count;
}
table.codes.ensure_capacity(total_codes);
// Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step.
for (u32 i = 0; i < total_codes; i++) {
2023-01-21 09:20:45 +01:00
u8 symbol = TRY(stream.read_value<u8>());
table.symbols.append(symbol);
}
auto& huffman_table = table.type == 0 ? context.dc_tables : context.ac_tables;
huffman_table.set(table.destination_id, table);
VERIFY(huffman_table.size() <= 2);
bytes_to_read -= 1 + 16 + total_codes;
}
if (bytes_to_read != 0) {
dbgln_if(JPEG_DEBUG, "Extra bytes detected in huffman header!");
return Error::from_string_literal("Extra bytes detected in huffman header");
}
return {};
}
static ErrorOr<void> read_icc_profile(Stream& stream, JPEGLoadingContext& context, int bytes_to_read)
{
// https://www.color.org/technotes/ICC-Technote-ProfileEmbedding.pdf, page 5, "JFIF".
if (bytes_to_read <= 2)
return Error::from_string_literal("icc marker too small");
auto chunk_sequence_number = TRY(stream.read_value<u8>()); // 1-based
auto number_of_chunks = TRY(stream.read_value<u8>());
bytes_to_read -= 2;
if (!context.icc_multi_chunk_state.has_value())
context.icc_multi_chunk_state.emplace(ICCMultiChunkState { 0, TRY(FixedArray<ByteBuffer>::create(number_of_chunks)) });
auto& chunk_state = context.icc_multi_chunk_state;
if (chunk_state->seen_number_of_icc_chunks >= number_of_chunks)
return Error::from_string_literal("Too many ICC chunks");
if (chunk_state->chunks.size() != number_of_chunks)
return Error::from_string_literal("Inconsistent number of total ICC chunks");
if (chunk_sequence_number == 0)
return Error::from_string_literal("ICC chunk sequence number not 1 based");
u8 index = chunk_sequence_number - 1;
if (index >= chunk_state->chunks.size())
return Error::from_string_literal("ICC chunk sequence number larger than number of chunks");
if (!chunk_state->chunks[index].is_empty())
return Error::from_string_literal("Duplicate ICC chunk at sequence number");
chunk_state->chunks[index] = TRY(ByteBuffer::create_zeroed(bytes_to_read));
TRY(stream.read_until_filled(chunk_state->chunks[index]));
chunk_state->seen_number_of_icc_chunks++;
if (chunk_state->seen_number_of_icc_chunks != chunk_state->chunks.size())
return {};
if (number_of_chunks == 1) {
context.icc_data = move(chunk_state->chunks[0]);
return {};
}
size_t total_size = 0;
for (auto const& chunk : chunk_state->chunks)
total_size += chunk.size();
auto icc_bytes = TRY(ByteBuffer::create_zeroed(total_size));
size_t start = 0;
for (auto const& chunk : chunk_state->chunks) {
memcpy(icc_bytes.data() + start, chunk.data(), chunk.size());
start += chunk.size();
}
context.icc_data = move(icc_bytes);
return {};
}
static ErrorOr<void> read_colour_encoding(Stream& stream, [[maybe_unused]] JPEGLoadingContext& context, int bytes_to_read)
{
// The App 14 segment is application specific in the first JPEG standard.
// However, the Adobe implementation is globally accepted and the value of the color transform
// was latter standardized as a JPEG-1 extension.
