ladybird/Userland/Libraries/LibWeb/CSS/StyleValues/CalculatedStyleValue.cpp

2762 lines
92 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org>
* Copyright (c) 2021-2023, Sam Atkins <atkinssj@serenityos.org>
* Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "CalculatedStyleValue.h"
#include <LibWeb/CSS/Percentage.h>
#include <LibWeb/CSS/PropertyID.h>
namespace Web::CSS {
static bool is_number(CalculatedStyleValue::ResolvedType type)
{
return type == CalculatedStyleValue::ResolvedType::Number || type == CalculatedStyleValue::ResolvedType::Integer;
}
static bool is_dimension(CalculatedStyleValue::ResolvedType type)
{
return type != CalculatedStyleValue::ResolvedType::Number
&& type != CalculatedStyleValue::ResolvedType::Integer
&& type != CalculatedStyleValue::ResolvedType::Percentage;
}
2023-05-27 23:50:33 +02:00
static double resolve_value_radians(CalculatedStyleValue::CalculationResult::Value value)
{
return value.visit(
[](Number const& number) { return number.value(); },
[](Angle const& angle) { return angle.to_radians(); },
[](auto const&) { VERIFY_NOT_REACHED(); return 0.0; });
}
2023-05-27 23:50:33 +02:00
static double resolve_value(CalculatedStyleValue::CalculationResult::Value value, Optional<Length::ResolutionContext const&> context)
{
return value.visit(
[](Number const& number) { return number.value(); },
[](Angle const& angle) { return angle.to_degrees(); },
[](Flex const& flex) { return flex.to_fr(); },
[](Frequency const& frequency) { return frequency.to_hertz(); },
[&context](Length const& length) { return length.to_px(*context).to_double(); },
[](Percentage const& percentage) { return percentage.value(); },
[](Resolution const& resolution) { return resolution.to_dots_per_pixel(); },
[](Time const& time) { return time.to_seconds(); });
}
static Optional<CSSNumericType> add_the_types(Vector<NonnullOwnPtr<CalculationNode>> const& nodes, PropertyID property_id)
{
Optional<CSSNumericType> left_type;
for (auto const& value : nodes) {
auto right_type = value->determine_type(property_id);
if (!right_type.has_value())
return {};
if (left_type.has_value()) {
left_type = left_type->added_to(right_type.value());
} else {
left_type = right_type;
}
if (!left_type.has_value())
return {};
}
return left_type;
}
2023-05-27 22:56:41 +02:00
static CalculatedStyleValue::CalculationResult to_resolved_type(CalculatedStyleValue::ResolvedType type, double value)
{
switch (type) {
case CalculatedStyleValue::ResolvedType::Integer:
return { Number(Number::Type::Integer, value) };
case CalculatedStyleValue::ResolvedType::Number:
return { Number(Number::Type::Number, value) };
case CalculatedStyleValue::ResolvedType::Angle:
return { Angle::make_degrees(value) };
case CalculatedStyleValue::ResolvedType::Flex:
return { Flex::make_fr(value) };
2023-05-27 22:56:41 +02:00
case CalculatedStyleValue::ResolvedType::Frequency:
return { Frequency::make_hertz(value) };
case CalculatedStyleValue::ResolvedType::Length:
return { Length::make_px(CSSPixels::nearest_value_for(value)) };
2023-05-27 22:56:41 +02:00
case CalculatedStyleValue::ResolvedType::Percentage:
return { Percentage(value) };
case CalculatedStyleValue::ResolvedType::Resolution:
return { Resolution::make_dots_per_pixel(value) };
2023-05-27 22:56:41 +02:00
case CalculatedStyleValue::ResolvedType::Time:
return { Time::make_seconds(value) };
}
VERIFY_NOT_REACHED();
}
2023-05-27 22:56:41 +02:00
Optional<CalculationNode::ConstantType> CalculationNode::constant_type_from_string(StringView string)
{
if (string.equals_ignoring_ascii_case("e"sv))
return CalculationNode::ConstantType::E;
if (string.equals_ignoring_ascii_case("pi"sv))
return CalculationNode::ConstantType::Pi;
if (string.equals_ignoring_ascii_case("infinity"sv))
return CalculationNode::ConstantType::Infinity;
if (string.equals_ignoring_ascii_case("-infinity"sv))
return CalculationNode::ConstantType::MinusInfinity;
if (string.equals_ignoring_ascii_case("NaN"sv))
return CalculationNode::ConstantType::NaN;
return {};
}
CalculationNode::CalculationNode(Type type)
: m_type(type)
{
}
CalculationNode::~CalculationNode() = default;
NonnullOwnPtr<NumericCalculationNode> NumericCalculationNode::create(NumericValue value)
{
return adopt_own(*new (nothrow) NumericCalculationNode(move(value)));
}
NumericCalculationNode::NumericCalculationNode(NumericValue value)
: CalculationNode(Type::Numeric)
, m_value(move(value))
{
}
NumericCalculationNode::~NumericCalculationNode() = default;
String NumericCalculationNode::to_string() const
{
return m_value.visit([](auto& value) { return value.to_string(); });
}
Optional<CalculatedStyleValue::ResolvedType> NumericCalculationNode::resolved_type() const
{
return m_value.visit(
[](Number const&) { return CalculatedStyleValue::ResolvedType::Number; },
[](Angle const&) { return CalculatedStyleValue::ResolvedType::Angle; },
[](Flex const&) { return CalculatedStyleValue::ResolvedType::Flex; },
[](Frequency const&) { return CalculatedStyleValue::ResolvedType::Frequency; },
[](Length const&) { return CalculatedStyleValue::ResolvedType::Length; },
[](Percentage const&) { return CalculatedStyleValue::ResolvedType::Percentage; },
[](Resolution const&) { return CalculatedStyleValue::ResolvedType::Resolution; },
[](Time const&) { return CalculatedStyleValue::ResolvedType::Time; });
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> NumericCalculationNode::determine_type(PropertyID property_id) const
{
// Anything else is a terminal value, whose type is determined based on its CSS type:
return m_value.visit(
[](Number const&) {
// -> <number>
// -> <integer>
// the type is «[ ]» (empty map)
return CSSNumericType {};
},
[](Length const&) {
// -> <length>
// the type is «[ "length" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Length, 1 };
},
[](Angle const&) {
// -> <angle>
// the type is «[ "angle" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Angle, 1 };
},
[](Time const&) {
// -> <time>
// the type is «[ "time" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Time, 1 };
},
[](Frequency const&) {
// -> <frequency>
// the type is «[ "frequency" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Frequency, 1 };
},
[](Resolution const&) {
// -> <resolution>
// the type is «[ "resolution" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Resolution, 1 };
},
[](Flex const&) {
// -> <flex>
// the type is «[ "flex" → 1 ]»
return CSSNumericType { CSSNumericType::BaseType::Flex, 1 };
},
// NOTE: <calc-constant> is a separate node type. (FIXME: Should it be?)
[property_id](Percentage const&) {
// -> <percentage>
// If, in the context in which the math function containing this calculation is placed,
// <percentage>s are resolved relative to another type of value (such as in width,
// where <percentage> is resolved against a <length>), and that other type is not <number>,
// the type is determined as the other type.
auto percentage_resolved_type = property_resolves_percentages_relative_to(property_id);
if (percentage_resolved_type.has_value() && percentage_resolved_type != ValueType::Number && percentage_resolved_type != ValueType::Percentage) {
auto base_type = CSSNumericType::base_type_from_value_type(*percentage_resolved_type);
VERIFY(base_type.has_value());
return CSSNumericType { base_type.value(), 1 };
}
// Otherwise, the type is «[ "percent" → 1 ]».
return CSSNumericType { CSSNumericType::BaseType::Percent, 1 };
});
// In all cases, the associated percent hint is null.
}
bool NumericCalculationNode::contains_percentage() const
{
return m_value.has<Percentage>();
}
CalculatedStyleValue::CalculationResult NumericCalculationNode::resolve(Optional<Length::ResolutionContext const&>, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
if (m_value.has<Percentage>()) {
// NOTE: Depending on whether percentage_basis is set, the caller of resolve() is expecting a raw percentage or
// resolved length.
return percentage_basis.visit(
[&](Empty const&) -> CalculatedStyleValue::CalculationResult {
return m_value;
},
[&](auto const& value) {
return CalculatedStyleValue::CalculationResult(value.percentage_of(m_value.get<Percentage>()));
});
}
return m_value;
}
void NumericCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}NUMERIC({})\n", "", indent, m_value.visit([](auto& it) { return it.to_string(); }));
}
bool NumericCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value == static_cast<NumericCalculationNode const&>(other).m_value;
}
NonnullOwnPtr<SumCalculationNode> SumCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
return adopt_own(*new (nothrow) SumCalculationNode(move(values)));
}
SumCalculationNode::SumCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values)
: CalculationNode(Type::Sum)
, m_values(move(values))
{
VERIFY(!m_values.is_empty());
}
SumCalculationNode::~SumCalculationNode() = default;
String SumCalculationNode::to_string() const
{
bool first = true;
StringBuilder builder;
for (auto& value : m_values) {
if (!first)
builder.append(" + "sv);
builder.append(value->to_string());
first = false;
}
return MUST(builder.to_string());
}
Optional<CalculatedStyleValue::ResolvedType> SumCalculationNode::resolved_type() const
{
// FIXME: Implement https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// For now, this is just ad-hoc, based on the old implementation.
