ladybird/Userland/Libraries/LibJS/Runtime/Intl/NumberFormat.cpp

1459 lines
60 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021-2022, Tim Flynn <trflynn89@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Utf8View.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Intl/NumberFormat.h>
#include <LibJS/Runtime/Intl/NumberFormatFunction.h>
#include <LibJS/Runtime/Intl/PluralRules.h>
#include <LibUnicode/CurrencyCode.h>
#include <math.h>
#include <stdlib.h>
namespace JS::Intl {
NumberFormatBase::NumberFormatBase(Object& prototype)
: Object(prototype)
{
}
// 15 NumberFormat Objects, https://tc39.es/ecma402/#numberformat-objects
NumberFormat::NumberFormat(Object& prototype)
: NumberFormatBase(prototype)
{
}
void NumberFormat::visit_edges(Cell::Visitor& visitor)
{
Base::visit_edges(visitor);
if (m_bound_format)
visitor.visit(m_bound_format);
}
void NumberFormat::set_style(StringView style)
{
if (style == "decimal"sv)
m_style = Style::Decimal;
else if (style == "percent"sv)
m_style = Style::Percent;
else if (style == "currency"sv)
m_style = Style::Currency;
else if (style == "unit"sv)
m_style = Style::Unit;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::style_string() const
{
switch (m_style) {
case Style::Decimal:
return "decimal"sv;
case Style::Percent:
return "percent"sv;
case Style::Currency:
return "currency"sv;
case Style::Unit:
return "unit"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_currency_display(StringView currency_display)
{
m_resolved_currency_display.clear();
if (currency_display == "code"sv)
m_currency_display = CurrencyDisplay::Code;
else if (currency_display == "symbol"sv)
m_currency_display = CurrencyDisplay::Symbol;
else if (currency_display == "narrowSymbol"sv)
m_currency_display = CurrencyDisplay::NarrowSymbol;
else if (currency_display == "name"sv)
m_currency_display = CurrencyDisplay::Name;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::resolve_currency_display()
{
if (m_resolved_currency_display.has_value())
return *m_resolved_currency_display;
switch (currency_display()) {
case NumberFormat::CurrencyDisplay::Code:
m_resolved_currency_display = currency();
break;
case NumberFormat::CurrencyDisplay::Symbol:
m_resolved_currency_display = Unicode::get_locale_short_currency_mapping(data_locale(), currency());
break;
case NumberFormat::CurrencyDisplay::NarrowSymbol:
m_resolved_currency_display = Unicode::get_locale_narrow_currency_mapping(data_locale(), currency());
break;
case NumberFormat::CurrencyDisplay::Name:
m_resolved_currency_display = Unicode::get_locale_numeric_currency_mapping(data_locale(), currency());
break;
default:
VERIFY_NOT_REACHED();
}
if (!m_resolved_currency_display.has_value())
m_resolved_currency_display = currency();
return *m_resolved_currency_display;
}
StringView NumberFormat::currency_display_string() const
{
VERIFY(m_currency_display.has_value());
switch (*m_currency_display) {
case CurrencyDisplay::Code:
return "code"sv;
case CurrencyDisplay::Symbol:
return "symbol"sv;
case CurrencyDisplay::NarrowSymbol:
return "narrowSymbol"sv;
case CurrencyDisplay::Name:
return "name"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_currency_sign(StringView currency_sign)
{
if (currency_sign == "standard"sv)
m_currency_sign = CurrencySign::Standard;
else if (currency_sign == "accounting"sv)
m_currency_sign = CurrencySign::Accounting;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::currency_sign_string() const
{
VERIFY(m_currency_sign.has_value());
switch (*m_currency_sign) {
case CurrencySign::Standard:
return "standard"sv;
case CurrencySign::Accounting:
return "accounting"sv;
default:
VERIFY_NOT_REACHED();
}
}
StringView NumberFormatBase::rounding_type_string() const
{
switch (m_rounding_type) {
case RoundingType::SignificantDigits:
return "significantDigits"sv;
case RoundingType::FractionDigits:
return "fractionDigits"sv;
case RoundingType::CompactRounding:
return "compactRounding"sv;
case RoundingType::MorePrecision:
return "morePrecision"sv;
case RoundingType::LessPrecision:
return "lessPrecision"sv;
default:
VERIFY_NOT_REACHED();
}
}
StringView NumberFormatBase::rounding_mode_string() const
{
switch (m_rounding_mode) {
case RoundingMode::Ceil:
return "ceil"sv;
case RoundingMode::Expand:
return "expand"sv;
case RoundingMode::Floor:
return "floor"sv;
case RoundingMode::HalfCeil:
return "halfCeil"sv;
case RoundingMode::HalfEven:
return "halfEven"sv;
case RoundingMode::HalfExpand:
return "halfExpand"sv;
case RoundingMode::HalfFloor:
return "halfFloor"sv;
case RoundingMode::HalfTrunc:
return "halfTrunc"sv;
case RoundingMode::Trunc:
return "trunc"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormatBase::set_rounding_mode(StringView rounding_mode)
{
if (rounding_mode == "ceil"sv)
m_rounding_mode = RoundingMode::Ceil;
else if (rounding_mode == "expand"sv)
m_rounding_mode = RoundingMode::Expand;
else if (rounding_mode == "floor"sv)
m_rounding_mode = RoundingMode::Floor;
else if (rounding_mode == "halfCeil"sv)
m_rounding_mode = RoundingMode::HalfCeil;
else if (rounding_mode == "halfEven"sv)
m_rounding_mode = RoundingMode::HalfEven;
else if (rounding_mode == "halfExpand"sv)
m_rounding_mode = RoundingMode::HalfExpand;
else if (rounding_mode == "halfFloor"sv)
m_rounding_mode = RoundingMode::HalfFloor;
else if (rounding_mode == "halfTrunc"sv)
m_rounding_mode = RoundingMode::HalfTrunc;
else if (rounding_mode == "trunc"sv)
m_rounding_mode = RoundingMode::Trunc;
}
StringView NumberFormatBase::trailing_zero_display_string() const
{
switch (m_trailing_zero_display) {
case TrailingZeroDisplay::Auto:
return "auto"sv;
case TrailingZeroDisplay::StripIfInteger:
return "stripIfInteger"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormatBase::set_trailing_zero_display(StringView trailing_zero_display)
{
if (trailing_zero_display == "auto"sv)