// For the structure of the App 14 segment, see:
// https://www.pdfa.org/norm-refs/5116.DCT_Filter.pdf
// 18 Adobe Application-Specific JPEG Marker
// For the value of color_transform, see:
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
if (bytes_to_read < 6)
return Error::from_string_literal("App14 segment too small");
[[maybe_unused]] auto const version = TRY(stream.read_value<u8>());
[[maybe_unused]] u16 const flag0 = TRY(stream.read_value<BigEndian<u16>>());
[[maybe_unused]] u16 const flag1 = TRY(stream.read_value<BigEndian<u16>>());
auto const color_transform = TRY(stream.read_value<u8>());
if (bytes_to_read > 6) {
dbgln_if(JPEG_DEBUG, "Unread bytes in App14 segment: {}", bytes_to_read - 1);
TRY(stream.discard(bytes_to_read - 1));
}
switch (color_transform) {
case 0:
context.color_transform = ColorTransform::CmykOrRgb;
break;
case 1:
context.color_transform = ColorTransform::YCbCr;
break;
case 2:
context.color_transform = ColorTransform::YCCK;
break;
default:
dbgln("0x{:x} is not a specified transform flag value, ignoring", color_transform);
}
return {};
}
static ErrorOr<void> read_app_marker(Stream& stream, JPEGLoadingContext& context, int app_marker_number)
{
// B.2.4.6 - Application data syntax
u16 bytes_to_read = TRY(read_effective_chunk_size(stream));
StringBuilder builder;
for (;;) {
if (bytes_to_read == 0) {
dbgln_if(JPEG_DEBUG, "app marker {} does not start with zero-terminated string", app_marker_number);
return {};
}
auto c = TRY(stream.read_value<char>());
bytes_to_read--;
if (c == '\0')
break;
TRY(builder.try_append(c));
}
auto app_id = TRY(builder.to_string());
if (app_marker_number == 2 && app_id == "ICC_PROFILE"sv)
return read_icc_profile(stream, context, bytes_to_read);
if (app_marker_number == 14 && app_id == "Adobe"sv)
return read_colour_encoding(stream, context, bytes_to_read);
return stream.discard(bytes_to_read);
}
static inline bool validate_luma_and_modify_context(Component const& luma, JPEGLoadingContext& context)
{
if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) {
context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2;
context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2;
context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count;
// For easy reference to relevant sample factors.
context.hsample_factor = luma.hsample_factor;
context.vsample_factor = luma.vsample_factor;
if constexpr (JPEG_DEBUG) {
dbgln("Horizontal Subsampling Factor: {}", luma.hsample_factor);
dbgln("Vertical Subsampling Factor: {}", luma.vsample_factor);
}
return true;
}
return false;
}
static inline void set_macroblock_metadata(JPEGLoadingContext& context)
{
context.mblock_meta.hcount = (context.frame.width + 7) / 8;
context.mblock_meta.vcount = (context.frame.height + 7) / 8;
context.mblock_meta.hpadded_count = context.mblock_meta.hcount;
context.mblock_meta.vpadded_count = context.mblock_meta.vcount;
context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount;
}
static ErrorOr<void> read_start_of_frame(Stream& stream, JPEGLoadingContext& context)
{
if (context.state == JPEGLoadingContext::FrameDecoded) {
dbgln_if(JPEG_DEBUG, "SOF repeated!");
return Error::from_string_literal("SOF repeated");
}
[[maybe_unused]] u16 const bytes_to_read = TRY(read_effective_chunk_size(stream));
2023-01-21 09:20:45 +01:00
context.frame.precision = TRY(stream.read_value<u8>());
if (context.frame.precision != 8) {
dbgln_if(JPEG_DEBUG, "SOF precision != 8!");
return Error::from_string_literal("SOF precision != 8");
}
2023-01-21 09:20:45 +01:00
context.frame.height = TRY(stream.read_value<BigEndian<u16>>());
context.frame.width = TRY(stream.read_value<BigEndian<u16>>());
if (!context.frame.width || !context.frame.height) {
dbgln_if(JPEG_DEBUG, "ERROR! Image height: {}, Image width: {}!", context.frame.height, context.frame.width);
return Error::from_string_literal("Image frame height of width null");
}
if (context.frame.width > maximum_width_for_decoded_images || context.frame.height > maximum_height_for_decoded_images) {
dbgln("This JPEG is too large for comfort: {}x{}", context.frame.width, context.frame.height);
return Error::from_string_literal("JPEG too large for comfort");
}
set_macroblock_metadata(context);
auto component_count = TRY(stream.read_value<u8>());
if (component_count != 1 && component_count != 3 && component_count != 4) {
dbgln_if(JPEG_DEBUG, "Unsupported number of components in SOF: {}!", component_count);
return Error::from_string_literal("Unsupported number of components in SOF");
}
for (u8 i = 0; i < component_count; i++) {
Component component;
2023-01-21 09:20:45 +01:00
component.id = TRY(stream.read_value<u8>());
component.index = i;
2023-01-21 09:20:45 +01:00
u8 subsample_factors = TRY(stream.read_value<u8>());
component.hsample_factor = subsample_factors >> 4;
component.vsample_factor = subsample_factors & 0x0F;
if (i == 0) {
// By convention, downsampling is applied only on chroma components. So we should
// hope to see the maximum sampling factor in the luma component.