Optional<CalculatedStyleValue::ResolvedType> type;
for (auto const& value : m_values) {
auto maybe_value_type = value->resolved_type();
if (!maybe_value_type.has_value())
return {};
auto value_type = maybe_value_type.value();
if (!type.has_value()) {
type = value_type;
continue;
}
// At + or -, check that both sides have the same type, or that one side is a <number> and the other is an <integer>.
// If both sides are the same type, resolve to that type.
if (value_type == type)
continue;
// If one side is a <number> and the other is an <integer>, resolve to <number>.
if (is_number(*type) && is_number(value_type)) {
type = CalculatedStyleValue::ResolvedType::Number;
continue;
}
// FIXME: calc() handles <percentage> by allowing them to pretend to be whatever <dimension> type is allowed at this location.
// Since we can't easily check what that type is, we just allow <percentage> to combine with any other <dimension> type.
if (type == CalculatedStyleValue::ResolvedType::Percentage && is_dimension(value_type)) {
type = value_type;
continue;
}
if (is_dimension(*type) && value_type == CalculatedStyleValue::ResolvedType::Percentage)
continue;
return {};
}
return type;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> SumCalculationNode::determine_type(PropertyID property_id) const
{
// At a + or - sub-expression, attempt to add the types of the left and right arguments.
// If this returns failure, the entire calculation’s type is failure.
// Otherwise, the sub-expression’s type is the returned type.
return add_the_types(m_values, property_id);
}
bool SumCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult SumCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
Optional<CalculatedStyleValue::CalculationResult> total;
for (auto& additional_product : m_values) {
auto additional_value = additional_product->resolve(context, percentage_basis);
if (!total.has_value()) {
total = additional_value;
continue;
}
total->add(additional_value, context, percentage_basis);
}
return total.value();
}
void SumCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
for (auto& item : m_values) {
item->for_each_child_node(callback);
callback(item);
}
}
void SumCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}SUM:\n", "", indent);
for (auto const& item : m_values)
item->dump(builder, indent + 2);
}
bool SumCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<SumCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<ProductCalculationNode> ProductCalculationNode::create(Vector<NonnullOwnPtr<CalculationNode>> values)
{
return adopt_own(*new (nothrow) ProductCalculationNode(move(values)));
}
ProductCalculationNode::ProductCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values)
: CalculationNode(Type::Product)
, m_values(move(values))
{
VERIFY(!m_values.is_empty());
}
ProductCalculationNode::~ProductCalculationNode() = default;
String ProductCalculationNode::to_string() const
{
bool first = true;
StringBuilder builder;
for (auto& value : m_values) {
if (!first)
builder.append(" * "sv);
builder.append(value->to_string());
first = false;
}
return MUST(builder.to_string());
}
Optional<CalculatedStyleValue::ResolvedType> ProductCalculationNode::resolved_type() const
{
// FIXME: Implement https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// For now, this is just ad-hoc, based on the old implementation.
Optional<CalculatedStyleValue::ResolvedType> type;
for (auto const& value : m_values) {
auto maybe_value_type = value->resolved_type();
if (!maybe_value_type.has_value())
return {};
auto value_type = maybe_value_type.value();
if (!type.has_value()) {
type = value_type;
continue;
}
// At *, check that at least one side is <number>.
if (!(is_number(*type) || is_number(value_type)))
return {};
// If both sides are <integer>, resolve to <integer>.
if (type == CalculatedStyleValue::ResolvedType::Integer && value_type == CalculatedStyleValue::ResolvedType::Integer) {
type = CalculatedStyleValue::ResolvedType::Integer;
} else {
// Otherwise, resolve to the type of the other side.
if (is_number(*type))
type = value_type;
}
}
return type;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> ProductCalculationNode::determine_type(PropertyID property_id) const
{
// At a * sub-expression, multiply the types of the left and right arguments.
// The sub-expression’s type is the returned result.
Optional<CSSNumericType> left_type;
for (auto const& value : m_values) {
auto right_type = value->determine_type(property_id);
if (!right_type.has_value())
return {};
if (left_type.has_value()) {
left_type = left_type->multiplied_by(right_type.value());
} else {
left_type = right_type;
}
if (!left_type.has_value())
return {};
}
return left_type;
}
bool ProductCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult ProductCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
Optional<CalculatedStyleValue::CalculationResult> total;
for (auto& additional_product : m_values) {
auto additional_value = additional_product->resolve(context, percentage_basis);
if (!total.has_value()) {
total = additional_value;
continue;
}
total->multiply_by(additional_value, context);
}
return total.value();
}
void ProductCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
for (auto& item : m_values) {
item->for_each_child_node(callback);
callback(item);
}
}
void ProductCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}PRODUCT:\n", "", indent);
for (auto const& item : m_values)
item->dump(builder, indent + 2);
}
bool ProductCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<ProductCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<NegateCalculationNode> NegateCalculationNode::create(NonnullOwnPtr<Web::CSS::CalculationNode> value)
{
return adopt_own(*new (nothrow) NegateCalculationNode(move(value)));
}
NegateCalculationNode::NegateCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Negate)
, m_value(move(value))
{
}
NegateCalculationNode::~NegateCalculationNode() = default;
String NegateCalculationNode::to_string() const
{
return MUST(String::formatted("(0 - {})", m_value->to_string()));
}
Optional<CalculatedStyleValue::ResolvedType> NegateCalculationNode::resolved_type() const
{
return m_value->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> NegateCalculationNode::determine_type(PropertyID property_id) const
{
// NOTE: `- foo` doesn't change the type
return m_value->determine_type(property_id);
}
bool NegateCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult NegateCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto child_value = m_value->resolve(context, percentage_basis);
child_value.negate();
return child_value;
}
void NegateCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
m_value->for_each_child_node(callback);
callback(m_value);
}
void NegateCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}NEGATE:\n", "", indent);
m_value->dump(builder, indent + 2);
}
bool NegateCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<NegateCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<InvertCalculationNode> InvertCalculationNode::create(NonnullOwnPtr<Web::CSS::CalculationNode> value)
{
return adopt_own(*new (nothrow) InvertCalculationNode(move(value)));
}
InvertCalculationNode::InvertCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Invert)
, m_value(move(value))
{
}
InvertCalculationNode::~InvertCalculationNode() = default;
String InvertCalculationNode::to_string() const
{
return MUST(String::formatted("(1 / {})", m_value->to_string()));
}
Optional<CalculatedStyleValue::ResolvedType> InvertCalculationNode::resolved_type() const
{
auto type = m_value->resolved_type();
if (type == CalculatedStyleValue::ResolvedType::Integer)
return CalculatedStyleValue::ResolvedType::Number;
return type;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> InvertCalculationNode::determine_type(PropertyID property_id) const
{
// At a / sub-expression, let left type be the result of finding the types of its left argument,
// and right type be the result of finding the types of its right argument and then inverting it.
// The sub-expression’s type is the result of multiplying the left type and right type.
// NOTE: An InvertCalculationNode only represents the right argument here, and the multiplication
// is handled in the parent ProductCalculationNode.
return m_value->determine_type(property_id).map([](auto& it) { return it.inverted(); });
}
bool InvertCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult InvertCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto child_value = m_value->resolve(context, percentage_basis);
child_value.invert();
return child_value;
}
void InvertCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
m_value->for_each_child_node(callback);
callback(m_value);
}
void InvertCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}INVERT:\n", "", indent);
m_value->dump(builder, indent + 2);
}
bool InvertCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<InvertCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<MinCalculationNode> MinCalculationNode::create(Vector<NonnullOwnPtr<Web::CSS::CalculationNode>> values)
{
return adopt_own(*new (nothrow) MinCalculationNode(move(values)));
}
MinCalculationNode::MinCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values)
: CalculationNode(Type::Min)
, m_values(move(values))
{
}
MinCalculationNode::~MinCalculationNode() = default;
String MinCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("min("sv);
for (size_t i = 0; i < m_values.size(); ++i) {
if (i != 0)
builder.append(", "sv);
builder.append(m_values[i]->to_string());
}
builder.append(")"sv);
return MUST(builder.to_string());
}
Optional<CalculatedStyleValue::ResolvedType> MinCalculationNode::resolved_type() const
{
// NOTE: We check during parsing that all values have the same type.
return m_values[0]->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> MinCalculationNode::determine_type(PropertyID property_id) const
{
// The result of adding the types of its comma-separated calculations.
