ladybird/Libraries/LibWeb/Layout/GridFormattingContext.cpp

2724 lines
128 KiB
C++
Raw Normal View History

2022-08-23 10:36:27 +02:00
/*
* Copyright (c) 2023-2025, Aliaksandr Kalenik <kalenik.aliaksandr@gmail.com>
* Copyright (c) 2022-2023, Martin Falisse <mfalisse@outlook.com>
2022-08-23 10:36:27 +02:00
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Bitmap.h>
#include <LibWeb/DOM/Node.h>
2022-08-23 10:36:27 +02:00
#include <LibWeb/Layout/Box.h>
#include <LibWeb/Layout/GridFormattingContext.h>
#include <LibWeb/Layout/ReplacedBox.h>
2022-08-23 10:36:27 +02:00
namespace Web::Layout {
static CSSPixels gap_to_px(Variant<CSS::LengthPercentage, CSS::NormalGap> const& gap, Layout::Node const& grid_container, CSSPixels reference_value)
{
return gap.visit(
[](CSS::NormalGap) { return CSSPixels(0); },
[&](auto const& gap) { return gap.to_px(grid_container, reference_value); });
}
static Alignment to_alignment(CSS::JustifyContent value)
{
switch (value) {
case CSS::JustifyContent::Left:
return Alignment::Start;
case CSS::JustifyContent::Right:
return Alignment::End;
case CSS::JustifyContent::FlexStart:
case CSS::JustifyContent::Start:
return Alignment::Start;
case CSS::JustifyContent::FlexEnd:
case CSS::JustifyContent::End:
return Alignment::End;
case CSS::JustifyContent::Center:
return Alignment::Center;
case CSS::JustifyContent::SpaceBetween:
return Alignment::SpaceBetween;
case CSS::JustifyContent::SpaceAround:
return Alignment::SpaceAround;
case CSS::JustifyContent::SpaceEvenly:
return Alignment::SpaceEvenly;
case CSS::JustifyContent::Stretch:
return Alignment::Stretch;
case CSS::JustifyContent::Normal:
return Alignment::Normal;
default:
VERIFY_NOT_REACHED();
}
}
static Alignment to_alignment(CSS::JustifyItems value)
{
switch (value) {
case CSS::JustifyItems::Baseline:
return Alignment::Baseline;
case CSS::JustifyItems::Center:
return Alignment::Center;
case CSS::JustifyItems::End:
return Alignment::End;
case CSS::JustifyItems::FlexEnd:
return Alignment::End;
case CSS::JustifyItems::FlexStart:
return Alignment::Start;
case CSS::JustifyItems::Legacy:
return Alignment::Normal;
case CSS::JustifyItems::Normal:
return Alignment::Normal;
case CSS::JustifyItems::Safe:
return Alignment::Safe;
case CSS::JustifyItems::SelfEnd:
return Alignment::SelfEnd;
case CSS::JustifyItems::SelfStart:
return Alignment::SelfStart;
case CSS::JustifyItems::Start:
return Alignment::Start;
case CSS::JustifyItems::Stretch:
return Alignment::Stretch;
case CSS::JustifyItems::Unsafe:
return Alignment::Unsafe;
case CSS::JustifyItems::Left:
return Alignment::Start;
case CSS::JustifyItems::Right:
return Alignment::End;
default:
VERIFY_NOT_REACHED();
}
}
static Alignment to_alignment(CSS::AlignContent value)
{
switch (value) {
case CSS::AlignContent::Start:
return Alignment::Start;
case CSS::AlignContent::End:
return Alignment::End;
case CSS::AlignContent::Center:
return Alignment::Center;
case CSS::AlignContent::SpaceBetween:
return Alignment::SpaceBetween;
case CSS::AlignContent::SpaceAround:
return Alignment::SpaceAround;
case CSS::AlignContent::SpaceEvenly:
return Alignment::SpaceEvenly;
case CSS::AlignContent::Stretch:
return Alignment::Stretch;
case CSS::AlignContent::Normal:
return Alignment::Normal;
case CSS::AlignContent::FlexStart:
return Alignment::Start;
case CSS::AlignContent::FlexEnd:
return Alignment::End;
default:
VERIFY_NOT_REACHED();
}
}
static Alignment to_alignment(CSS::AlignItems value)
{
switch (value) {
case CSS::AlignItems::Baseline:
return Alignment::Baseline;