if (!validate_luma_and_modify_context(component, context)) {
dbgln_if(JPEG_DEBUG, "Unsupported luma subsampling factors: horizontal: {}, vertical: {}",
component.hsample_factor,
component.vsample_factor);
return Error::from_string_literal("Unsupported luma subsampling factors");
}
} else {
if (component.hsample_factor != 1 || component.vsample_factor != 1) {
dbgln_if(JPEG_DEBUG, "Unsupported chroma subsampling factors: horizontal: {}, vertical: {}",
component.hsample_factor,
component.vsample_factor);
return Error::from_string_literal("Unsupported chroma subsampling factors");
}
}
component.quantization_table_id = TRY(stream.read_value<u8>());
context.components.append(move(component));
}
return {};
}
static ErrorOr<void> read_quantization_table(Stream& stream, JPEGLoadingContext& context)
{
// B.2.4.1 - Quantization table-specification syntax
u16 bytes_to_read = TRY(read_effective_chunk_size(stream));
while (bytes_to_read > 0) {
u8 const info_byte = TRY(stream.read_value<u8>());
u8 const element_unit_hint = info_byte >> 4;
if (element_unit_hint > 1) {
dbgln_if(JPEG_DEBUG, "Unsupported unit hint in quantization table: {}!", element_unit_hint);
return Error::from_string_literal("Unsupported unit hint in quantization table");
}
u8 const table_id = info_byte & 0x0F;
if (table_id > 3) {
dbgln_if(JPEG_DEBUG, "Unsupported quantization table id: {}!", table_id);
return Error::from_string_literal("Unsupported quantization table id");
}
auto& maybe_table = context.quantization_tables[table_id];
if (!maybe_table.has_value())
maybe_table = Array<u16, 64> {};
auto& table = maybe_table.value();
for (int i = 0; i < 64; i++) {
if (element_unit_hint == 0)
table[zigzag_map[i]] = TRY(stream.read_value<u8>());
else
2023-01-21 09:20:45 +01:00
table[zigzag_map[i]] = TRY(stream.read_value<BigEndian<u16>>());
}
bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128);
}
if (bytes_to_read != 0) {
dbgln_if(JPEG_DEBUG, "Invalid length for one or more quantization tables!");
return Error::from_string_literal("Invalid length for one or more quantization tables");
}
return {};
}
static ErrorOr<void> skip_segment(Stream& stream)
{
2023-01-21 09:20:45 +01:00
u16 bytes_to_skip = TRY(stream.read_value<BigEndian<u16>>()) - 2;
TRY(stream.discard(bytes_to_skip));
return {};
}
static ErrorOr<void> dequantize(JPEGLoadingContext& context, Vector<Macroblock>& macroblocks)
{
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u32 i = 0; i < context.components.size(); i++) {
auto const& component = context.components[i];
if (!context.quantization_tables[component.quantization_table_id].has_value()) {
dbgln_if(JPEG_DEBUG, "Unknown quantization table id: {}!", component.quantization_table_id);
return Error::from_string_literal("Unknown quantization table id");
}
auto const& table = context.quantization_tables[component.quantization_table_id].value();
for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[macroblock_index];
auto* block_component = get_component(block, i);
for (u32 k = 0; k < 64; k++)
block_component[k] *= table[k];
}
}
}
}
}
return {};
}
static void inverse_dct(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
static float const m0 = 2.0f * AK::cos(1.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m1 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m3 = 2.0f * AK::cos(2.0f / 16.0f * 2.0f * AK::Pi<float>);
static float const m5 = 2.0f * AK::cos(3.0f / 16.0f * 2.0f * AK::Pi<float>);
2022-04-01 20:58:27 +03:00
static float const m2 = m0 - m5;
static float const m4 = m0 + m5;
static float const s0 = AK::cos(0.0f / 16.0f * AK::Pi<float>) * AK::rsqrt(8.0f);
static float const s1 = AK::cos(1.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s2 = AK::cos(2.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s3 = AK::cos(3.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s4 = AK::cos(4.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s5 = AK::cos(5.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s6 = AK::cos(6.0f / 16.0f * AK::Pi<float>) / 2.0f;
static float const s7 = AK::cos(7.0f / 16.0f * AK::Pi<float>) / 2.0f;