return add_the_types(m_values, property_id);
}
bool MinCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult MinCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
CalculatedStyleValue::CalculationResult smallest_node = m_values.first()->resolve(context, percentage_basis);
auto smallest_value = resolve_value(smallest_node.value(), context);
for (size_t i = 1; i < m_values.size(); i++) {
auto child_resolved = m_values[i]->resolve(context, percentage_basis);
auto child_value = resolve_value(child_resolved.value(), context);
if (child_value < smallest_value) {
smallest_value = child_value;
smallest_node = child_resolved;
}
}
return smallest_node;
}
void MinCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
for (auto& value : m_values) {
value->for_each_child_node(callback);
callback(value);
}
}
void MinCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}MIN:\n", "", indent);
for (auto const& value : m_values)
value->dump(builder, indent + 2);
}
bool MinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<MinCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<MaxCalculationNode> MaxCalculationNode::create(Vector<NonnullOwnPtr<Web::CSS::CalculationNode>> values)
{
return adopt_own(*new (nothrow) MaxCalculationNode(move(values)));
}
MaxCalculationNode::MaxCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values)
: CalculationNode(Type::Max)
, m_values(move(values))
{
}
MaxCalculationNode::~MaxCalculationNode() = default;
String MaxCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("max("sv);
for (size_t i = 0; i < m_values.size(); ++i) {
if (i != 0)
builder.append(", "sv);
builder.append(m_values[i]->to_string());
}
builder.append(")"sv);
return MUST(builder.to_string());
}
Optional<CalculatedStyleValue::ResolvedType> MaxCalculationNode::resolved_type() const
{
// NOTE: We check during parsing that all values have the same type.
return m_values[0]->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> MaxCalculationNode::determine_type(PropertyID property_id) const
{
// The result of adding the types of its comma-separated calculations.
return add_the_types(m_values, property_id);
}
bool MaxCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult MaxCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
CalculatedStyleValue::CalculationResult largest_node = m_values.first()->resolve(context, percentage_basis);
auto largest_value = resolve_value(largest_node.value(), context);
for (size_t i = 1; i < m_values.size(); i++) {
auto child_resolved = m_values[i]->resolve(context, percentage_basis);
auto child_value = resolve_value(child_resolved.value(), context);
if (child_value > largest_value) {
largest_value = child_value;
largest_node = child_resolved;
}
}
return largest_node;
}
void MaxCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
for (auto& value : m_values) {
value->for_each_child_node(callback);
callback(value);
}
}
void MaxCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}MAX:\n", "", indent);
for (auto const& value : m_values)
value->dump(builder, indent + 2);
}
bool MaxCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<MaxCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<ClampCalculationNode> ClampCalculationNode::create(NonnullOwnPtr<CalculationNode> min, NonnullOwnPtr<CalculationNode> center, NonnullOwnPtr<CalculationNode> max)
{
return adopt_own(*new (nothrow) ClampCalculationNode(move(min), move(center), move(max)));
}
ClampCalculationNode::ClampCalculationNode(NonnullOwnPtr<CalculationNode> min, NonnullOwnPtr<CalculationNode> center, NonnullOwnPtr<CalculationNode> max)
: CalculationNode(Type::Clamp)
, m_min_value(move(min))
, m_center_value(move(center))
, m_max_value(move(max))
{
}
ClampCalculationNode::~ClampCalculationNode() = default;
String ClampCalculationNode::to_string() const
{
StringBuilder builder;
builder.append("clamp("sv);
builder.append(m_min_value->to_string());
builder.append(", "sv);
builder.append(m_center_value->to_string());
builder.append(", "sv);
builder.append(m_max_value->to_string());
builder.append(")"sv);
return MUST(builder.to_string());
}
Optional<CalculatedStyleValue::ResolvedType> ClampCalculationNode::resolved_type() const
{
// NOTE: We check during parsing that all values have the same type.
return m_min_value->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> ClampCalculationNode::determine_type(PropertyID property_id) const
{
// The result of adding the types of its comma-separated calculations.
auto min_type = m_min_value->determine_type(property_id);
auto center_type = m_center_value->determine_type(property_id);
auto max_type = m_max_value->determine_type(property_id);
if (!min_type.has_value() || !center_type.has_value() || !max_type.has_value())
return {};
auto result = min_type->added_to(*center_type);
if (!result.has_value())
return {};
return result->added_to(*max_type);
}
bool ClampCalculationNode::contains_percentage() const
{
return m_min_value->contains_percentage() || m_center_value->contains_percentage() || m_max_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult ClampCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto min_node = m_min_value->resolve(context, percentage_basis);
auto center_node = m_center_value->resolve(context, percentage_basis);
auto max_node = m_max_value->resolve(context, percentage_basis);
auto min_value = resolve_value(min_node.value(), context);
auto center_value = resolve_value(center_node.value(), context);
auto max_value = resolve_value(max_node.value(), context);
// NOTE: The value should be returned as "max(MIN, min(VAL, MAX))"
auto chosen_value = max(min_value, min(center_value, max_value));
if (chosen_value == min_value)
return min_node;
if (chosen_value == center_value)
return center_node;
if (chosen_value == max_value)
return max_node;
VERIFY_NOT_REACHED();
}
void ClampCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
{
m_min_value->for_each_child_node(callback);
m_center_value->for_each_child_node(callback);
m_max_value->for_each_child_node(callback);
callback(m_min_value);
callback(m_center_value);
callback(m_max_value);
}
void ClampCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}CLAMP:\n", "", indent);
m_min_value->dump(builder, indent + 2);
m_center_value->dump(builder, indent + 2);
m_max_value->dump(builder, indent + 2);
}
bool ClampCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_min_value->equals(*static_cast<ClampCalculationNode const&>(other).m_min_value)
&& m_center_value->equals(*static_cast<ClampCalculationNode const&>(other).m_center_value)
&& m_max_value->equals(*static_cast<ClampCalculationNode const&>(other).m_max_value);
}
NonnullOwnPtr<AbsCalculationNode> AbsCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-27 22:56:41 +02:00
{
return adopt_own(*new (nothrow) AbsCalculationNode(move(value)));
2023-05-27 22:56:41 +02:00
}
AbsCalculationNode::AbsCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Abs)
, m_value(move(value))
{
}
AbsCalculationNode::~AbsCalculationNode() = default;
String AbsCalculationNode::to_string() const
2023-05-27 22:56:41 +02:00
{
StringBuilder builder;
builder.append("abs("sv);
builder.append(m_value->to_string());
2023-05-27 22:56:41 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-27 22:56:41 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> AbsCalculationNode::resolved_type() const
{
return m_value->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> AbsCalculationNode::determine_type(PropertyID property_id) const
{
// The type of its contained calculation.
return m_value->determine_type(property_id);
}
2023-05-27 22:56:41 +02:00
bool AbsCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AbsCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto resolved_type = m_value->resolved_type().value();
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
if (node_a_value < 0)
return to_resolved_type(resolved_type, -node_a_value);
return node_a;
}
void AbsCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-27 22:56:41 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-27 22:56:41 +02:00
}
void AbsCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 22:56:41 +02:00
{
builder.appendff("{: >{}}ABS: {}\n", "", indent, to_string());
2023-05-27 22:56:41 +02:00
}
bool AbsCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AbsCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<SignCalculationNode> SignCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-27 23:02:39 +02:00
{
return adopt_own(*new (nothrow) SignCalculationNode(move(value)));
2023-05-27 23:02:39 +02:00
}
SignCalculationNode::SignCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Sign)
, m_value(move(value))
{
}
SignCalculationNode::~SignCalculationNode() = default;
String SignCalculationNode::to_string() const
2023-05-27 23:02:39 +02:00
{
StringBuilder builder;
builder.append("sign("sv);
builder.append(m_value->to_string());
2023-05-27 23:02:39 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-27 23:02:39 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> SignCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Integer;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> SignCalculationNode::determine_type(PropertyID) const
{
// «[ ]» (empty map).