case CSS::AlignItems::Center:
return Alignment::Center;
case CSS::AlignItems::End:
return Alignment::End;
case CSS::AlignItems::FlexEnd:
return Alignment::End;
case CSS::AlignItems::FlexStart:
return Alignment::Start;
case CSS::AlignItems::Normal:
return Alignment::Normal;
case CSS::AlignItems::Safe:
return Alignment::Safe;
case CSS::AlignItems::SelfEnd:
return Alignment::SelfEnd;
case CSS::AlignItems::SelfStart:
return Alignment::SelfStart;
case CSS::AlignItems::Start:
return Alignment::Start;
case CSS::AlignItems::Stretch:
return Alignment::Stretch;
case CSS::AlignItems::Unsafe:
return Alignment::Unsafe;
default:
VERIFY_NOT_REACHED();
}
}
GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_from_definition(CSS::ExplicitGridTrack const& definition, bool is_auto_fit = false)
{
// NOTE: repeat() is expected to be expanded beforehand.
VERIFY(!definition.is_repeat());
if (definition.is_minmax()) {
return GridTrack {
.min_track_sizing_function = definition.minmax().min_grid_size(),
.max_track_sizing_function = definition.minmax().max_grid_size(),
.is_auto_fit = is_auto_fit,
};
}
// https://drafts.csswg.org/css-grid-2/#algo-terms
// min track sizing function:
// If the track was sized with a minmax() function, this is the first argument to that function.
// If the track was sized with a <flex> value or fit-content() function, auto. Otherwise, the track’s sizing function.
auto min_track_sizing_function = definition.grid_size();
if (min_track_sizing_function.is_flexible_length()) {
min_track_sizing_function = CSS::GridSize::make_auto();
}
auto max_track_sizing_function = definition.grid_size();
return GridTrack {
.min_track_sizing_function = min_track_sizing_function,
.max_track_sizing_function = max_track_sizing_function,
.is_auto_fit = is_auto_fit,
};
}
GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_auto()
{
return GridTrack {
.min_track_sizing_function = CSS::GridSize::make_auto(),
.max_track_sizing_function = CSS::GridSize::make_auto(),
};
}
GridFormattingContext::GridTrack GridFormattingContext::GridTrack::create_gap(CSSPixels size)
{
return GridTrack {
.min_track_sizing_function = CSS::GridSize(CSS::Length::make_px(size)),
.max_track_sizing_function = CSS::GridSize(CSS::Length::make_px(size)),
.base_size = size,
.is_gap = true,
};
}
GridFormattingContext::GridFormattingContext(LayoutState& state, LayoutMode layout_mode, Box const& grid_container, FormattingContext* parent)
: FormattingContext(Type::Grid, layout_mode, state, grid_container, parent)
, m_grid_container_used_values(state.get_mutable(grid_container))
2022-08-23 10:36:27 +02:00
{
}
GridFormattingContext::~GridFormattingContext() = default;
CSSPixels GridFormattingContext::resolve_definite_track_size(CSS::GridSize const& grid_size, AvailableSpace const& available_space) const
2022-08-23 10:36:27 +02:00
{
VERIFY(grid_size.is_definite());
if (grid_size.type() == CSS::GridSize::Type::LengthPercentage)
return grid_size.css_size().to_px(grid_container(), available_space.width.to_px_or_zero());
VERIFY_NOT_REACHED();
}
int GridFormattingContext::count_of_repeated_auto_fill_or_fit_tracks(GridDimension dimension, CSS::ExplicitGridTrack const& repeated_track)
{
// https://www.w3.org/TR/css-grid-2/#auto-repeat
// 7.2.3.2. Repeat-to-fill: auto-fill and auto-fit repetitions
// On a subgridded axis, the auto-fill keyword is only valid once per <line-name-list>, and repeats
// enough times for the name list to match the subgrid’s specified grid span (falling back to 0 if
// the span is already fulfilled).