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u32 component_i = 0; component_i < context.components.size(); component_i++) {
auto& component = context.components[component_i];
for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
Macroblock& block = macroblocks[macroblock_index];
auto* block_component = get_component(block, component_i);
for (u32 k = 0; k < 8; ++k) {
2022-04-01 20:58:27 +03:00
float const g0 = block_component[0 * 8 + k] * s0;
float const g1 = block_component[4 * 8 + k] * s4;
float const g2 = block_component[2 * 8 + k] * s2;
float const g3 = block_component[6 * 8 + k] * s6;
float const g4 = block_component[5 * 8 + k] * s5;
float const g5 = block_component[1 * 8 + k] * s1;
float const g6 = block_component[7 * 8 + k] * s7;
float const g7 = block_component[3 * 8 + k] * s3;
float const f0 = g0;
float const f1 = g1;
float const f2 = g2;
float const f3 = g3;
float const f4 = g4 - g7;
float const f5 = g5 + g6;
float const f6 = g5 - g6;
float const f7 = g4 + g7;
float const e0 = f0;
float const e1 = f1;
float const e2 = f2 - f3;
float const e3 = f2 + f3;
float const e4 = f4;
float const e5 = f5 - f7;
float const e6 = f6;
float const e7 = f5 + f7;
float const e8 = f4 + f6;
float const d0 = e0;
float const d1 = e1;
float const d2 = e2 * m1;
float const d3 = e3;
float const d4 = e4 * m2;
float const d5 = e5 * m3;
float const d6 = e6 * m4;
float const d7 = e7;
float const d8 = e8 * m5;
float const c0 = d0 + d1;
float const c1 = d0 - d1;
float const c2 = d2 - d3;
float const c3 = d3;
float const c4 = d4 + d8;
float const c5 = d5 + d7;
float const c6 = d6 - d8;
float const c7 = d7;
float const c8 = c5 - c6;
float const b0 = c0 + c3;
float const b1 = c1 + c2;
float const b2 = c1 - c2;
float const b3 = c0 - c3;
float const b4 = c4 - c8;
float const b5 = c8;
float const b6 = c6 - c7;
float const b7 = c7;
block_component[0 * 8 + k] = b0 + b7;
block_component[1 * 8 + k] = b1 + b6;
block_component[2 * 8 + k] = b2 + b5;
block_component[3 * 8 + k] = b3 + b4;
block_component[4 * 8 + k] = b3 - b4;
block_component[5 * 8 + k] = b2 - b5;
block_component[6 * 8 + k] = b1 - b6;
block_component[7 * 8 + k] = b0 - b7;
}
for (u32 l = 0; l < 8; ++l) {
2022-04-01 20:58:27 +03:00
float const g0 = block_component[l * 8 + 0] * s0;
float const g1 = block_component[l * 8 + 4] * s4;
float const g2 = block_component[l * 8 + 2] * s2;
float const g3 = block_component[l * 8 + 6] * s6;
float const g4 = block_component[l * 8 + 5] * s5;
float const g5 = block_component[l * 8 + 1] * s1;
float const g6 = block_component[l * 8 + 7] * s7;
float const g7 = block_component[l * 8 + 3] * s3;
float const f0 = g0;
float const f1 = g1;
float const f2 = g2;
float const f3 = g3;
float const f4 = g4 - g7;
float const f5 = g5 + g6;
float const f6 = g5 - g6;
float const f7 = g4 + g7;
float const e0 = f0;
float const e1 = f1;
float const e2 = f2 - f3;
float const e3 = f2 + f3;
float const e4 = f4;
float const e5 = f5 - f7;
float const e6 = f6;
float const e7 = f5 + f7;
float const e8 = f4 + f6;
float const d0 = e0;
float const d1 = e1;
float const d2 = e2 * m1;
float const d3 = e3;
float const d4 = e4 * m2;
float const d5 = e5 * m3;
float const d6 = e6 * m4;
float const d7 = e7;
float const d8 = e8 * m5;
float const c0 = d0 + d1;
float const c1 = d0 - d1;
float const c2 = d2 - d3;
float const c3 = d3;
float const c4 = d4 + d8;
float const c5 = d5 + d7;
float const c6 = d6 - d8;
float const c7 = d7;
float const c8 = c5 - c6;
float const b0 = c0 + c3;
float const b1 = c1 + c2;
float const b2 = c1 - c2;
float const b3 = c0 - c3;
float const b4 = c4 - c8;
float const b5 = c8;
float const b6 = c6 - c7;
float const b7 = c7;
block_component[l * 8 + 0] = b0 + b7;
block_component[l * 8 + 1] = b1 + b6;
block_component[l * 8 + 2] = b2 + b5;
block_component[l * 8 + 3] = b3 + b4;
block_component[l * 8 + 4] = b3 - b4;
block_component[l * 8 + 5] = b2 - b5;
block_component[l * 8 + 6] = b1 - b6;
block_component[l * 8 + 7] = b0 - b7;
}
}
}
}
}
}
// F.2.1.5 - Inverse DCT (IDCT)
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = 0; vfactor_i < context.vsample_factor; ++vfactor_i) {