m_trailing_zero_display = TrailingZeroDisplay::Auto;
else if (trailing_zero_display == "stripIfInteger"sv)
m_trailing_zero_display = TrailingZeroDisplay::StripIfInteger;
else
VERIFY_NOT_REACHED();
}
Value NumberFormat::use_grouping_to_value(GlobalObject& global_object) const
{
auto& vm = global_object.vm();
switch (m_use_grouping) {
case UseGrouping::Always:
return js_string(vm, "always"sv);
case UseGrouping::Auto:
return js_string(vm, "auto"sv);
case UseGrouping::Min2:
return js_string(vm, "min2"sv);
case UseGrouping::False:
return Value(false);
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_use_grouping(StringOrBoolean const& use_grouping)
{
use_grouping.visit(
[this](StringView grouping) {
if (grouping == "always"sv)
m_use_grouping = UseGrouping::Always;
else if (grouping == "auto"sv)
m_use_grouping = UseGrouping::Auto;
else if (grouping == "min2"sv)
m_use_grouping = UseGrouping::Min2;
else
VERIFY_NOT_REACHED();
},
[this](bool grouping) {
VERIFY(!grouping);
m_use_grouping = UseGrouping::False;
});
}
void NumberFormat::set_notation(StringView notation)
{
if (notation == "standard"sv)
m_notation = Notation::Standard;
else if (notation == "scientific"sv)
m_notation = Notation::Scientific;
else if (notation == "engineering"sv)
m_notation = Notation::Engineering;
else if (notation == "compact"sv)
m_notation = Notation::Compact;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::notation_string() const
{
switch (m_notation) {
case Notation::Standard:
return "standard"sv;
case Notation::Scientific:
return "scientific"sv;
case Notation::Engineering:
return "engineering"sv;
case Notation::Compact:
return "compact"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_compact_display(StringView compact_display)
{
if (compact_display == "short"sv)
m_compact_display = CompactDisplay::Short;
else if (compact_display == "long"sv)
m_compact_display = CompactDisplay::Long;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::compact_display_string() const
{
VERIFY(m_compact_display.has_value());
switch (*m_compact_display) {
case CompactDisplay::Short:
return "short"sv;
case CompactDisplay::Long:
return "long"sv;
default:
VERIFY_NOT_REACHED();
}
}
void NumberFormat::set_sign_display(StringView sign_display)
{
if (sign_display == "auto"sv)
m_sign_display = SignDisplay::Auto;
else if (sign_display == "never"sv)
m_sign_display = SignDisplay::Never;
else if (sign_display == "always"sv)
m_sign_display = SignDisplay::Always;
else if (sign_display == "exceptZero"sv)
m_sign_display = SignDisplay::ExceptZero;
else if (sign_display == "negative"sv)
m_sign_display = SignDisplay::Negative;
else
VERIFY_NOT_REACHED();
}
StringView NumberFormat::sign_display_string() const
{
switch (m_sign_display) {
case SignDisplay::Auto:
return "auto"sv;
case SignDisplay::Never:
return "never"sv;
case SignDisplay::Always:
return "always"sv;
case SignDisplay::ExceptZero:
return "exceptZero"sv;
case SignDisplay::Negative:
return "negative"sv;
default:
VERIFY_NOT_REACHED();
}
}
static ALWAYS_INLINE int log10floor(Value number)
{
if (number.is_number())
return static_cast<int>(floor(log10(number.as_double())));
// FIXME: Can we do this without string conversion?
auto as_string = number.as_bigint().big_integer().to_base(10);
return as_string.length() - 1;
}
static Value multiply(GlobalObject& global_object, Value lhs, i64 rhs)
{
if (lhs.is_number())
return Value(lhs.as_double() * rhs);
auto rhs_bigint = Crypto::SignedBigInteger::create_from(rhs);
return js_bigint(global_object.vm(), lhs.as_bigint().big_integer().multiplied_by(rhs_bigint));
}
static Value divide(GlobalObject& global_object, Value lhs, i64 rhs)
{
if (lhs.is_number())
return Value(lhs.as_double() / rhs);
auto rhs_bigint = Crypto::SignedBigInteger::create_from(rhs);
return js_bigint(global_object.vm(), lhs.as_bigint().big_integer().divided_by(rhs_bigint).quotient);
}
static ALWAYS_INLINE Value multiply_by_power(GlobalObject& global_object, Value number, i64 exponent)
{
if (exponent < 0)
return divide(global_object, number, pow(10, -exponent));
return multiply(global_object, number, pow(10, exponent));
}
static ALWAYS_INLINE Value divide_by_power(GlobalObject& global_object, Value number, i64 exponent)
{
if (exponent < 0)
return multiply(global_object, number, pow(10, -exponent));
return divide(global_object, number, pow(10, exponent));
}
static ALWAYS_INLINE Value rounded(Value number)
{
if (number.is_number())
return Value(round(number.as_double()));
return number;
}
static ALWAYS_INLINE bool is_zero(Value number)
{
if (number.is_number())
return number.as_double() == 0.0;
return number.as_bigint().big_integer() == Crypto::SignedBigInteger::create_from(0);
}
static ALWAYS_INLINE bool is_greater_than(Value number, i64 rhs)
{
if (number.is_number())
return number.as_double() > rhs;
return number.as_bigint().big_integer() > Crypto::SignedBigInteger::create_from(rhs);
}
static ALWAYS_INLINE bool is_greater_than_or_equal(Value number, i64 rhs)
{
if (number.is_number())
return number.as_double() >= rhs;
return number.as_bigint().big_integer() >= Crypto::SignedBigInteger::create_from(rhs);
}
static ALWAYS_INLINE bool is_less_than(Value number, i64 rhs)
{
if (number.is_number())
return number.as_double() < rhs;
return number.as_bigint().big_integer() < Crypto::SignedBigInteger::create_from(rhs);
}
static ALWAYS_INLINE String number_to_string(Value number)
{
if (number.is_number())
return number.to_string_without_side_effects();
return number.as_bigint().big_integer().to_base(10);
}
// 15.5.1 CurrencyDigits ( currency ), https://tc39.es/ecma402/#sec-currencydigits
int currency_digits(StringView currency)
{
// 1. If the ISO 4217 currency and funds code list contains currency as an alphabetic code, return the minor
// unit value corresponding to the currency from the list; otherwise, return 2.