return CSSNumericType {};
}
2023-05-27 23:02:39 +02:00
bool SignCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult SignCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
if (node_a_value < 0)
return { Number(Number::Type::Integer, -1) };
if (node_a_value > 0)
return { Number(Number::Type::Integer, 1) };
return { Number(Number::Type::Integer, 0) };
}
void SignCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-27 23:02:39 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-27 23:02:39 +02:00
}
void SignCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 23:02:39 +02:00
{
builder.appendff("{: >{}}SIGN: {}\n", "", indent, to_string());
2023-05-27 23:02:39 +02:00
}
bool SignCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SignCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<ConstantCalculationNode> ConstantCalculationNode::create(ConstantType constant)
2023-05-26 21:24:31 +02:00
{
return adopt_own(*new (nothrow) ConstantCalculationNode(constant));
2023-05-26 21:24:31 +02:00
}
ConstantCalculationNode::ConstantCalculationNode(ConstantType constant)
: CalculationNode(Type::Constant)
, m_constant(constant)
{
}
ConstantCalculationNode::~ConstantCalculationNode() = default;
String ConstantCalculationNode::to_string() const
2023-05-26 21:24:31 +02:00
{
switch (m_constant) {
case CalculationNode::ConstantType::E:
return "e"_string;
case CalculationNode::ConstantType::Pi:
return "pi"_string;
2023-05-26 21:24:31 +02:00
case CalculationNode::ConstantType::Infinity:
return "infinity"_string;
case CalculationNode::ConstantType::MinusInfinity:
return "-infinity"_string;
case CalculationNode::ConstantType::NaN:
return "NaN"_string;
}
VERIFY_NOT_REACHED();
}
Optional<CalculatedStyleValue::ResolvedType> ConstantCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Number;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> ConstantCalculationNode::determine_type(PropertyID) const
{
// Anything else is a terminal value, whose type is determined based on its CSS type:
// -> <calc-constant>
// the type is «[ ]» (empty map)
return CSSNumericType {};
}
2023-05-26 21:24:31 +02:00
CalculatedStyleValue::CalculationResult ConstantCalculationNode::resolve([[maybe_unused]] Optional<Length::ResolutionContext const&> context, [[maybe_unused]] CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
switch (m_constant) {
case CalculationNode::ConstantType::E:
return { Number(Number::Type::Number, M_E) };
case CalculationNode::ConstantType::Pi:
2023-05-26 21:24:31 +02:00
return { Number(Number::Type::Number, M_PI) };
// FIXME: We need to keep track of Infinity and NaN across all nodes, since they require special handling.
case CalculationNode::ConstantType::Infinity:
return { Number(Number::Type::Number, NumericLimits<double>::max()) };
2023-05-26 21:24:31 +02:00
case CalculationNode::ConstantType::MinusInfinity:
return { Number(Number::Type::Number, NumericLimits<double>::lowest()) };
2023-05-26 21:24:31 +02:00
case CalculationNode::ConstantType::NaN:
return { Number(Number::Type::Number, NAN) };
}
VERIFY_NOT_REACHED();
}
void ConstantCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-26 21:24:31 +02:00
{
builder.appendff("{: >{}}CONSTANT: {}\n", "", indent, to_string());
2023-05-26 21:24:31 +02:00
}
bool ConstantCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_constant == static_cast<ConstantCalculationNode const&>(other).m_constant;
}
NonnullOwnPtr<SinCalculationNode> SinCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-27 23:50:33 +02:00
{
return adopt_own(*new (nothrow) SinCalculationNode(move(value)));
2023-05-27 23:50:33 +02:00
}
SinCalculationNode::SinCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Sin)
, m_value(move(value))
{
}
SinCalculationNode::~SinCalculationNode() = default;
String SinCalculationNode::to_string() const
2023-05-27 23:50:33 +02:00
{
StringBuilder builder;
builder.append("sin("sv);
builder.append(m_value->to_string());
2023-05-27 23:50:33 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-27 23:50:33 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> SinCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Number;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> SinCalculationNode::determine_type(PropertyID) const
{
// «[ ]» (empty map).
return CSSNumericType {};
}
2023-05-27 23:50:33 +02:00
bool SinCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult SinCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value_radians(node_a.value());
auto result = sin(node_a_value);
return { Number(Number::Type::Number, result) };
}
void SinCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-27 23:50:33 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-27 23:50:33 +02:00
}
void SinCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 23:50:33 +02:00
{
builder.appendff("{: >{}}SIN: {}\n", "", indent, to_string());
2023-05-27 23:50:33 +02:00
}
bool SinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SinCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<CosCalculationNode> CosCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-27 23:57:01 +02:00
{
return adopt_own(*new (nothrow) CosCalculationNode(move(value)));
2023-05-27 23:57:01 +02:00
}
CosCalculationNode::CosCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Cos)
, m_value(move(value))
{
}
CosCalculationNode::~CosCalculationNode() = default;
String CosCalculationNode::to_string() const
2023-05-27 23:57:01 +02:00
{
StringBuilder builder;
builder.append("cos("sv);
builder.append(m_value->to_string());
2023-05-27 23:57:01 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-27 23:57:01 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> CosCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Number;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> CosCalculationNode::determine_type(PropertyID) const
{
// «[ ]» (empty map).
return CSSNumericType {};
}
2023-05-27 23:57:01 +02:00
bool CosCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult CosCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value_radians(node_a.value());
auto result = cos(node_a_value);
return { Number(Number::Type::Number, result) };
}
void CosCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-27 23:57:01 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-27 23:57:01 +02:00
}
void CosCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 23:57:01 +02:00
{
builder.appendff("{: >{}}COS: {}\n", "", indent, to_string());
2023-05-27 23:57:01 +02:00
}
bool CosCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<CosCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<TanCalculationNode> TanCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-28 00:02:43 +02:00
{
return adopt_own(*new (nothrow) TanCalculationNode(move(value)));
2023-05-28 00:02:43 +02:00
}
TanCalculationNode::TanCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Tan)
, m_value(move(value))
{
}
TanCalculationNode::~TanCalculationNode() = default;
String TanCalculationNode::to_string() const
2023-05-28 00:02:43 +02:00
{
StringBuilder builder;
builder.append("tan("sv);
builder.append(m_value->to_string());
2023-05-28 00:02:43 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 00:02:43 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> TanCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Number;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> TanCalculationNode::determine_type(PropertyID) const
{
// «[ ]» (empty map).
return CSSNumericType {};
}
2023-05-28 00:02:43 +02:00
bool TanCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult TanCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value_radians(node_a.value());
auto result = tan(node_a_value);
return { Number(Number::Type::Number, result) };
}
void TanCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 00:02:43 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-28 00:02:43 +02:00
}
void TanCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 00:02:43 +02:00
{
builder.appendff("{: >{}}TAN: {}\n", "", indent, to_string());
2023-05-28 00:02:43 +02:00
}
bool TanCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<TanCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<AsinCalculationNode> AsinCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-28 10:55:52 +02:00
{
return adopt_own(*new (nothrow) AsinCalculationNode(move(value)));
2023-05-28 10:55:52 +02:00
}
AsinCalculationNode::AsinCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Asin)
, m_value(move(value))
{
}
AsinCalculationNode::~AsinCalculationNode() = default;
String AsinCalculationNode::to_string() const
2023-05-28 10:55:52 +02:00
{
StringBuilder builder;
builder.append("asin("sv);
builder.append(m_value->to_string());
2023-05-28 10:55:52 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 10:55:52 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> AsinCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Angle;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> AsinCalculationNode::determine_type(PropertyID) const
{
// «[ "angle" → 1 ]».
return CSSNumericType { CSSNumericType::BaseType::Angle, 1 };
}
2023-05-28 10:55:52 +02:00
bool AsinCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AsinCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto result = asin(node_a_value);
return { Angle(result, Angle::Type::Rad) };
}
void AsinCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 10:55:52 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-28 10:55:52 +02:00
}
void AsinCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 10:55:52 +02:00
{
builder.appendff("{: >{}}ASIN: {}\n", "", indent, to_string());
2023-05-28 10:55:52 +02:00
}
bool AsinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AsinCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<AcosCalculationNode> AcosCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-28 11:00:35 +02:00
{
return adopt_own(*new (nothrow) AcosCalculationNode(move(value)));
2023-05-28 11:00:35 +02:00
}
AcosCalculationNode::AcosCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Acos)
, m_value(move(value))
{
}
AcosCalculationNode::~AcosCalculationNode() = default;
String AcosCalculationNode::to_string() const
2023-05-28 11:00:35 +02:00
{
StringBuilder builder;
builder.append("acos("sv);
builder.append(m_value->to_string());
2023-05-28 11:00:35 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 11:00:35 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> AcosCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Angle;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> AcosCalculationNode::determine_type(PropertyID) const
{
// «[ "angle" → 1 ]».
return CSSNumericType { CSSNumericType::BaseType::Angle, 1 };
}
2023-05-28 11:00:35 +02:00
bool AcosCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AcosCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto result = acos(node_a_value);
return { Angle(result, Angle::Type::Rad) };
}
void AcosCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 11:00:35 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-28 11:00:35 +02:00
}
void AcosCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:00:35 +02:00
{
builder.appendff("{: >{}}ACOS: {}\n", "", indent, to_string());
2023-05-28 11:00:35 +02:00
}
bool AcosCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AcosCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<AtanCalculationNode> AtanCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-28 11:04:57 +02:00
{
return adopt_own(*new (nothrow) AtanCalculationNode(move(value)));
2023-05-28 11:04:57 +02:00
}
AtanCalculationNode::AtanCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Atan)
, m_value(move(value))
{
}
AtanCalculationNode::~AtanCalculationNode() = default;
String AtanCalculationNode::to_string() const
2023-05-28 11:04:57 +02:00
{
StringBuilder builder;
builder.append("atan("sv);
builder.append(m_value->to_string());
2023-05-28 11:04:57 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 11:04:57 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> AtanCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Angle;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> AtanCalculationNode::determine_type(PropertyID) const
{
// «[ "angle" → 1 ]».