// Otherwise on a standalone axis, when auto-fill is given as the repetition number
// If the grid container has a definite size or max size in the relevant axis, then the number of
// repetitions is the largest possible positive integer that does not cause the grid to overflow the
// content box of its grid container
auto const& grid_computed_values = grid_container().computed_values();
CSSPixels size_of_repeated_tracks = 0;
// (treating each track as its max track sizing function if that is definite or its minimum track sizing
// function otherwise, flooring the max track sizing function by the min track sizing function if both
// are definite, and taking gap into account)
auto const& repeat_track_list = repeated_track.repeat().grid_track_size_list().track_list();
for (auto const& explicit_grid_track : repeat_track_list) {
auto const& track_sizing_function = explicit_grid_track;
CSSPixels track_size = 0;
if (track_sizing_function.is_minmax()) {
auto const& min_size = track_sizing_function.minmax().min_grid_size();
auto const& max_size = track_sizing_function.minmax().max_grid_size();
if (max_size.is_definite()) {
track_size = resolve_definite_track_size(max_size, *m_available_space);
if (min_size.is_definite())
track_size = min(track_size, resolve_definite_track_size(min_size, *m_available_space));
} else if (min_size.is_definite()) {
track_size = resolve_definite_track_size(min_size, *m_available_space);
} else {
VERIFY_NOT_REACHED();
}
} else {
track_size = resolve_definite_track_size(track_sizing_function.grid_size(), *m_available_space);
}
size_of_repeated_tracks += track_size;
}
if (size_of_repeated_tracks == 0)
return 0;
auto const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
auto const& gap = dimension == GridDimension::Column ? grid_computed_values.column_gap() : grid_computed_values.row_gap();
auto gap_px = gap_to_px(gap, grid_container(), available_size.to_px_or_zero());
auto size_of_repeated_tracks_with_gap = size_of_repeated_tracks + repeat_track_list.size() * gap_px;
// Otherwise, if the grid container has a definite min size in the relevant axis, the number of repetitions is the
// smallest possible positive integer that fulfills that minimum requirement
if (available_size.is_definite()) {
// NOTE: Gap size is added to free space to compensate for the fact that the last track does not have a gap
auto free_space = available_size.to_px_or_zero();
auto number_of_repetitions = ((free_space + gap_px) / size_of_repeated_tracks_with_gap).to_int();
// If any number of repetitions would overflow, then 1 repetition.
return max(1, number_of_repetitions);
}
// Otherwise, the specified track list repeats only once.
return 1;
// For the purpose of finding the number of auto-repeated tracks in a standalone axis, the UA must
// floor the track size to a UA-specified value to avoid division by zero. It is suggested that this
// floor be 1px.
}
GridFormattingContext::PlacementPosition GridFormattingContext::resolve_grid_position(Box const& child_box, GridDimension dimension)
{
auto const& computed_values = child_box.computed_values();
auto const& placement_start = dimension == GridDimension::Row ? computed_values.grid_row_start() : computed_values.grid_column_start();
auto const& placement_end = dimension == GridDimension::Row ? computed_values.grid_row_end() : computed_values.grid_column_end();
CSS::CalculationResolutionContext resolution_context { .length_resolution_context = CSS::Length::ResolutionContext::for_layout_node(child_box) };
Optional<i64> placement_start_line_number = placement_start.has_line_number() ? placement_start.line_number().resolved(resolution_context) : Optional<i64> {};
Optional<i64> placement_end_line_number = placement_end.has_line_number() ? placement_end.line_number().resolved(resolution_context) : Optional<i64> {};
PlacementPosition result;
if (placement_start_line_number.has_value() && placement_start_line_number.value() > 0)
result.start = placement_start_line_number.value() - 1;
else if (placement_start_line_number.has_value()) {
auto explicit_line_count = dimension == GridDimension::Row ? m_explicit_rows_line_count : m_explicit_columns_line_count;
result.start = explicit_line_count + placement_start_line_number.value();
}
if (placement_end_line_number.has_value())
result.end = *placement_end_line_number - 1;
if (result.end < 0) {
if (dimension == GridDimension::Row)
result.end = m_occupation_grid.row_count() + result.end + 2;
else
result.end = m_occupation_grid.column_count() + result.end + 2;
}
// FIXME: If a name is given as a <custom-ident>, only lines with that name are counted. If not enough lines with
// that name exist, all implicit grid lines on the side of the explicit grid corresponding to the search
// direction are assumed to have that name for the purpose of counting this span.