if (auto currency_code = Unicode::get_currency_code(currency); currency_code.has_value())
return currency_code->minor_unit.value_or(2);
return 2;
}
// 15.5.3 FormatNumericToString ( intlObject, x ), https://tc39.es/ecma402/#sec-formatnumberstring
FormatResult format_numeric_to_string(GlobalObject& global_object, NumberFormatBase const& intl_object, Value number)
{
// 1. If (x) < 0 or x is -0𝔽, let isNegative be true; else let isNegative be false.
bool is_negative = is_less_than(number, 0) || number.is_negative_zero();
// 2. If isNegative, then
if (is_negative) {
// a. Let x be -x.
number = multiply(global_object, number, -1);
}
RawFormatResult result {};
switch (intl_object.rounding_type()) {
// 3. If intlObject.[[RoundingType]] is significantDigits, then
case NumberFormatBase::RoundingType::SignificantDigits:
// a. Let result be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]]).
result = to_raw_precision(global_object, number, intl_object.min_significant_digits(), intl_object.max_significant_digits());
break;
// 4. Else if intlObject.[[RoundingType]] is fractionDigits, then
case NumberFormatBase::RoundingType::FractionDigits:
// a. Let result be ToRawFixed(x, intlObject.[[MinimumFractionDigits]], intlObject.[[MaximumFractionDigits]]).
result = to_raw_fixed(global_object, number, intl_object.min_fraction_digits(), intl_object.max_fraction_digits());
break;
// 5. Else,
case NumberFormatBase::RoundingType::MorePrecision: // FIXME: Handle this case for NumberFormat V3.
case NumberFormatBase::RoundingType::LessPrecision: // FIXME: Handle this case for NumberFormat V3.
case NumberFormatBase::RoundingType::CompactRounding:
// a. Assert: intlObject.[[RoundingType]] is compactRounding.
// b. Let result be ToRawPrecision(x, 1, 2).
result = to_raw_precision(global_object, number, 1, 2);
// c. If result.[[IntegerDigitsCount]] > 1, then
if (result.digits > 1) {
// i. Let result be ToRawFixed(x, 0, 0).
result = to_raw_fixed(global_object, number, 0, 0);
}
break;
default:
VERIFY_NOT_REACHED();
}
// 6. Let x be result.[[RoundedNumber]].
number = result.rounded_number;
// 7. Let string be result.[[FormattedString]].
auto string = move(result.formatted_string);
// 8. Let int be result.[[IntegerDigitsCount]].
int digits = result.digits;
// 9. Let minInteger be intlObject.[[MinimumIntegerDigits]].
int min_integer = intl_object.min_integer_digits();
// 10. If int < minInteger, then
if (digits < min_integer) {
// a. Let forwardZeros be the String consisting of minIntegerint occurrences of the character "0".
auto forward_zeros = String::repeated('0', min_integer - digits);
// b. Set string to the string-concatenation of forwardZeros and string.
string = String::formatted("{}{}", forward_zeros, string);
}
// 11. If isNegative, then
if (is_negative) {
// a. Let x be -x.
number = multiply(global_object, number, -1);
}
// 12. Return the Record { [[RoundedNumber]]: x, [[FormattedString]]: string }.
return { move(string), number };
}
// 15.5.4 PartitionNumberPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-partitionnumberpattern
Vector<PatternPartition> partition_number_pattern(GlobalObject& global_object, NumberFormat& number_format, Value number)
{
// 1. Let exponent be 0.
int exponent = 0;
String formatted_string;
// 2. If x is NaN, then
if (number.is_nan()) {
// a. Let n be an implementation- and locale-dependent (ILD) String value indicating the NaN value.
formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::NaN).value_or("NaN"sv);
}
// 3. Else if x is +∞, then
else if (number.is_positive_infinity()) {
// a. Let n be an ILD String value indicating positive infinity.
formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Infinity).value_or("infinity"sv);
}
// 4. Else if x is -∞, then
else if (number.is_negative_infinity()) {
// a. Let n be an ILD String value indicating negative infinity.
// NOTE: The CLDR does not contain unique strings for negative infinity. The negative sign will
// be inserted by the pattern returned from GetNumberFormatPattern.
formatted_string = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Infinity).value_or("infinity"sv);
}
// 5. Else,
else {
// a. If numberFormat.[[Style]] is "percent", let x be 100 × x.
if (number_format.style() == NumberFormat::Style::Percent)
number = multiply(global_object, number, 100);
// b. Let exponent be ComputeExponent(numberFormat, x).
exponent = compute_exponent(global_object, number_format, number);
// c. Let x be x × 10^(-exponent).
number = multiply_by_power(global_object, number, -exponent);
// d. Let formatNumberResult be FormatNumericToString(numberFormat, x).
auto format_number_result = format_numeric_to_string(global_object, number_format, number);
// e. Let n be formatNumberResult.[[FormattedString]].
formatted_string = move(format_number_result.formatted_string);
// f. Let x be formatNumberResult.[[RoundedNumber]].
number = format_number_result.rounded_number;
}
Unicode::NumberFormat found_pattern {};
// 6. Let pattern be GetNumberFormatPattern(numberFormat, x).
auto pattern = get_number_format_pattern(global_object, number_format, number, found_pattern);
if (!pattern.has_value())
return {};
// 7. Let result be a new empty List.
Vector<PatternPartition> result;
// 8. Let patternParts be PartitionPattern(pattern).
auto pattern_parts = pattern->visit([](auto const& p) { return partition_pattern(p); });
// 9. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// a. Let p be patternPart.[[Type]].
auto part = pattern_part.type;
// b. If p is "literal", then
if (part == "literal"sv) {
// i. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
result.append({ "literal"sv, move(pattern_part.value) });
}
// c. Else if p is equal to "number", then
else if (part == "number"sv) {
// i. Let notationSubParts be PartitionNotationSubPattern(numberFormat, x, n, exponent).
auto notation_sub_parts = partition_notation_sub_pattern(global_object, number_format, number, formatted_string, exponent);
// ii. Append all elements of notationSubParts to result.
result.extend(move(notation_sub_parts));
}
// d. Else if p is equal to "plusSign", then
else if (part == "plusSign"sv) {
// i. Let plusSignSymbol be the ILND String representing the plus sign.
auto plus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::PlusSign).value_or("+"sv);
// ii. Append a new Record { [[Type]]: "plusSign", [[Value]]: plusSignSymbol } as the last element of result.
result.append({ "plusSign"sv, plus_sign_symbol });
}
// e. Else if p is equal to "minusSign", then
else if (part == "minusSign"sv) {
// i. Let minusSignSymbol be the ILND String representing the minus sign.
auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::MinusSign).value_or("-"sv);
// ii. Append a new Record { [[Type]]: "minusSign", [[Value]]: minusSignSymbol } as the last element of result.
result.append({ "minusSign"sv, minus_sign_symbol });
}
// f. Else if p is equal to "percentSign" and numberFormat.[[Style]] is "percent", then
else if ((part == "percentSign"sv) && (number_format.style() == NumberFormat::Style::Percent)) {
// i. Let percentSignSymbol be the ILND String representing the percent sign.
auto percent_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::PercentSign).value_or("%"sv);
// ii. Append a new Record { [[Type]]: "percentSign", [[Value]]: percentSignSymbol } as the last element of result.
result.append({ "percentSign"sv, percent_sign_symbol });
}
// g. Else if p is equal to "unitPrefix" and numberFormat.[[Style]] is "unit", then
// h. Else if p is equal to "unitSuffix" and numberFormat.[[Style]] is "unit", then
else if ((part.starts_with("unitIdentifier:"sv)) && (number_format.style() == NumberFormat::Style::Unit)) {
// Note: Our implementation combines "unitPrefix" and "unitSuffix" into one field, "unitIdentifier".
auto identifier_index = part.substring_view("unitIdentifier:"sv.length()).to_uint();
VERIFY(identifier_index.has_value());
// i. Let unit be numberFormat.[[Unit]].
// ii. Let unitDisplay be numberFormat.[[UnitDisplay]].
// iii. Let mu be an ILD String value representing unit before x in unitDisplay form, which may depend on x in languages having different plural forms.
auto unit_identifier = found_pattern.identifiers[*identifier_index];
// iv. Append a new Record { [[Type]]: "unit", [[Value]]: mu } as the last element of result.
result.append({ "unit"sv, unit_identifier });
}
// i. Else if p is equal to "currencyCode" and numberFormat.[[Style]] is "currency", then
// j. Else if p is equal to "currencyPrefix" and numberFormat.[[Style]] is "currency", then
// k. Else if p is equal to "currencySuffix" and numberFormat.[[Style]] is "currency", then
//
// Note: Our implementation manipulates the format string to inject/remove spacing around the
// currency code during GetNumberFormatPattern so that we do not have to do currency
// display / plurality lookups more than once.
else if ((part == "currency"sv) && (number_format.style() == NumberFormat::Style::Currency)) {
result.append({ "currency"sv, number_format.resolve_currency_display() });
}
// l. Else,
else {
// i. Let unknown be an ILND String based on x and p.
// ii. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
// LibUnicode doesn't generate any "unknown" patterns.
VERIFY_NOT_REACHED();
}
}
// 10. Return result.
return result;
}
static Vector<StringView> separate_integer_into_groups(Unicode::NumberGroupings const& grouping_sizes, StringView integer)
{
Utf8View utf8_integer { integer };
if (utf8_integer.length() <= grouping_sizes.primary_grouping_size)
return { integer };
size_t index = utf8_integer.length() - grouping_sizes.primary_grouping_size;
if (index < grouping_sizes.minimum_grouping_digits)
return { integer };
Vector<StringView> groups;
auto add_group = [&](size_t index, size_t length) {
groups.prepend(utf8_integer.unicode_substring_view(index, length).as_string());
};
add_group(index, grouping_sizes.primary_grouping_size);
while (index > grouping_sizes.secondary_grouping_size) {
index -= grouping_sizes.secondary_grouping_size;
add_group(index, grouping_sizes.secondary_grouping_size);
}
if (index > 0)
add_group(0, index);
return groups;
}
// 15.5.5 PartitionNotationSubPattern ( numberFormat, x, n, exponent ), https://tc39.es/ecma402/#sec-partitionnotationsubpattern
Vector<PatternPartition> partition_notation_sub_pattern(GlobalObject& global_object, NumberFormat& number_format, Value number, String formatted_string, int exponent)
{
// 1. Let result be a new empty List.
Vector<PatternPartition> result;
auto grouping_sizes = Unicode::get_number_system_groupings(number_format.data_locale(), number_format.numbering_system());
if (!grouping_sizes.has_value())
return {};
// 2. If x is NaN, then
if (number.is_nan()) {
// a. Append a new Record { [[Type]]: "nan", [[Value]]: n } as the last element of result.
result.append({ "nan"sv, move(formatted_string) });
}
// 3. Else if x is a non-finite Number, then
else if (number.is_number() && !number.is_finite_number()) {
// a. Append a new Record { [[Type]]: "infinity", [[Value]]: n } as the last element of result.
result.append({ "infinity"sv, move(formatted_string) });
}
// 4. Else,
else {
// a. Let notationSubPattern be GetNotationSubPattern(numberFormat, exponent).
auto notation_sub_pattern = get_notation_sub_pattern(number_format, exponent);
if (!notation_sub_pattern.has_value())
return {};
// b. Let patternParts be PartitionPattern(notationSubPattern).
auto pattern_parts = partition_pattern(*notation_sub_pattern);
// c. For each Record { [[Type]], [[Value]] } patternPart of patternParts, do
for (auto& pattern_part : pattern_parts) {
// i. Let p be patternPart.[[Type]].
auto part = pattern_part.type;
// ii. If p is "literal", then
if (part == "literal"sv) {
// 1. Append a new Record { [[Type]]: "literal", [[Value]]: patternPart.[[Value]] } as the last element of result.
result.append({ "literal"sv, move(pattern_part.value) });
}
// iii. Else if p is equal to "number", then
else if (part == "number"sv) {
// 1. If the numberFormat.[[NumberingSystem]] matches one of the values in the "Numbering System" column of Table 12 below, then
// a. Let digits be a List whose 10 String valued elements are the UTF-16 string representations of the 10 digits specified in the "Digits" column of the matching row in Table 12.
// b. Replace each digit in n with the value of digits[digit].
// 2. Else use an implementation dependent algorithm to map n to the appropriate representation of n in the given numbering system.
formatted_string = Unicode::replace_digits_for_number_system(number_format.numbering_system(), formatted_string);
// 3. Let decimalSepIndex be StringIndexOf(n, ".", 0).
auto decimal_sep_index = formatted_string.find('.');
StringView integer;
Optional<StringView> fraction;
// 4. If decimalSepIndex > 0, then
if (decimal_sep_index.has_value() && (*decimal_sep_index > 0)) {
// a. Let integer be the substring of n from position 0, inclusive, to position decimalSepIndex, exclusive.
integer = formatted_string.substring_view(0, *decimal_sep_index);
// b. Let fraction be the substring of n from position decimalSepIndex, exclusive, to the end of n.
fraction = formatted_string.substring_view(*decimal_sep_index + 1);
}
// 5. Else,
else {
// a. Let integer be n.
integer = formatted_string;
// b. Let fraction be undefined.