return CSSNumericType { CSSNumericType::BaseType::Angle, 1 };
}
2023-05-28 11:04:57 +02:00
bool AtanCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AtanCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto result = atan(node_a_value);
return { Angle(result, Angle::Type::Rad) };
}
void AtanCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 11:04:57 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-28 11:04:57 +02:00
}
void AtanCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:04:57 +02:00
{
builder.appendff("{: >{}}ATAN: {}\n", "", indent, to_string());
2023-05-28 11:04:57 +02:00
}
bool AtanCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AtanCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<Atan2CalculationNode> Atan2CalculationNode::create(NonnullOwnPtr<CalculationNode> y, NonnullOwnPtr<CalculationNode> x)
2023-05-28 11:19:10 +02:00
{
return adopt_own(*new (nothrow) Atan2CalculationNode(move(y), move(x)));
2023-05-28 11:19:10 +02:00
}
Atan2CalculationNode::Atan2CalculationNode(NonnullOwnPtr<CalculationNode> y, NonnullOwnPtr<CalculationNode> x)
: CalculationNode(Type::Atan2)
, m_y(move(y))
, m_x(move(x))
{
}
Atan2CalculationNode::~Atan2CalculationNode() = default;
String Atan2CalculationNode::to_string() const
2023-05-28 11:19:10 +02:00
{
StringBuilder builder;
builder.append("atan2("sv);
builder.append(m_y->to_string());
2023-05-28 11:19:10 +02:00
builder.append(", "sv);
builder.append(m_x->to_string());
2023-05-28 11:19:10 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 11:19:10 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> Atan2CalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Angle;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> Atan2CalculationNode::determine_type(PropertyID) const
{
// «[ "angle" → 1 ]».
return CSSNumericType { CSSNumericType::BaseType::Angle, 1 };
}
2023-05-28 11:19:10 +02:00
bool Atan2CalculationNode::contains_percentage() const
{
return m_y->contains_percentage() || m_x->contains_percentage();
}
CalculatedStyleValue::CalculationResult Atan2CalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_y->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto node_b = m_x->resolve(context, percentage_basis);
auto node_b_value = resolve_value(node_b.value(), context);
auto result = atan2(node_a_value, node_b_value);
return { Angle(result, Angle::Type::Rad) };
}
void Atan2CalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 11:19:10 +02:00
{
m_y->for_each_child_node(callback);
m_x->for_each_child_node(callback);
callback(m_y);
callback(m_x);
2023-05-28 11:19:10 +02:00
}
void Atan2CalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:19:10 +02:00
{
builder.appendff("{: >{}}ATAN2: {}\n", "", indent, to_string());
2023-05-28 11:19:10 +02:00
}
bool Atan2CalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<Atan2CalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<Atan2CalculationNode const&>(other).m_y);
}
NonnullOwnPtr<PowCalculationNode> PowCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
2023-05-28 11:26:42 +02:00
{
return adopt_own(*new (nothrow) PowCalculationNode(move(x), move(y)));
2023-05-28 11:26:42 +02:00
}
PowCalculationNode::PowCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
: CalculationNode(Type::Pow)
, m_x(move(x))
, m_y(move(y))
{
}
PowCalculationNode::~PowCalculationNode() = default;
String PowCalculationNode::to_string() const
2023-05-28 11:26:42 +02:00
{
StringBuilder builder;
builder.append("pow("sv);
builder.append(m_x->to_string());
2023-05-28 11:26:42 +02:00
builder.append(", "sv);
builder.append(m_y->to_string());
2023-05-28 11:26:42 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 11:26:42 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> PowCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Number;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> PowCalculationNode::determine_type(PropertyID) const
{
// «[ ]» (empty map).
return CSSNumericType {};
}
2023-05-28 11:26:42 +02:00
CalculatedStyleValue::CalculationResult PowCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_x->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto node_b = m_y->resolve(context, percentage_basis);
auto node_b_value = resolve_value(node_b.value(), context);
auto result = pow(node_a_value, node_b_value);
return { Number(Number::Type::Number, result) };
}
void PowCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 11:26:42 +02:00
{
m_x->for_each_child_node(callback);
m_y->for_each_child_node(callback);
callback(m_x);
callback(m_y);
2023-05-28 11:26:42 +02:00
}
void PowCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:26:42 +02:00
{
builder.appendff("{: >{}}POW: {}\n", "", indent, to_string());
2023-05-28 11:26:42 +02:00
}
bool PowCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<PowCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<PowCalculationNode const&>(other).m_y);
}
NonnullOwnPtr<SqrtCalculationNode> SqrtCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-28 11:31:50 +02:00
{
return adopt_own(*new (nothrow) SqrtCalculationNode(move(value)));
2023-05-28 11:31:50 +02:00
}
SqrtCalculationNode::SqrtCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Sqrt)
, m_value(move(value))
{
}
SqrtCalculationNode::~SqrtCalculationNode() = default;
String SqrtCalculationNode::to_string() const
2023-05-28 11:31:50 +02:00
{
StringBuilder builder;
builder.append("sqrt("sv);
builder.append(m_value->to_string());
2023-05-28 11:31:50 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 11:31:50 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> SqrtCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Number;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> SqrtCalculationNode::determine_type(PropertyID) const
{
// «[ ]» (empty map).
return CSSNumericType {};
}
2023-05-28 11:31:50 +02:00
CalculatedStyleValue::CalculationResult SqrtCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto result = sqrt(node_a_value);
return { Number(Number::Type::Number, result) };
}
void SqrtCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 11:31:50 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-28 11:31:50 +02:00
}
void SqrtCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:31:50 +02:00
{
builder.appendff("{: >{}}SQRT: {}\n", "", indent, to_string());
2023-05-28 11:31:50 +02:00
}
bool SqrtCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SqrtCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<HypotCalculationNode> HypotCalculationNode::create(Vector<NonnullOwnPtr<Web::CSS::CalculationNode>> values)
2023-05-28 11:43:04 +02:00
{
return adopt_own(*new (nothrow) HypotCalculationNode(move(values)));
2023-05-28 11:43:04 +02:00
}
HypotCalculationNode::HypotCalculationNode(Vector<NonnullOwnPtr<CalculationNode>> values)
: CalculationNode(Type::Hypot)
, m_values(move(values))
{
}
HypotCalculationNode::~HypotCalculationNode() = default;
String HypotCalculationNode::to_string() const
2023-05-28 11:43:04 +02:00
{
StringBuilder builder;
builder.append("hypot("sv);
2023-05-28 11:43:04 +02:00
for (size_t i = 0; i < m_values.size(); ++i) {
if (i != 0)
builder.append(", "sv);
builder.append(m_values[i]->to_string());
2023-05-28 11:43:04 +02:00
}
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 11:43:04 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> HypotCalculationNode::resolved_type() const
{
// NOTE: We check during parsing that all values have the same type.
return m_values[0]->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> HypotCalculationNode::determine_type(PropertyID property_id) const
{
// The result of adding the types of its comma-separated calculations.
return add_the_types(m_values, property_id);
}
2023-05-28 11:43:04 +02:00
bool HypotCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult HypotCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
double square_sum = 0.0;
for (auto const& value : m_values) {
auto child_resolved = value->resolve(context, percentage_basis);
auto child_value = resolve_value(child_resolved.value(), context);
square_sum += child_value * child_value;
}
auto result = sqrt(square_sum);
return to_resolved_type(resolved_type().value(), result);
}
void HypotCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 11:43:04 +02:00
{
for (auto& value : m_values) {
value->for_each_child_node(callback);
callback(value);
2023-05-28 11:43:04 +02:00
}
}
void HypotCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:43:04 +02:00
{
builder.appendff("{: >{}}HYPOT:\n", "", indent);
2023-05-28 11:43:04 +02:00
for (auto const& value : m_values)
value->dump(builder, indent + 2);
2023-05-28 11:43:04 +02:00
}
bool HypotCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<HypotCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullOwnPtr<LogCalculationNode> LogCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
2023-05-28 11:53:57 +02:00
{
return adopt_own(*new (nothrow) LogCalculationNode(move(x), move(y)));
2023-05-28 11:53:57 +02:00
}
LogCalculationNode::LogCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
: CalculationNode(Type::Log)
, m_x(move(x))
, m_y(move(y))
{
}
LogCalculationNode::~LogCalculationNode() = default;
String LogCalculationNode::to_string() const
2023-05-28 11:53:57 +02:00
{
StringBuilder builder;
builder.append("log("sv);
builder.append(m_x->to_string());
2023-05-28 11:53:57 +02:00
builder.append(", "sv);
builder.append(m_y->to_string());
2023-05-28 11:53:57 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 11:53:57 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> LogCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Number;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> LogCalculationNode::determine_type(PropertyID) const
{
// «[ ]» (empty map).