if (placement_end.is_span())
result.span = placement_end.span().resolved(resolution_context).value();
if (placement_start.is_span()) {
result.span = placement_start.span().resolved(resolution_context).value();
result.start = result.end - result.span;
// FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-row: span 2 / 1
if (result.start < 0)
result.start = 0;
}
if (placement_end.has_identifier()) {
auto area_end_line_name = MUST(String::formatted("{}-end", placement_end.identifier()));
auto line_number = placement_end_line_number.value_or(1);
if (auto area_end_line_index = get_nth_line_index_by_line_name(dimension, area_end_line_name, line_number); area_end_line_index.has_value()) {
result.end = area_end_line_index.value();
} else if (auto line_name_index = get_nth_line_index_by_line_name(dimension, placement_end.identifier(), line_number); line_name_index.has_value()) {
result.end = line_name_index.value();
} else {
result.end = 1;
}
result.start = result.end - 1;
}
if (placement_start.has_identifier()) {
auto area_start_line_name = MUST(String::formatted("{}-start", placement_start.identifier()));
auto line_number = placement_start_line_number.value_or(1);
if (auto area_start_line_index = get_nth_line_index_by_line_name(dimension, area_start_line_name, line_number); area_start_line_index.has_value()) {
result.start = area_start_line_index.value();
} else if (auto line_name_index = get_nth_line_index_by_line_name(dimension, placement_start.identifier(), line_number); line_name_index.has_value()) {
result.start = line_name_index.value();
} else {
result.start = 0;
}
}
if (!placement_start.is_positioned() && placement_end.is_positioned() && !placement_end.is_span()) {
if (result.span == 0)
result.span = 1;
result.start = result.end - result.span;
if (result.start < 0)
result.start = 0;
}
if (placement_start.is_positioned() && placement_end.is_positioned()) {
if (result.start > result.end)
swap(result.start, result.end);
if (result.start != result.end)
result.span = result.end - result.start;
}
// FIXME: Have yet to find the spec for this.
if (!placement_start.is_positioned() && placement_end.is_positioned() && result.end == 0)
result.start = 0;
// If the placement contains two spans, remove the one contributed by the end grid-placement
// property.