}
// FIXME: Handle all NumberFormat V3 [[UseGrouping]] options.
bool use_grouping = number_format.use_grouping() != NumberFormat::UseGrouping::False;
// FIXME: The spec doesn't indicate this, but grouping should be disabled for numbers less than 10,000 when the notation is compact.
// This is addressed in Intl.NumberFormat V3 with the "min2" [[UseGrouping]] option. However, test262 explicitly expects this
// behavior in the "de-DE" locale tests, because this is how ICU (and therefore V8, SpiderMoney, etc.) has always behaved.
//
// So, in locales "de-*", we must have:
// Intl.NumberFormat("de", {notation: "compact"}).format(1234) === "1234"
// Intl.NumberFormat("de", {notation: "compact"}).format(12345) === "12.345"
// Intl.NumberFormat("de").format(1234) === "1.234"
// Intl.NumberFormat("de").format(12345) === "12.345"
//
// See: https://github.com/tc39/proposal-intl-numberformat-v3/issues/3
if (number_format.has_compact_format())
use_grouping = is_greater_than_or_equal(number, 10'000);
// 6. If the numberFormat.[[UseGrouping]] is true, then
if (use_grouping) {
// a. Let groupSepSymbol be the implementation-, locale-, and numbering system-dependent (ILND) String representing the grouping separator.
auto group_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Group).value_or(","sv);
// b. Let groups be a List whose elements are, in left to right order, the substrings defined by ILND set of locations within the integer.
auto groups = separate_integer_into_groups(*grouping_sizes, integer);
// c. Assert: The number of elements in groups List is greater than 0.
VERIFY(!groups.is_empty());
// d. Repeat, while groups List is not empty,
while (!groups.is_empty()) {
// i. Remove the first element from groups and let integerGroup be the value of that element.
auto integer_group = groups.take_first();
// ii. Append a new Record { [[Type]]: "integer", [[Value]]: integerGroup } as the last element of result.
result.append({ "integer"sv, integer_group });
// iii. If groups List is not empty, then
if (!groups.is_empty()) {
// i. Append a new Record { [[Type]]: "group", [[Value]]: groupSepSymbol } as the last element of result.
result.append({ "group"sv, group_sep_symbol });
}
}
}
// 7. Else,
else {
// a. Append a new Record { [[Type]]: "integer", [[Value]]: integer } as the last element of result.
result.append({ "integer"sv, integer });
}
// 8. If fraction is not undefined, then
if (fraction.has_value()) {
// a. Let decimalSepSymbol be the ILND String representing the decimal separator.
auto decimal_sep_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Decimal).value_or("."sv);
// b. Append a new Record { [[Type]]: "decimal", [[Value]]: decimalSepSymbol } as the last element of result.
result.append({ "decimal"sv, decimal_sep_symbol });
// c. Append a new Record { [[Type]]: "fraction", [[Value]]: fraction } as the last element of result.
result.append({ "fraction"sv, fraction.release_value() });
}
}
// iv. Else if p is equal to "compactSymbol", then
// v. Else if p is equal to "compactName", then
else if (part.starts_with("compactIdentifier:"sv)) {
// Note: Our implementation combines "compactSymbol" and "compactName" into one field, "compactIdentifier".
auto identifier_index = part.substring_view("compactIdentifier:"sv.length()).to_uint();
VERIFY(identifier_index.has_value());
// 1. Let compactSymbol be an ILD string representing exponent in short form, which may depend on x in languages having different plural forms. The implementation must be able to provide this string, or else the pattern would not have a "{compactSymbol}" placeholder.
auto compact_identifier = number_format.compact_format().identifiers[*identifier_index];
// 2. Append a new Record { [[Type]]: "compact", [[Value]]: compactSymbol } as the last element of result.
result.append({ "compact"sv, compact_identifier });
}
// vi. Else if p is equal to "scientificSeparator", then
else if (part == "scientificSeparator"sv) {
// 1. Let scientificSeparator be the ILND String representing the exponent separator.
auto scientific_separator = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::Exponential).value_or("E"sv);
// 2. Append a new Record { [[Type]]: "exponentSeparator", [[Value]]: scientificSeparator } as the last element of result.
result.append({ "exponentSeparator"sv, scientific_separator });
}
// vii. Else if p is equal to "scientificExponent", then
else if (part == "scientificExponent"sv) {
// 1. If exponent < 0, then
if (exponent < 0) {
// a. Let minusSignSymbol be the ILND String representing the minus sign.
auto minus_sign_symbol = Unicode::get_number_system_symbol(number_format.data_locale(), number_format.numbering_system(), Unicode::NumericSymbol::MinusSign).value_or("-"sv);
// b. Append a new Record { [[Type]]: "exponentMinusSign", [[Value]]: minusSignSymbol } as the last element of result.
result.append({ "exponentMinusSign"sv, minus_sign_symbol });
// c. Let exponent be -exponent.
exponent *= -1;
}
// 2. Let exponentResult be ToRawFixed(exponent, 1, 0, 0).
// Note: See the implementation of ToRawFixed for why we do not pass the 1.
auto exponent_result = to_raw_fixed(global_object, Value(exponent), 0, 0);
// FIXME: The spec does not say to do this, but all of major engines perform this replacement.
// Without this, formatting with non-Latin numbering systems will produce non-localized results.
exponent_result.formatted_string = Unicode::replace_digits_for_number_system(number_format.numbering_system(), exponent_result.formatted_string);
// 3. Append a new Record { [[Type]]: "exponentInteger", [[Value]]: exponentResult.[[FormattedString]] } as the last element of result.
result.append({ "exponentInteger"sv, move(exponent_result.formatted_string) });
}
// viii. Else,
else {
// 1. Let unknown be an ILND String based on x and p.
// 2. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
// LibUnicode doesn't generate any "unknown" patterns.
VERIFY_NOT_REACHED();
}
}
}
// 5. Return result.
return result;
}
// 15.5.6 FormatNumeric ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumber
String format_numeric(GlobalObject& global_object, NumberFormat& number_format, Value number)
{
// 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
// Note: Our implementation of PartitionNumberPattern does not throw.
auto parts = partition_number_pattern(global_object, number_format, number);
// 2. Let result be the empty String.