return CSSNumericType {};
}
2023-05-28 11:53:57 +02:00
CalculatedStyleValue::CalculationResult LogCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_x->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto node_b = m_y->resolve(context, percentage_basis);
auto node_b_value = resolve_value(node_b.value(), context);
auto result = log2(node_a_value) / log2(node_b_value);
return { Number(Number::Type::Number, result) };
}
void LogCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 11:53:57 +02:00
{
m_x->for_each_child_node(callback);
m_y->for_each_child_node(callback);
callback(m_x);
callback(m_y);
2023-05-28 11:53:57 +02:00
}
void LogCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:53:57 +02:00
{
builder.appendff("{: >{}}LOG: {}\n", "", indent, to_string());
2023-05-28 11:53:57 +02:00
}
bool LogCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<LogCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<LogCalculationNode const&>(other).m_y);
}
NonnullOwnPtr<ExpCalculationNode> ExpCalculationNode::create(NonnullOwnPtr<CalculationNode> value)
2023-05-28 11:58:30 +02:00
{
return adopt_own(*new (nothrow) ExpCalculationNode(move(value)));
2023-05-28 11:58:30 +02:00
}
ExpCalculationNode::ExpCalculationNode(NonnullOwnPtr<CalculationNode> value)
: CalculationNode(Type::Exp)
, m_value(move(value))
{
}
ExpCalculationNode::~ExpCalculationNode() = default;
String ExpCalculationNode::to_string() const
2023-05-28 11:58:30 +02:00
{
StringBuilder builder;
builder.append("exp("sv);
builder.append(m_value->to_string());
2023-05-28 11:58:30 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-28 11:58:30 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> ExpCalculationNode::resolved_type() const
{
return CalculatedStyleValue::ResolvedType::Number;
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> ExpCalculationNode::determine_type(PropertyID) const
{
// «[ ]» (empty map).
return CSSNumericType {};
}
2023-05-28 11:58:30 +02:00
CalculatedStyleValue::CalculationResult ExpCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto node_a = m_value->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto result = exp(node_a_value);
return { Number(Number::Type::Number, result) };
}
void ExpCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-28 11:58:30 +02:00
{
m_value->for_each_child_node(callback);
callback(m_value);
2023-05-28 11:58:30 +02:00
}
void ExpCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:58:30 +02:00
{
builder.appendff("{: >{}}EXP: {}\n", "", indent, to_string());
2023-05-28 11:58:30 +02:00
}
bool ExpCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<ExpCalculationNode const&>(other).m_value);
}
NonnullOwnPtr<RoundCalculationNode> RoundCalculationNode::create(RoundingStrategy strategy, NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
2023-05-27 16:07:50 +02:00
{
return adopt_own(*new (nothrow) RoundCalculationNode(strategy, move(x), move(y)));
2023-05-27 16:07:50 +02:00
}
RoundCalculationNode::RoundCalculationNode(RoundingStrategy mode, NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
2023-05-27 16:07:50 +02:00
: CalculationNode(Type::Round)
, m_strategy(mode)
2023-05-27 16:07:50 +02:00
, m_x(move(x))
, m_y(move(y))
{
}
RoundCalculationNode::~RoundCalculationNode() = default;
String RoundCalculationNode::to_string() const
2023-05-27 16:07:50 +02:00
{
StringBuilder builder;
builder.append("round("sv);
builder.append(CSS::to_string(m_strategy));
2023-05-27 16:07:50 +02:00
builder.append(", "sv);
builder.append(m_x->to_string());
2023-05-27 16:07:50 +02:00
builder.append(", "sv);
builder.append(m_y->to_string());
2023-05-27 16:07:50 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-27 16:07:50 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> RoundCalculationNode::resolved_type() const
{
// Note: We check during parsing that all values have the same type
return m_x->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> RoundCalculationNode::determine_type(PropertyID property_id) const
{
// The result of adding the types of its comma-separated calculations.
auto x_type = m_x->determine_type(property_id);
auto y_type = m_y->determine_type(property_id);
if (!x_type.has_value() || !y_type.has_value())
return {};
return x_type->added_to(*y_type);
}
2023-05-27 16:07:50 +02:00
bool RoundCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult RoundCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto resolved_type = m_x->resolved_type().value();
auto node_a = m_x->resolve(context, percentage_basis);
auto node_b = m_y->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto node_b_value = resolve_value(node_b.value(), context);
auto upper_b = ceil(node_a_value / node_b_value) * node_b_value;
auto lower_b = floor(node_a_value / node_b_value) * node_b_value;
if (m_strategy == RoundingStrategy::Nearest) {
2023-05-27 16:07:50 +02:00
auto upper_diff = fabs(upper_b - node_a_value);
auto lower_diff = fabs(node_a_value - lower_b);
auto rounded_value = upper_diff < lower_diff ? upper_b : lower_b;
return to_resolved_type(resolved_type, rounded_value);
}
if (m_strategy == RoundingStrategy::Up) {
2023-05-27 16:07:50 +02:00
return to_resolved_type(resolved_type, upper_b);
}
if (m_strategy == RoundingStrategy::Down) {
2023-05-27 16:07:50 +02:00
return to_resolved_type(resolved_type, lower_b);
}
if (m_strategy == RoundingStrategy::ToZero) {
2023-05-27 16:07:50 +02:00
auto upper_diff = fabs(upper_b);
auto lower_diff = fabs(lower_b);
auto rounded_value = upper_diff < lower_diff ? upper_b : lower_b;
return to_resolved_type(resolved_type, rounded_value);
}
VERIFY_NOT_REACHED();
}
void RoundCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-27 16:07:50 +02:00
{
m_x->for_each_child_node(callback);
m_y->for_each_child_node(callback);
callback(m_x);
callback(m_y);
2023-05-27 16:07:50 +02:00
}
void RoundCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 16:07:50 +02:00
{
builder.appendff("{: >{}}ROUND: {}\n", "", indent, to_string());
2023-05-27 16:07:50 +02:00
}
bool RoundCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_strategy == static_cast<RoundCalculationNode const&>(other).m_strategy
&& m_x->equals(*static_cast<RoundCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<RoundCalculationNode const&>(other).m_y);
}
NonnullOwnPtr<ModCalculationNode> ModCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
2023-05-27 19:03:07 +02:00
{
return adopt_own(*new (nothrow) ModCalculationNode(move(x), move(y)));
2023-05-27 19:03:07 +02:00
}
ModCalculationNode::ModCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
: CalculationNode(Type::Mod)
, m_x(move(x))
, m_y(move(y))
{
}
ModCalculationNode::~ModCalculationNode() = default;
String ModCalculationNode::to_string() const
2023-05-27 19:03:07 +02:00
{
StringBuilder builder;
builder.append("mod("sv);
builder.append(m_x->to_string());
2023-05-27 19:03:07 +02:00
builder.append(", "sv);
builder.append(m_y->to_string());
2023-05-27 19:03:07 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-27 19:03:07 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> ModCalculationNode::resolved_type() const
{
// Note: We check during parsing that all values have the same type
return m_x->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> ModCalculationNode::determine_type(PropertyID property_id) const
{
// The result of adding the types of its comma-separated calculations.
auto x_type = m_x->determine_type(property_id);
auto y_type = m_y->determine_type(property_id);
if (!x_type.has_value() || !y_type.has_value())
return {};
return x_type->added_to(*y_type);
}
2023-05-27 19:03:07 +02:00
bool ModCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult ModCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto resolved_type = m_x->resolved_type().value();
auto node_a = m_x->resolve(context, percentage_basis);
auto node_b = m_y->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto node_b_value = resolve_value(node_b.value(), context);
auto quotient = floor(node_a_value / node_b_value);
auto value = node_a_value - (node_b_value * quotient);
return to_resolved_type(resolved_type, value);
}
void ModCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-27 19:03:07 +02:00
{
m_x->for_each_child_node(callback);
m_y->for_each_child_node(callback);
callback(m_x);
callback(m_y);
2023-05-27 19:03:07 +02:00
}
void ModCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 19:03:07 +02:00
{
builder.appendff("{: >{}}MOD: {}\n", "", indent, to_string());
2023-05-27 19:03:07 +02:00
}
bool ModCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<ModCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<ModCalculationNode const&>(other).m_y);
}
NonnullOwnPtr<RemCalculationNode> RemCalculationNode::create(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
2023-05-27 19:08:07 +02:00
{
return adopt_own(*new (nothrow) RemCalculationNode(move(x), move(y)));
2023-05-27 19:08:07 +02:00
}
RemCalculationNode::RemCalculationNode(NonnullOwnPtr<CalculationNode> x, NonnullOwnPtr<CalculationNode> y)
: CalculationNode(Type::Rem)
, m_x(move(x))
, m_y(move(y))
{
}
RemCalculationNode::~RemCalculationNode() = default;
String RemCalculationNode::to_string() const
2023-05-27 19:08:07 +02:00
{
StringBuilder builder;
builder.append("rem("sv);
builder.append(m_x->to_string());
2023-05-27 19:08:07 +02:00
builder.append(", "sv);
builder.append(m_y->to_string());
2023-05-27 19:08:07 +02:00
builder.append(")"sv);
return MUST(builder.to_string());
2023-05-27 19:08:07 +02:00
}
Optional<CalculatedStyleValue::ResolvedType> RemCalculationNode::resolved_type() const
{
// Note: We check during parsing that all values have the same type
return m_x->resolved_type();
}
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
Optional<CSSNumericType> RemCalculationNode::determine_type(PropertyID property_id) const
{
// The result of adding the types of its comma-separated calculations.