for (u8 hfactor_i = 0; hfactor_i < context.hsample_factor; ++hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
macroblocks[mb_index].r[i * 8 + j] = clamp(macroblocks[mb_index].r[i * 8 + j] + 128, 0, 255);
macroblocks[mb_index].g[i * 8 + j] = clamp(macroblocks[mb_index].g[i * 8 + j] + 128, 0, 255);
macroblocks[mb_index].b[i * 8 + j] = clamp(macroblocks[mb_index].b[i * 8 + j] + 128, 0, 255);
macroblocks[mb_index].k[i * 8 + j] = clamp(macroblocks[mb_index].b[i * 8 + j] + 128, 0, 255);
}
}
}
}
}
}
}
static void ycbcr_to_rgb(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
// Conversion from YCbCr to RGB isn't specified in the first JPEG specification but in the JFIF extension:
// See: https://www.itu.int/rec/dologin_pub.asp?lang=f&id=T-REC-T.871-201105-I!!PDF-E&type=items
// 7 - Conversion to and from RGB
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor;
2022-04-01 20:58:27 +03:00
Macroblock const& chroma = macroblocks[chroma_block_index];
// Overflows are intentional.
for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
u32 macroblock_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
auto* y = macroblocks[macroblock_index].y;
auto* cb = macroblocks[macroblock_index].cb;
auto* cr = macroblocks[macroblock_index].cr;
for (u8 i = 7; i < 8; --i) {
for (u8 j = 7; j < 8; --j) {
const u8 pixel = i * 8 + j;
const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i;
const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i;
const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol;
int r = y[pixel] + 1.402f * (chroma.cr[chroma_pixel] - 128);
int g = y[pixel] - 0.3441f * (chroma.cb[chroma_pixel] - 128) - 0.7141f * (chroma.cr[chroma_pixel] - 128);
int b = y[pixel] + 1.772f * (chroma.cb[chroma_pixel] - 128);
y[pixel] = clamp(r, 0, 255);
cb[pixel] = clamp(g, 0, 255);
cr[pixel] = clamp(b, 0, 255);
}
}
}
}
}
}
}
static void invert_colors_for_adobe_images(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
if (!context.color_transform.has_value())
return;
// From libjpeg-turbo's libjpeg.txt:
// https://github.com/libjpeg-turbo/libjpeg-turbo/blob/main/libjpeg.txt
// CAUTION: it appears that Adobe Photoshop writes inverted data in CMYK JPEG
// files: 0 represents 100% ink coverage, rather than 0% ink as you'd expect.
// This is arguably a bug in Photoshop, but if you need to work with Photoshop
// CMYK files, you will have to deal with it in your application.
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = 0; vfactor_i < context.vsample_factor; ++vfactor_i) {
for (u8 hfactor_i = 0; hfactor_i < context.hsample_factor; ++hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
macroblocks[mb_index].r[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].r[i * 8 + j];
macroblocks[mb_index].g[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].g[i * 8 + j];
macroblocks[mb_index].b[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].b[i * 8 + j];
macroblocks[mb_index].k[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].k[i * 8 + j];
}
}
}
}
}
}
}
static void cmyk_to_rgb(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
invert_colors_for_adobe_images(context, macroblocks);
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
auto* c = macroblocks[mb_index].y;
auto* m = macroblocks[mb_index].cb;
auto* y = macroblocks[mb_index].cr;
auto* k = macroblocks[mb_index].k;
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
u8 const pixel = i * 8 + j;
static constexpr auto max_value = NumericLimits<u8>::max();
auto const black_component = max_value - k[pixel];
int const r = ((max_value - c[pixel]) * black_component) / max_value;
int const g = ((max_value - m[pixel]) * black_component) / max_value;
int const b = ((max_value - y[pixel]) * black_component) / max_value;
c[pixel] = clamp(r, 0, max_value);
m[pixel] = clamp(g, 0, max_value);
y[pixel] = clamp(b, 0, max_value);
}
}
}
}
}
}
}
static void ycck_to_rgb(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
// 7 - Conversions between colour encodings
// YCCK is obtained from CMYK by converting the CMY channels to YCC channel.