StringBuilder result;
// 3. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Set result to the string-concatenation of result and part.[[Value]].
result.append(move(part.value));
}
// 4. Return result.
return result.build();
}
// 15.5.7 FormatNumericToParts ( numberFormat, x ), https://tc39.es/ecma402/#sec-formatnumbertoparts
Array* format_numeric_to_parts(GlobalObject& global_object, NumberFormat& number_format, Value number)
{
auto& vm = global_object.vm();
// 1. Let parts be ? PartitionNumberPattern(numberFormat, x).
// Note: Our implementation of PartitionNumberPattern does not throw.
auto parts = partition_number_pattern(global_object, number_format, number);
// 2. Let result be ! ArrayCreate(0).
auto* result = MUST(Array::create(global_object, 0));
// 3. Let n be 0.
size_t n = 0;
// 4. For each Record { [[Type]], [[Value]] } part in parts, do
for (auto& part : parts) {
// a. Let O be OrdinaryObjectCreate(%Object.prototype%).
auto* object = Object::create(global_object, global_object.object_prototype());
// b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
MUST(object->create_data_property_or_throw(vm.names.type, js_string(vm, part.type)));
// c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
MUST(object->create_data_property_or_throw(vm.names.value, js_string(vm, move(part.value))));
// d. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
MUST(result->create_data_property_or_throw(n, object));
// e. Increment n by 1.
++n;
}
// 5. Return result.
return result;
}
static String cut_trailing_zeroes(StringView string, int cut)
{
// These steps are exactly the same between ToRawPrecision and ToRawFixed.
// Repeat, while cut > 0 and the last character of m is "0",
while ((cut > 0) && string.ends_with('0')) {
// Remove the last character from m.
string = string.substring_view(0, string.length() - 1);
// Decrease cut by 1.
--cut;
}
// If the last character of m is ".", then
if (string.ends_with('.')) {
// Remove the last character from m.
string = string.substring_view(0, string.length() - 1);
}
return string.to_string();
}
// 15.5.8 ToRawPrecision ( x, minPrecision, maxPrecision ), https://tc39.es/ecma402/#sec-torawprecision
RawFormatResult to_raw_precision(GlobalObject& global_object, Value number, int min_precision, int max_precision)
{
RawFormatResult result {};
// 1. Set x to (x).
// 2. Let p be maxPrecision.
int precision = max_precision;
int exponent = 0;
// 3. If x = 0, then
if (is_zero(number)) {
// a. Let m be the String consisting of p occurrences of the character "0".
result.formatted_string = String::repeated('0', precision);
// b. Let e be 0.
exponent = 0;
// c. Let xFinal be 0.
result.rounded_number = Value(0);
}
// 4. Else,
else {
// FIXME: The result of these steps isn't entirely accurate for large values of 'p' (which
// defaults to 21, resulting in numbers on the order of 10^21). Either AK::format or
// our Number::toString AO (double_to_string in Value.cpp) will need to be improved
// to produce more accurate results.
// a. Let e and n be integers such that 10^(p1) ≤ n < 10^p and for which n × 10^(ep+1) x is as close to zero as possible.
// If there are two such sets of e and n, pick the e and n for which n × 10^(ep+1) is larger.
exponent = log10floor(number);
Value n;
if (number.is_number()) {
n = rounded(divide_by_power(global_object, number, exponent - precision + 1));
} else {
// NOTE: In order to round the BigInt to the proper precision, this computation is initially off by a
// factor of 10. This lets us inspect the ones digit and then round up if needed.
n = divide_by_power(global_object, number, exponent - precision);
// FIXME: Can we do this without string conversion?
auto digits = n.as_bigint().big_integer().to_base(10);
auto digit = digits.substring_view(digits.length() - 1);
n = divide(global_object, n, 10);
if (digit.to_uint().value() >= 5)
n = js_bigint(global_object.vm(), n.as_bigint().big_integer().plus(Crypto::SignedBigInteger::create_from(1)));
}
// b. Let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
result.formatted_string = number_to_string(n);
// c. Let xFinal be n × 10^(ep+1).
result.rounded_number = multiply_by_power(global_object, n, exponent - precision + 1);
}
// 5. If e ≥ p1, then
if (exponent >= (precision - 1)) {
// a. Let m be the string-concatenation of m and ep+1 occurrences of the character "0".
result.formatted_string = String::formatted(
"{}{}",
result.formatted_string,
String::repeated('0', exponent - precision + 1));
// b. Let int be e+1.
result.digits = exponent + 1;
}
// 6. Else if e ≥ 0, then
else if (exponent >= 0) {
// a. Let m be the string-concatenation of the first e+1 characters of m, the character ".", and the remaining p(e+1) characters of m.
result.formatted_string = String::formatted(
"{}.{}",
result.formatted_string.substring_view(0, exponent + 1),
result.formatted_string.substring_view(exponent + 1));
// b. Let int be e+1.
result.digits = exponent + 1;
}
// 7. Else,
else {
// a. Assert: e < 0.
// b. Let m be the string-concatenation of "0.", (e+1) occurrences of the character "0", and m.
result.formatted_string = String::formatted(
"0.{}{}",
String::repeated('0', -1 * (exponent + 1)),
result.formatted_string);
// c. Let int be 1.
result.digits = 1;
}
// 8. If m contains the character ".", and maxPrecision > minPrecision, then
if (result.formatted_string.contains('.') && (max_precision > min_precision)) {
// a. Let cut be maxPrecision minPrecision.
int cut = max_precision - min_precision;
// Steps 8b-8c are implemented by cut_trailing_zeroes.
result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
}
// 9. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int }.
return result;
}
// 15.5.9 ToRawFixed ( x, minInteger, minFraction, maxFraction ), https://tc39.es/ecma402/#sec-torawfixed
// NOTE: The spec has a mistake here. The minInteger parameter is unused and is not provided by FormatNumericToString.
RawFormatResult to_raw_fixed(GlobalObject& global_object, Value number, int min_fraction, int max_fraction)
{
RawFormatResult result {};
// 1. Set x to (x).