auto x_type = m_x->determine_type(property_id);
auto y_type = m_y->determine_type(property_id);
if (!x_type.has_value() || !y_type.has_value())
return {};
return x_type->added_to(*y_type);
}
2023-05-27 19:08:07 +02:00
bool RemCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult RemCalculationNode::resolve(Optional<Length::ResolutionContext const&> context, CalculatedStyleValue::PercentageBasis const& percentage_basis) const
{
auto resolved_type = m_x->resolved_type().value();
auto node_a = m_x->resolve(context, percentage_basis);
auto node_b = m_y->resolve(context, percentage_basis);
auto node_a_value = resolve_value(node_a.value(), context);
auto node_b_value = resolve_value(node_b.value(), context);
auto value = fmod(node_a_value, node_b_value);
return to_resolved_type(resolved_type, value);
}
void RemCalculationNode::for_each_child_node(Function<void(NonnullOwnPtr<CalculationNode>&)> const& callback)
2023-05-27 19:08:07 +02:00
{
m_x->for_each_child_node(callback);
m_y->for_each_child_node(callback);
callback(m_x);
callback(m_y);
2023-05-27 19:08:07 +02:00
}
void RemCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 19:08:07 +02:00
{
builder.appendff("{: >{}}REM: {}\n", "", indent, to_string());
2023-05-27 19:08:07 +02:00
}
bool RemCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<RemCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<RemCalculationNode const&>(other).m_y);
}
void CalculatedStyleValue::CalculationResult::add(CalculationResult const& other, Optional<Length::ResolutionContext const&> context, PercentageBasis const& percentage_basis)
{
add_or_subtract_internal(SumOperation::Add, other, context, percentage_basis);
}
void CalculatedStyleValue::CalculationResult::subtract(CalculationResult const& other, Optional<Length::ResolutionContext const&> context, PercentageBasis const& percentage_basis)
{
add_or_subtract_internal(SumOperation::Subtract, other, context, percentage_basis);
}
void CalculatedStyleValue::CalculationResult::add_or_subtract_internal(SumOperation op, CalculationResult const& other, Optional<Length::ResolutionContext const&> context, PercentageBasis const& percentage_basis)
{
// We know from validation when resolving the type, that "both sides have the same type, or that one side is a <number> and the other is an <integer>".
// Though, having the same type may mean that one side is a <dimension> and the other a <percentage>.
// Note: This is almost identical to ::add()
m_value.visit(
[&](Number const& number) {
auto other_number = other.m_value.get<Number>();
if (op == SumOperation::Add) {
m_value = number + other_number;
} else {
m_value = number - other_number;
}
},
[&](Angle const& angle) {
auto this_degrees = angle.to_degrees();
if (other.m_value.has<Angle>()) {
auto other_degrees = other.m_value.get<Angle>().to_degrees();
if (op == SumOperation::Add)
m_value = Angle::make_degrees(this_degrees + other_degrees);
else
m_value = Angle::make_degrees(this_degrees - other_degrees);
} else {
VERIFY(percentage_basis.has<Angle>());
auto other_degrees = percentage_basis.get<Angle>().percentage_of(other.m_value.get<Percentage>()).to_degrees();
if (op == SumOperation::Add)
m_value = Angle::make_degrees(this_degrees + other_degrees);
else
m_value = Angle::make_degrees(this_degrees - other_degrees);
}
},
[&](Flex const& flex) {
auto this_fr = flex.to_fr();
if (other.m_value.has<Flex>()) {
auto other_fr = other.m_value.get<Flex>().to_fr();
if (op == SumOperation::Add)
m_value = Flex::make_fr(this_fr + other_fr);
else
m_value = Flex::make_fr(this_fr - other_fr);
} else {
VERIFY(percentage_basis.has<Flex>());
auto other_fr = percentage_basis.get<Flex>().percentage_of(other.m_value.get<Percentage>()).to_fr();
if (op == SumOperation::Add)
m_value = Flex::make_fr(this_fr + other_fr);
else
m_value = Flex::make_fr(this_fr - other_fr);
}
},
[&](Frequency const& frequency) {
auto this_hertz = frequency.to_hertz();
if (other.m_value.has<Frequency>()) {
auto other_hertz = other.m_value.get<Frequency>().to_hertz();
if (op == SumOperation::Add)
m_value = Frequency::make_hertz(this_hertz + other_hertz);
else
m_value = Frequency::make_hertz(this_hertz - other_hertz);
} else {
VERIFY(percentage_basis.has<Frequency>());
auto other_hertz = percentage_basis.get<Frequency>().percentage_of(other.m_value.get<Percentage>()).to_hertz();
if (op == SumOperation::Add)
m_value = Frequency::make_hertz(this_hertz + other_hertz);
else
m_value = Frequency::make_hertz(this_hertz - other_hertz);
}
},
[&](Length const& length) {
auto this_px = length.to_px(*context);
if (other.m_value.has<Length>()) {
auto other_px = other.m_value.get<Length>().to_px(*context);
if (op == SumOperation::Add)
m_value = Length::make_px(this_px + other_px);
else
m_value = Length::make_px(this_px - other_px);
} else {
VERIFY(percentage_basis.has<Length>());
auto other_px = percentage_basis.get<Length>().percentage_of(other.m_value.get<Percentage>()).to_px(*context);
if (op == SumOperation::Add)
m_value = Length::make_px(this_px + other_px);
else
m_value = Length::make_px(this_px - other_px);
}
},
[&](Resolution const& resolution) {
auto this_dots_per_pixel = resolution.to_dots_per_pixel();
// NOTE: <resolution-percentage> is not a type, so we don't have to worry about percentages.
auto other_dots_per_pixel = other.m_value.get<Resolution>().to_dots_per_pixel();
if (op == SumOperation::Add)
m_value = Resolution::make_dots_per_pixel(this_dots_per_pixel + other_dots_per_pixel);
else
m_value = Resolution::make_dots_per_pixel(this_dots_per_pixel - other_dots_per_pixel);
},
[&](Time const& time) {
auto this_seconds = time.to_seconds();
if (other.m_value.has<Time>()) {
auto other_seconds = other.m_value.get<Time>().to_seconds();
if (op == SumOperation::Add)
m_value = Time::make_seconds(this_seconds + other_seconds);
else
m_value = Time::make_seconds(this_seconds - other_seconds);
} else {
VERIFY(percentage_basis.has<Time>());
auto other_seconds = percentage_basis.get<Time>().percentage_of(other.m_value.get<Percentage>()).to_seconds();
if (op == SumOperation::Add)
m_value = Time::make_seconds(this_seconds + other_seconds);
else
m_value = Time::make_seconds(this_seconds - other_seconds);
}
},
[&](Percentage const& percentage) {
if (other.m_value.has<Percentage>()) {
if (op == SumOperation::Add)
m_value = Percentage { percentage.value() + other.m_value.get<Percentage>().value() };
else
m_value = Percentage { percentage.value() - other.m_value.get<Percentage>().value() };
return;
}
// Other side isn't a percentage, so the easiest way to handle it without duplicating all the logic, is just to swap `this` and `other`.
CalculationResult new_value = other;
if (op == SumOperation::Add) {
new_value.add(*this, context, percentage_basis);
} else {
// Turn 'this - other' into '-other + this', as 'A + B == B + A', but 'A - B != B - A'
new_value.multiply_by({ Number { Number::Type::Integer, -1.0f } }, context);
new_value.add(*this, context, percentage_basis);
}
*this = new_value;
});
}
void CalculatedStyleValue::CalculationResult::multiply_by(CalculationResult const& other, Optional<Length::ResolutionContext const&> context)
{
// We know from validation when resolving the type, that at least one side must be a <number> or <integer>.
// Both of these are represented as a double.
VERIFY(m_value.has<Number>() || other.m_value.has<Number>());
bool other_is_number = other.m_value.has<Number>();
m_value.visit(
[&](Number const& number) {
if (other_is_number) {
m_value = number * other.m_value.get<Number>();
} else {
// Avoid duplicating all the logic by swapping `this` and `other`.