// To convert back into RGB, we only need the 3 first components, which are baseline YCbCr
ycbcr_to_rgb(context, macroblocks);
// RGB to CMYK, as mentioned in https://www.smcm.iqfr.csic.es/docs/intel/ipp/ipp_manual/IPPI/ippi_ch15/functn_YCCKToCMYK_JPEG.htm#functn_YCCKToCMYK_JPEG
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
for (u8 vfactor_i = 0; vfactor_i < context.vsample_factor; ++vfactor_i) {
for (u8 hfactor_i = 0; hfactor_i < context.hsample_factor; ++hfactor_i) {
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
for (u8 i = 0; i < 8; ++i) {
for (u8 j = 0; j < 8; ++j) {
macroblocks[mb_index].r[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].r[i * 8 + j];
macroblocks[mb_index].g[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].g[i * 8 + j];
macroblocks[mb_index].b[i * 8 + j] = NumericLimits<u8>::max() - macroblocks[mb_index].b[i * 8 + j];
}
}
}
}
}
}
cmyk_to_rgb(context, macroblocks);
}
static ErrorOr<void> handle_color_transform(JPEGLoadingContext const& context, Vector<Macroblock>& macroblocks)
{
if (context.color_transform.has_value()) {
// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.872-201206-I!!PDF-E&type=items
// 6.5.3 - APP14 marker segment for colour encoding
switch (*context.color_transform) {
case ColorTransform::CmykOrRgb:
if (context.components.size() == 4) {
cmyk_to_rgb(context, macroblocks);
} else if (context.components.size() == 3) {
// Note: components.size() == 3 means that we have an RGB image, so no color transformation is needed.
} else {
return Error::from_string_literal("Wrong number of components for CMYK or RGB, aborting.");
}
break;
case ColorTransform::YCbCr:
ycbcr_to_rgb(context, macroblocks);
break;
case ColorTransform::YCCK:
ycck_to_rgb(context, macroblocks);
break;
}
return {};
}
// No App14 segment is present, assuming :
// - 1 components means grayscale
// - 3 components means YCbCr
// - 4 components means CMYK
if (context.components.size() == 4)
cmyk_to_rgb(context, macroblocks);
if (context.components.size() == 3)
ycbcr_to_rgb(context, macroblocks);
if (context.components.size() == 1) {
// With Cb and Cr being equal to zero, this function assign the Y
// value (luminosity) to R, G and B. Providing a proper conversion
// from grayscale to RGB.
ycbcr_to_rgb(context, macroblocks);
}
return {};
}
static ErrorOr<void> compose_bitmap(JPEGLoadingContext& context, Vector<Macroblock> const& macroblocks)
{
context.bitmap = TRY(Bitmap::create(BitmapFormat::BGRx8888, { context.frame.width, context.frame.height }));
for (u32 y = context.frame.height - 1; y < context.frame.height; y--) {
const u32 block_row = y / 8;
const u32 pixel_row = y % 8;
for (u32 x = 0; x < context.frame.width; x++) {
const u32 block_column = x / 8;
auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column];
const u32 pixel_column = x % 8;
const u32 pixel_index = pixel_row * 8 + pixel_column;
const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] };
context.bitmap->set_pixel(x, y, color);
}
}
return {};
}
static bool is_app_marker(Marker const marker)
{
return marker >= JPEG_APPN0 && marker <= JPEG_APPN15;
}
static bool is_miscellaneous_or_table_marker(Marker const marker)
{
// B.2.4 - Table-specification and miscellaneous marker segment syntax
// See also B.6 - Summary: Figure B.17 – Flow of marker segment
bool const is_misc = marker == JPEG_COM || marker == JPEG_DRI || is_app_marker(marker);
bool const is_table = marker == JPEG_DQT || marker == JPEG_DAC || marker == JPEG_DHT;
return is_misc || is_table;
}
static ErrorOr<void> handle_miscellaneous_or_table(Stream& stream, JPEGLoadingContext& context, Marker const marker)
{
if (is_app_marker(marker)) {
TRY(read_app_marker(stream, context, marker - JPEG_APPN0));