// 2. Let f be maxFraction.
int fraction = max_fraction;
// 3. Let n be an integer for which the exact mathematical value of n / 10^f x is as close to zero as possible. If there are two such n, pick the larger n.
auto n = rounded(multiply_by_power(global_object, number, fraction));
// 4. Let xFinal be n / 10^f.
result.rounded_number = divide_by_power(global_object, n, fraction);
// 5. If n = 0, let m be "0". Otherwise, let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
result.formatted_string = is_zero(n) ? String("0"sv) : number_to_string(n);
// 6. If f ≠ 0, then
if (fraction != 0) {
// a. Let k be the number of characters in m.
auto decimals = result.formatted_string.length();
// b. If k ≤ f, then
if (decimals <= static_cast<size_t>(fraction)) {
// i. Let z be the String value consisting of f+1k occurrences of the character "0".
auto zeroes = String::repeated('0', fraction + 1 - decimals);
// ii. Let m be the string-concatenation of z and m.
result.formatted_string = String::formatted("{}{}", zeroes, result.formatted_string);
// iii. Let k be f+1.
decimals = fraction + 1;
}
// c. Let a be the first kf characters of m, and let b be the remaining f characters of m.
auto a = result.formatted_string.substring_view(0, decimals - fraction);
auto b = result.formatted_string.substring_view(decimals - fraction, fraction);
// d. Let m be the string-concatenation of a, ".", and b.
result.formatted_string = String::formatted("{}.{}", a, b);
// e. Let int be the number of characters in a.
result.digits = a.length();
}
// 7. Else, let int be the number of characters in m.
else {
result.digits = result.formatted_string.length();
}
// 8. Let cut be maxFraction minFraction.
int cut = max_fraction - min_fraction;
// Steps 9-10 are implemented by cut_trailing_zeroes.
result.formatted_string = cut_trailing_zeroes(result.formatted_string, cut);
// 11. Return the Record { [[FormattedString]]: m, [[RoundedNumber]]: xFinal, [[IntegerDigitsCount]]: int }.
return result;
}
// 15.5.11 GetNumberFormatPattern ( numberFormat, x ), https://tc39.es/ecma402/#sec-getnumberformatpattern
Optional<Variant<StringView, String>> get_number_format_pattern(GlobalObject& global_object, NumberFormat& number_format, Value number, Unicode::NumberFormat& found_pattern)
{
// 1. Let localeData be %NumberFormat%.[[LocaleData]].
// 2. Let dataLocale be numberFormat.[[DataLocale]].
// 3. Let dataLocaleData be localeData.[[<dataLocale>]].
// 4. Let patterns be dataLocaleData.[[patterns]].
// 5. Assert: patterns is a Record (see 15.3.3).
Optional<Unicode::NumberFormat> patterns;
// 6. Let style be numberFormat.[[Style]].
switch (number_format.style()) {
// 7. If style is "percent", then
case NumberFormat::Style::Percent:
// a. Let patterns be patterns.[[percent]].
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Percent);
break;
// 8. Else if style is "unit", then
case NumberFormat::Style::Unit: {
// a. Let unit be numberFormat.[[Unit]].
// b. Let unitDisplay be numberFormat.[[UnitDisplay]].
// c. Let patterns be patterns.[[unit]].
// d. If patterns doesn't have a field [[<unit>]], then
// i. Let unit be "fallback".
// e. Let patterns be patterns.[[<unit>]].
// f. Let patterns be patterns.[[<unitDisplay>]].
auto formats = Unicode::get_unit_formats(number_format.data_locale(), number_format.unit(), number_format.unit_display());
auto plurality = resolve_plural(global_object, number_format, Unicode::PluralForm::Cardinal, number);
if (auto it = formats.find_if([&](auto& p) { return p.plurality == plurality; }); it != formats.end())
patterns = move(*it);
break;
}
// 9. Else if style is "currency", then
case NumberFormat::Style::Currency:
// a. Let currency be numberFormat.[[Currency]].
// b. Let currencyDisplay be numberFormat.[[CurrencyDisplay]].
// c. Let currencySign be numberFormat.[[CurrencySign]].
// d. Let patterns be patterns.[[currency]].
// e. If patterns doesn't have a field [[<currency>]], then
// i. Let currency be "fallback".
// f. Let patterns be patterns.[[<currency>]].
// g. Let patterns be patterns.[[<currencyDisplay>]].
// h. Let patterns be patterns.[[<currencySign>]].
// Handling of other [[CurrencyDisplay]] options will occur after [[SignDisplay]].
if (number_format.currency_display() == NumberFormat::CurrencyDisplay::Name) {
auto formats = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyUnit);
auto plurality = resolve_plural(global_object, number_format, Unicode::PluralForm::Cardinal, number);
if (auto it = formats.find_if([&](auto& p) { return p.plurality == plurality; }); it != formats.end()) {
patterns = move(*it);
break;
}
}
switch (number_format.currency_sign()) {
case NumberFormat::CurrencySign::Standard:
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Currency);
break;
case NumberFormat::CurrencySign::Accounting:
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Accounting);
break;
}
break;
// 10. Else,
case NumberFormat::Style::Decimal:
// a. Assert: style is "decimal".
// b. Let patterns be patterns.[[decimal]].
patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Decimal);
break;
default:
VERIFY_NOT_REACHED();
}
if (!patterns.has_value())
return {};
StringView pattern;
bool is_positive_zero = number.is_positive_zero() || (number.is_bigint() && is_zero(number));
bool is_negative_zero = number.is_negative_zero();
bool is_nan = number.is_nan();
// 11. Let signDisplay be numberFormat.[[SignDisplay]].
switch (number_format.sign_display()) {
// 12. If signDisplay is "never", then
case NumberFormat::SignDisplay::Never:
// a. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
break;
// 13. Else if signDisplay is "auto", then
case NumberFormat::SignDisplay::Auto:
// a. If x is 0 or x > 0 or x is NaN, then
if (is_positive_zero || is_greater_than(number, 0) || is_nan) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// b. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 14. Else if signDisplay is "always", then
case NumberFormat::SignDisplay::Always:
// a. If x is 0 or x > 0 or x is NaN, then
if (is_positive_zero || is_greater_than(number, 0) || is_nan) {
// i. Let pattern be patterns.[[positivePattern]].
pattern = patterns->positive_format;
}
// b. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
// 15. Else,
case NumberFormat::SignDisplay::ExceptZero:
// a. Assert: signDisplay is "exceptZero".