CalculationResult new_value = other;
new_value.multiply_by(*this, context);
*this = new_value;
}
},
[&](Angle const& angle) {
m_value = Angle::make_degrees(angle.to_degrees() * other.m_value.get<Number>().value());
},
[&](Flex const& flex) {
m_value = Flex::make_fr(flex.to_fr() * other.m_value.get<Number>().value());
},
[&](Frequency const& frequency) {
m_value = Frequency::make_hertz(frequency.to_hertz() * other.m_value.get<Number>().value());
},
[&](Length const& length) {
m_value = Length::make_px(CSSPixels::nearest_value_for(length.to_px(*context) * static_cast<double>(other.m_value.get<Number>().value())));
},
[&](Resolution const& resolution) {
m_value = Resolution::make_dots_per_pixel(resolution.to_dots_per_pixel() * other.m_value.get<Number>().value());
},
[&](Time const& time) {
m_value = Time::make_seconds(time.to_seconds() * other.m_value.get<Number>().value());
},
[&](Percentage const& percentage) {
m_value = Percentage { percentage.value() * other.m_value.get<Number>().value() };
});
}
void CalculatedStyleValue::CalculationResult::divide_by(CalculationResult const& other, Optional<Length::ResolutionContext const&> context)
{
// We know from validation when resolving the type, that `other` must be a <number> or <integer>.
// Both of these are represented as a Number.
auto denominator = other.m_value.get<Number>().value();
// FIXME: Dividing by 0 is invalid, and should be caught during parsing.
VERIFY(denominator != 0.0);
m_value.visit(
[&](Number const& number) {
m_value = Number {
Number::Type::Number,
number.value() / denominator
};
},
[&](Angle const& angle) {
m_value = Angle::make_degrees(angle.to_degrees() / denominator);
},
[&](Flex const& flex) {
m_value = Flex::make_fr(flex.to_fr() / denominator);
},
[&](Frequency const& frequency) {
m_value = Frequency::make_hertz(frequency.to_hertz() / denominator);
},
[&](Length const& length) {
m_value = Length::make_px(CSSPixels::nearest_value_for(length.to_px(*context) / static_cast<double>(denominator)));
},
[&](Resolution const& resolution) {
m_value = Resolution::make_dots_per_pixel(resolution.to_dots_per_pixel() / denominator);
},
[&](Time const& time) {
m_value = Time::make_seconds(time.to_seconds() / denominator);
},
[&](Percentage const& percentage) {
m_value = Percentage { percentage.value() / denominator };
});
}
void CalculatedStyleValue::CalculationResult::negate()
{
m_value.visit(
[&](Number const& number) {
m_value = Number { number.type(), 0 - number.value() };
},
[&](Angle const& angle) {
m_value = Angle { 0 - angle.raw_value(), angle.type() };
},
[&](Flex const& flex) {
m_value = Flex { 0 - flex.raw_value(), flex.type() };
},
[&](Frequency const& frequency) {
m_value = Frequency { 0 - frequency.raw_value(), frequency.type() };
},
[&](Length const& length) {
m_value = Length { 0 - length.raw_value(), length.type() };
},
[&](Resolution const& resolution) {
m_value = Resolution { 0 - resolution.raw_value(), resolution.type() };
},
[&](Time const& time) {
m_value = Time { 0 - time.raw_value(), time.type() };
},
[&](Percentage const& percentage) {
m_value = Percentage { 0 - percentage.value() };
});
}
void CalculatedStyleValue::CalculationResult::invert()
{
// FIXME: Correctly handle division by zero.
m_value.visit(
[&](Number const& number) {
m_value = Number { Number::Type::Number, 1 / number.value() };
},
[&](Angle const& angle) {
m_value = Angle { 1 / angle.raw_value(), angle.type() };
},
[&](Flex const& flex) {
m_value = Flex { 1 / flex.raw_value(), flex.type() };
},
[&](Frequency const& frequency) {
m_value = Frequency { 1 / frequency.raw_value(), frequency.type() };
},
[&](Length const& length) {
m_value = Length { 1 / length.raw_value(), length.type() };
},
[&](Resolution const& resolution) {
m_value = Resolution { 1 / resolution.raw_value(), resolution.type() };
},
[&](Time const& time) {
m_value = Time { 1 / time.raw_value(), time.type() };
},
[&](Percentage const& percentage) {
m_value = Percentage { 1 / percentage.value() };
});
}
String CalculatedStyleValue::to_string() const
{
// FIXME: Implement this according to https://www.w3.org/TR/css-values-4/#calc-serialize once that stabilizes.
return MUST(String::formatted("calc({})", m_calculation->to_string()));
}
bool CalculatedStyleValue::equals(StyleValue const& other) const
{
if (type() != other.type())
return false;
return m_calculation->equals(*static_cast<CalculatedStyleValue const&>(other).m_calculation);
}
Optional<Angle> CalculatedStyleValue::resolve_angle() const
{
auto result = m_calculation->resolve({}, {});
if (result.value().has<Angle>())
return result.value().get<Angle>();
return {};
}
Optional<Angle> CalculatedStyleValue::resolve_angle_percentage(Angle const& percentage_basis) const
{
auto result = m_calculation->resolve({}, percentage_basis);
return result.value().visit(
[&](Angle const& angle) -> Optional<Angle> {
return angle;
},
[&](Percentage const& percentage) -> Optional<Angle> {
return percentage_basis.percentage_of(percentage);
},
[&](auto const&) -> Optional<Angle> {
return {};
});
}
Optional<Flex> CalculatedStyleValue::resolve_flex() const
{
auto result = m_calculation->resolve({}, {});
if (result.value().has<Flex>())
return result.value().get<Flex>();
return {};
}
Optional<Frequency> CalculatedStyleValue::resolve_frequency() const
{
auto result = m_calculation->resolve({}, {});
if (result.value().has<Frequency>())
return result.value().get<Frequency>();
return {};
}
Optional<Frequency> CalculatedStyleValue::resolve_frequency_percentage(Frequency const& percentage_basis) const
{
auto result = m_calculation->resolve({}, percentage_basis);
return result.value().visit(
[&](Frequency const& frequency) -> Optional<Frequency> {
return frequency;
},
[&](Percentage const& percentage) -> Optional<Frequency> {
return percentage_basis.percentage_of(percentage);
},
[&](auto const&) -> Optional<Frequency> {
return {};
});
}
Optional<Length> CalculatedStyleValue::resolve_length(Length::ResolutionContext const& context) const
{
auto result = m_calculation->resolve(context, {});
if (result.value().has<Length>())
return result.value().get<Length>();
return {};
}
Optional<Length> CalculatedStyleValue::resolve_length(Layout::Node const& layout_node) const
{
return resolve_length(Length::ResolutionContext::for_layout_node(layout_node));
}
Optional<Length> CalculatedStyleValue::resolve_length_percentage(Layout::Node const& layout_node, Length const& percentage_basis) const
{
return resolve_length_percentage(Length::ResolutionContext::for_layout_node(layout_node), percentage_basis);
}
Optional<Length> CalculatedStyleValue::resolve_length_percentage(Layout::Node const& layout_node, CSSPixels percentage_basis) const
{
return resolve_length_percentage(Length::ResolutionContext::for_layout_node(layout_node), Length::make_px(percentage_basis));
}
Optional<Length> CalculatedStyleValue::resolve_length_percentage(Length::ResolutionContext const& resolution_context, Length const& percentage_basis) const
{
auto result = m_calculation->resolve(resolution_context, percentage_basis);
return result.value().visit(
[&](Length const& length) -> Optional<Length> {
return length;
},
[&](Percentage const& percentage) -> Optional<Length> {
return percentage_basis.percentage_of(percentage);
},
[&](auto const&) -> Optional<Length> {
return {};
});
}
Optional<Percentage> CalculatedStyleValue::resolve_percentage() const
{
auto result = m_calculation->resolve({}, {});
if (result.value().has<Percentage>())
return result.value().get<Percentage>();
return {};
}
Optional<Resolution> CalculatedStyleValue::resolve_resolution() const
{
auto result = m_calculation->resolve({}, {});
if (result.value().has<Resolution>())
return result.value().get<Resolution>();
return {};
}
Optional<Time> CalculatedStyleValue::resolve_time() const
{
auto result = m_calculation->resolve({}, {});
if (result.value().has<Time>())
return result.value().get<Time>();
return {};
}
Optional<Time> CalculatedStyleValue::resolve_time_percentage(Time const& percentage_basis) const
{
auto result = m_calculation->resolve({}, percentage_basis);
return result.value().visit(
[&](Time const& time) -> Optional<Time> {
return time;
},
[&](auto const&) -> Optional<Time> {
return {};
});
}
Optional<double> CalculatedStyleValue::resolve_number() const
{
auto result = m_calculation->resolve({}, {});
if (result.value().has<Number>())
return result.value().get<Number>().value();
return {};
}
Optional<i64> CalculatedStyleValue::resolve_integer() const
{
auto result = m_calculation->resolve({}, {});
if (result.value().has<Number>())
return result.value().get<Number>().integer_value();
return {};
}
bool CalculatedStyleValue::contains_percentage() const
{
return m_calculation->contains_percentage();
}
}