return {};
}
switch (marker) {
case JPEG_COM:
case JPEG_DAC:
dbgln_if(JPEG_DEBUG, "TODO: implement marker \"{:x}\"", marker);
if (auto result = skip_segment(stream); result.is_error()) {
dbgln_if(JPEG_DEBUG, "Error skipping marker: {:x}!", marker);
return result.release_error();
}
break;
case JPEG_DHT:
TRY(read_huffman_table(stream, context));
break;
case JPEG_DQT:
TRY(read_quantization_table(stream, context));
break;
case JPEG_DRI:
TRY(read_restart_interval(stream, context));
break;
default:
dbgln("Unexpected marker: {:x}", marker);
VERIFY_NOT_REACHED();
}
return {};
}
static ErrorOr<void> parse_header(Stream& stream, JPEGLoadingContext& context)
{
auto marker = TRY(read_marker_at_cursor(stream));
if (marker != JPEG_SOI) {
dbgln_if(JPEG_DEBUG, "SOI not found: {:x}!", marker);
return Error::from_string_literal("SOI not found");
}
for (;;) {
marker = TRY(read_marker_at_cursor(stream));
if (is_miscellaneous_or_table_marker(marker)) {
TRY(handle_miscellaneous_or_table(stream, context, marker));
continue;
}
// Set frame type if the marker marks a new frame.
if (is_frame_marker(marker))
context.frame.type = static_cast<StartOfFrame::FrameType>(marker & 0xF);
switch (marker) {
case JPEG_INVALID:
case JPEG_RST0:
case JPEG_RST1:
case JPEG_RST2:
case JPEG_RST3:
case JPEG_RST4:
case JPEG_RST5:
case JPEG_RST6:
case JPEG_RST7:
case JPEG_SOI:
case JPEG_EOI:
dbgln_if(JPEG_DEBUG, "Unexpected marker {:x}!", marker);
return Error::from_string_literal("Unexpected marker");
case JPEG_SOF0:
case JPEG_SOF2:
TRY(read_start_of_frame(stream, context));
context.state = JPEGLoadingContext::FrameDecoded;
return {};
default:
if (auto result = skip_segment(stream); result.is_error()) {
dbgln_if(JPEG_DEBUG, "Error skipping marker: {:x}!", marker);
return result.release_error();
}
break;
}
}
VERIFY_NOT_REACHED();
}
static ErrorOr<void> scan_huffman_stream(AK::SeekableStream& stream, HuffmanStreamState& huffman_stream)
{
u8 last_byte;
2023-01-21 09:20:45 +01:00
u8 current_byte = TRY(stream.read_value<u8>());
for (;;) {
last_byte = current_byte;
2023-01-21 09:20:45 +01:00
current_byte = TRY(stream.read_value<u8>());
if (last_byte == 0xFF) {
if (current_byte == 0xFF)
continue;
if (current_byte == 0x00) {
2023-01-21 09:20:45 +01:00
current_byte = TRY(stream.read_value<u8>());
huffman_stream.stream.append(last_byte);
continue;
}
Marker marker = 0xFF00 | current_byte;
if (marker >= JPEG_RST0 && marker <= JPEG_RST7) {
huffman_stream.stream.append(marker);
2023-01-21 09:20:45 +01:00
current_byte = TRY(stream.read_value<u8>());
continue;
}
// Rollback the marker we just read
TRY(stream.seek(-2, AK::SeekMode::FromCurrentPosition));
return {};
} else {
huffman_stream.stream.append(last_byte);
}
}
VERIFY_NOT_REACHED();
}
static ErrorOr<void> decode_header(JPEGLoadingContext& context)
{
if (context.state < JPEGLoadingContext::State::HeaderDecoded) {
if (auto result = parse_header(*context.stream, context); result.is_error()) {
context.state = JPEGLoadingContext::State::Error;
return result.release_error();
}
2023-02-22 23:54:30 -05:00
if constexpr (JPEG_DEBUG) {
dbgln("Image width: {}", context.frame.width);
dbgln("Image height: {}", context.frame.height);
dbgln("Macroblocks in a row: {}", context.mblock_meta.hpadded_count);
dbgln("Macroblocks in a column: {}", context.mblock_meta.vpadded_count);
dbgln("Macroblock meta padded total: {}", context.mblock_meta.padded_total);
}
context.state = JPEGLoadingContext::State::HeaderDecoded;
}
return {};
}
static ErrorOr<Vector<Macroblock>> construct_macroblocks(JPEGLoadingContext& context)
{
// B.6 - Summary
// See: Figure B.16 – Flow of compressed data syntax
// This function handles the "Multi-scan" loop.