if (placement_start.is_span() && placement_end.is_span())
result.span = placement_start.span().resolved(resolution_context).value();
return result;
}
void GridFormattingContext::place_item_with_row_and_column_position(Box const& child_box)
{
auto row_placement_position = resolve_grid_position(child_box, GridDimension::Row);
auto column_placement_position = resolve_grid_position(child_box, GridDimension::Column);
auto row_start = row_placement_position.start;
auto row_span = row_placement_position.span;
auto column_start = column_placement_position.start;
auto column_span = column_placement_position.span;
record_grid_placement(GridItem {
.box = child_box,
.used_values = m_state.get_mutable(child_box),
.row = row_start,
.row_span = row_span,
.column = column_start,
.column_span = column_span });
}
void GridFormattingContext::place_item_with_row_position(Box const& child_box)
{
auto placement_position = resolve_grid_position(child_box, GridDimension::Row);
auto row_start = placement_position.start;
size_t row_span = placement_position.span;
auto const& grid_column_start = child_box.computed_values().grid_column_start();
int column_start = 0;
size_t column_span = grid_column_start.is_span() ? grid_column_start.span().resolved({ .length_resolution_context = CSS::Length::ResolutionContext::for_layout_node(child_box) }).value() : 1;
bool found_available_column = false;
for (size_t column_index = column_start; column_index < m_occupation_grid.column_count(); column_index++) {
if (!m_occupation_grid.is_occupied(column_index, row_start)) {
found_available_column = true;
column_start = column_index;
break;
}
}
if (!found_available_column) {
column_start = m_occupation_grid.column_count();
}
record_grid_placement(GridItem {
.box = child_box,
.used_values = m_state.get_mutable(child_box),
.row = row_start,
.row_span = row_span,
.column = column_start,
.column_span = column_span });
}
void GridFormattingContext::place_item_with_column_position(Box const& child_box, int& auto_placement_cursor_x, int& auto_placement_cursor_y)
{
auto placement_position = resolve_grid_position(child_box, GridDimension::Column);
auto column_start = placement_position.start;
size_t column_span = placement_position.span;
auto const& grid_row_start = child_box.computed_values().grid_row_start();
size_t row_span = grid_row_start.is_span() ? grid_row_start.span().resolved({ .length_resolution_context = CSS::Length::ResolutionContext::for_layout_node(child_box) }).value() : 1;
// 4.1.1.1. Set the column position of the cursor to the grid item's column-start line. If this is
// less than the previous column position of the cursor, increment the row position by 1.
if (column_start < auto_placement_cursor_x)
auto_placement_cursor_y++;
auto_placement_cursor_x = column_start;
2022-09-07 15:37:40 +02:00
// 4.1.1.2. Increment the cursor's row position until a value is found where the grid item does not
// overlap any occupied grid cells (creating new rows in the implicit grid as necessary).
while (true) {
if (!m_occupation_grid.is_occupied(column_start, auto_placement_cursor_y)) {
break;
}
auto_placement_cursor_y++;
}
// 4.1.1.3. Set the item's row-start line to the cursor's row position, and set the item's row-end
// line according to its span from that position.
2022-09-07 15:37:40 +02:00
record_grid_placement(GridItem {
.box = child_box,
.used_values = m_state.get_mutable(child_box),
.row = auto_placement_cursor_y,
.row_span = row_span,
.column = column_start,
.column_span = column_span });
}
2022-09-07 15:37:40 +02:00
FoundUnoccupiedPlace OccupationGrid::find_unoccupied_place(GridDimension dimension, int& column_index, int& row_index, int column_span, int row_span) const
{
if (dimension == GridDimension::Column) {
while (row_index <= max_row_index()) {
while (column_index <= max_column_index()) {
auto enough_span_for_span = column_index + column_span - 1 <= max_column_index();
if (enough_span_for_span && !is_occupied(column_index, row_index))
return FoundUnoccupiedPlace::Yes;
column_index++;
}
row_index++;
column_index = min_column_index();
}
} else {
while (column_index <= max_column_index()) {
while (row_index <= max_row_index()) {
auto enough_span_for_span = row_index + row_span - 1 <= max_row_index();
if (enough_span_for_span && !is_occupied(column_index, row_index))
return FoundUnoccupiedPlace::Yes;
row_index++;
}
column_index++;
row_index = min_row_index();
}
}
return FoundUnoccupiedPlace::No;
}
void GridFormattingContext::place_item_with_no_declared_position(Box const& child_box, int& auto_placement_cursor_x, int& auto_placement_cursor_y)
{
auto const& computed_values = child_box.computed_values();
auto const& grid_row_start = computed_values.grid_row_start();
auto const& grid_row_end = computed_values.grid_row_end();
auto const& grid_column_start = computed_values.grid_column_start();
auto const& grid_column_end = computed_values.grid_column_end();
CSS::CalculationResolutionContext resolution_context { .length_resolution_context = CSS::Length::ResolutionContext::for_layout_node(child_box) };
auto column_start = 0;
size_t column_span = 1;
if (grid_column_start.is_span())
column_span = grid_column_start.span().resolved(resolution_context).value();
else if (grid_column_end.is_span())
column_span = grid_column_end.span().resolved(resolution_context).value();
auto row_start = 0;
size_t row_span = 1;
if (grid_row_start.is_span())
row_span = grid_row_start.span().resolved(resolution_context).value();
else if (grid_row_end.is_span())
row_span = grid_row_end.span().resolved(resolution_context).value();
auto const& auto_flow = grid_container().computed_values().grid_auto_flow();
auto dimension = auto_flow.row ? GridDimension::Column : GridDimension::Row;
// 4.1.2.1. Increment the column position of the auto-placement cursor until either this item's grid
// area does not overlap any occupied grid cells, or the cursor's column position, plus the item's
// column span, overflow the number of columns in the implicit grid, as determined earlier in this
// algorithm.