// b. If x is NaN, or if x is finite and (x) is 0, then
if (is_positive_zero || is_negative_zero || is_nan) {
// i. Let pattern be patterns.[[zeroPattern]].
pattern = patterns->zero_format;
}
// c. Else if (x) > 0, then
else if (is_greater_than(number, 0)) {
// i. Let pattern be patterns.[[positivePattern]].
pattern = patterns->positive_format;
}
// d. Else,
else {
// i. Let pattern be patterns.[[negativePattern]].
pattern = patterns->negative_format;
}
break;
default:
// FIXME: Handle all NumberFormat V3 [[SignDisplay]] options.
return {};
}
found_pattern = patterns.release_value();
// Handling of steps 9b/9g: Depending on the currency display and the format pattern found above,
// we might need to mutate the format pattern to inject a space between the currency display and
// the currency number.
if (number_format.style() == NumberFormat::Style::Currency) {
auto modified_pattern = Unicode::augment_currency_format_pattern(number_format.resolve_currency_display(), pattern);
if (modified_pattern.has_value())
return modified_pattern.release_value();
}
// 16. Return pattern.
return pattern;
}
// 15.5.12 GetNotationSubPattern ( numberFormat, exponent ), https://tc39.es/ecma402/#sec-getnotationsubpattern
Optional<StringView> get_notation_sub_pattern(NumberFormat& number_format, int exponent)
{
// 1. Let localeData be %NumberFormat%.[[LocaleData]].
// 2. Let dataLocale be numberFormat.[[DataLocale]].
// 3. Let dataLocaleData be localeData.[[<dataLocale>]].
// 4. Let notationSubPatterns be dataLocaleData.[[notationSubPatterns]].
// 5. Assert: notationSubPatterns is a Record (see 15.3.3).
// 6. Let notation be numberFormat.[[Notation]].
auto notation = number_format.notation();
// 7. If notation is "scientific" or notation is "engineering", then
if ((notation == NumberFormat::Notation::Scientific) || (notation == NumberFormat::Notation::Engineering)) {
// a. Return notationSubPatterns.[[scientific]].
auto notation_sub_patterns = Unicode::get_standard_number_system_format(number_format.data_locale(), number_format.numbering_system(), Unicode::StandardNumberFormatType::Scientific);
if (!notation_sub_patterns.has_value())
return {};
return notation_sub_patterns->zero_format;
}
// 8. Else if exponent is not 0, then
else if (exponent != 0) {
// a. Assert: notation is "compact".
VERIFY(notation == NumberFormat::Notation::Compact);
// b. Let compactDisplay be numberFormat.[[CompactDisplay]].
// c. Let compactPatterns be notationSubPatterns.[[compact]].[[<compactDisplay>]].
// d. Return compactPatterns.[[<exponent>]].
if (number_format.has_compact_format())
return number_format.compact_format().zero_format;
}
// 9. Else,
// a. Return "{number}".
return "{number}"sv;
}
// 15.5.13 ComputeExponent ( numberFormat, x ), https://tc39.es/ecma402/#sec-computeexponent
int compute_exponent(GlobalObject& global_object, NumberFormat& number_format, Value number)
{
// 1. If x = 0, then
if (is_zero(number)) {
// a. Return 0.
return 0;
}
// 2. If x < 0, then
if (is_less_than(number, 0)) {
// a. Let x = -x.
number = multiply(global_object, number, -1);
}
// 3. Let magnitude be the base 10 logarithm of x rounded down to the nearest integer.
int magnitude = log10floor(number);
// 4. Let exponent be ComputeExponentForMagnitude(numberFormat, magnitude).
2022-01-07 05:04:05 -07:00
int exponent = compute_exponent_for_magnitude(number_format, magnitude);
// 5. Let x be x × 10^(-exponent).
number = multiply_by_power(global_object, number, -exponent);
// 6. Let formatNumberResult be FormatNumericToString(numberFormat, x).
auto format_number_result = format_numeric_to_string(global_object, number_format, number);
// 7. If formatNumberResult.[[RoundedNumber]] = 0, then
if (is_zero(format_number_result.rounded_number)) {
// a. Return exponent.
return exponent;
}
// 8. Let newMagnitude be the base 10 logarithm of formatNumberResult.[[RoundedNumber]] rounded down to the nearest integer.
int new_magnitude = log10floor(format_number_result.rounded_number);
// 9. If newMagnitude is magnitude exponent, then
if (new_magnitude == magnitude - exponent) {
// a. Return exponent.
return exponent;
}
// 10. Return ComputeExponentForMagnitude(numberFormat, magnitude + 1).
2022-01-07 05:04:05 -07:00
return compute_exponent_for_magnitude(number_format, magnitude + 1);
}
// 15.5.14 ComputeExponentForMagnitude ( numberFormat, magnitude ), https://tc39.es/ecma402/#sec-computeexponentformagnitude
2022-01-07 05:04:05 -07:00
int compute_exponent_for_magnitude(NumberFormat& number_format, int magnitude)
{
// 1. Let notation be numberFormat.[[Notation]].
switch (number_format.notation()) {
// 2. If notation is "standard", then
case NumberFormat::Notation::Standard:
// a. Return 0.
return 0;
// 3. Else if notation is "scientific", then
case NumberFormat::Notation::Scientific:
// a. Return magnitude.
return magnitude;
// 4. Else if notation is "engineering", then
case NumberFormat::Notation::Engineering: {
// a. Let thousands be the greatest integer that is not greater than magnitude / 3.
double thousands = floor(static_cast<double>(magnitude) / 3.0);
// b. Return thousands × 3.
return static_cast<int>(thousands) * 3;
}
// 5. Else,
case NumberFormat::Notation::Compact: {
// a. Assert: notation is "compact".
VERIFY(number_format.has_compact_display());
// b. Let exponent be an implementation- and locale-dependent (ILD) integer by which to scale a number of the given magnitude in compact notation for the current locale.
// c. Return exponent.
Vector<Unicode::NumberFormat> format_rules;
if (number_format.style() == NumberFormat::Style::Currency)
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::CurrencyShort);
else if (number_format.compact_display() == NumberFormat::CompactDisplay::Long)
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalLong);
else
format_rules = Unicode::get_compact_number_system_formats(number_format.data_locale(), number_format.numbering_system(), Unicode::CompactNumberFormatType::DecimalShort);
Unicode::NumberFormat const* best_number_format = nullptr;
for (auto const& format_rule : format_rules) {
if (format_rule.magnitude > magnitude)
break;
best_number_format = &format_rule;
}
if (best_number_format == nullptr)
return 0;
number_format.set_compact_format(*best_number_format);
return best_number_format->exponent;
}
default:
VERIFY_NOT_REACHED();
}
}
}