Vector<Macroblock> macroblocks;
TRY(macroblocks.try_resize(context.mblock_meta.padded_total));
Marker marker = TRY(read_marker_at_cursor(*context.stream));
while (true) {
if (is_miscellaneous_or_table_marker(marker)) {
TRY(handle_miscellaneous_or_table(*context.stream, context, marker));
} else if (marker == JPEG_SOS) {
TRY(read_start_of_scan(*context.stream, context));
TRY(scan_huffman_stream(*context.stream, context.current_scan.huffman_stream));
TRY(decode_huffman_stream(context, macroblocks));
} else if (marker == JPEG_EOI) {
return macroblocks;
} else {
dbgln_if(JPEG_DEBUG, "Unexpected marker {:x}!", marker);
return Error::from_string_literal("Unexpected marker");
}
marker = TRY(read_marker_at_cursor(*context.stream));
}
}
static ErrorOr<void> decode_jpeg(JPEGLoadingContext& context)
{
TRY(decode_header(context));
auto macroblocks = TRY(construct_macroblocks(context));
TRY(dequantize(context, macroblocks));
inverse_dct(context, macroblocks);
TRY(handle_color_transform(context, macroblocks));
TRY(compose_bitmap(context, macroblocks));
context.stream.clear();
return {};
}
JPEGImageDecoderPlugin::JPEGImageDecoderPlugin(NonnullOwnPtr<FixedMemoryStream> stream)
{
m_context = make<JPEGLoadingContext>();
m_context->stream = move(stream);
}
JPEGImageDecoderPlugin::~JPEGImageDecoderPlugin() = default;
IntSize JPEGImageDecoderPlugin::size()
{
if (m_context->state == JPEGLoadingContext::State::Error)
return {};
if (m_context->state >= JPEGLoadingContext::State::FrameDecoded)
return { m_context->frame.width, m_context->frame.height };
return {};
}
void JPEGImageDecoderPlugin::set_volatile()
{
if (m_context->bitmap)
m_context->bitmap->set_volatile();
}
bool JPEGImageDecoderPlugin::set_nonvolatile(bool& was_purged)
{
if (!m_context->bitmap)
return false;
return m_context->bitmap->set_nonvolatile(was_purged);
}
bool JPEGImageDecoderPlugin::initialize()
{
return true;
}
bool JPEGImageDecoderPlugin::sniff(ReadonlyBytes data)
{
return data.size() > 3
&& data.data()[0] == 0xFF
&& data.data()[1] == 0xD8
&& data.data()[2] == 0xFF;
}
ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> JPEGImageDecoderPlugin::create(ReadonlyBytes data)
{
auto stream = TRY(try_make<FixedMemoryStream>(data));
return adopt_nonnull_own_or_enomem(new (nothrow) JPEGImageDecoderPlugin(move(stream)));
}
bool JPEGImageDecoderPlugin::is_animated()
{
return false;
}
size_t JPEGImageDecoderPlugin::loop_count()
{
return 0;
}
size_t JPEGImageDecoderPlugin::frame_count()
{
return 1;
}
ErrorOr<ImageFrameDescriptor> JPEGImageDecoderPlugin::frame(size_t index)
{
if (index > 0)
return Error::from_string_literal("JPEGImageDecoderPlugin: Invalid frame index");
if (m_context->state == JPEGLoadingContext::State::Error)
return Error::from_string_literal("JPEGImageDecoderPlugin: Decoding failed");
if (m_context->state < JPEGLoadingContext::State::BitmapDecoded) {
if (auto result = decode_jpeg(*m_context); result.is_error()) {
m_context->state = JPEGLoadingContext::State::Error;
return result.release_error();
}
m_context->state = JPEGLoadingContext::State::BitmapDecoded;
}
return ImageFrameDescriptor { m_context->bitmap, 0 };
}
ErrorOr<Optional<ReadonlyBytes>> JPEGImageDecoderPlugin::icc_data()
{
TRY(decode_header(*m_context));
if (m_context->icc_data.has_value())
return *m_context->icc_data;
return OptionalNone {};
}
}