auto found_unoccupied_area = m_occupation_grid.find_unoccupied_place(dimension, auto_placement_cursor_x, auto_placement_cursor_y, column_span, row_span);
// 4.1.2.2. If a non-overlapping position was found in the previous step, set the item's row-start
// and column-start lines to the cursor's position. Otherwise, increment the auto-placement cursor's
// row position (creating new rows in the implicit grid as necessary), set its column position to the
// start-most column line in the implicit grid, and return to the previous step.
if (found_unoccupied_area == FoundUnoccupiedPlace::Yes) {
column_start = auto_placement_cursor_x;
row_start = auto_placement_cursor_y;
auto_placement_cursor_x += column_span - 1;
auto_placement_cursor_y += row_span - 1;
if (dimension == GridDimension::Column) {
auto_placement_cursor_x++;
auto_placement_cursor_y = m_occupation_grid.min_row_index();
} else {
auto_placement_cursor_y++;
auto_placement_cursor_x = m_occupation_grid.min_column_index();
}
} else {
column_start = auto_placement_cursor_x;
row_start = auto_placement_cursor_y;
auto_placement_cursor_x += column_span - 1;
auto_placement_cursor_y += row_span - 1;
2022-09-07 15:37:40 +02:00
}
record_grid_placement(GridItem {
.box = child_box,
.used_values = m_state.get_mutable(child_box),
.row = row_start,
.row_span = row_span,
.column = column_start,
.column_span = column_span });
}
void GridFormattingContext::record_grid_placement(GridItem grid_item)
{
m_occupation_grid.set_occupied(grid_item.column.value(), grid_item.column.value() + grid_item.column_span.value(), grid_item.row.value(), grid_item.row.value() + grid_item.row_span.value());
m_grid_items.append(grid_item);
}
void GridFormattingContext::initialize_grid_tracks_from_definition(GridDimension dimension)
{
auto const& grid_computed_values = grid_container().computed_values();
auto const& tracks_definition = dimension == GridDimension::Column ? grid_computed_values.grid_template_columns().track_list() : grid_computed_values.grid_template_rows().track_list();
auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
for (auto const& track_definition : tracks_definition) {
int repeat_count = 1;
bool is_auto_fit = false;
if (track_definition.is_repeat()) {
is_auto_fit = track_definition.repeat().is_auto_fit();
if (track_definition.repeat().is_auto_fill() || is_auto_fit)
repeat_count = count_of_repeated_auto_fill_or_fit_tracks(dimension, track_definition);
else
repeat_count = track_definition.repeat().repeat_count();
}
for (auto _ = 0; _ < repeat_count; _++) {
if (track_definition.is_default() || track_definition.is_minmax()) {
tracks.append(GridTrack::create_from_definition(track_definition, is_auto_fit));
} else if (track_definition.is_repeat()) {
for (auto& explicit_grid_track : track_definition.repeat().grid_track_size_list().track_list()) {
tracks.append(GridTrack::create_from_definition(explicit_grid_track, is_auto_fit));
}
} else {
VERIFY_NOT_REACHED();
}
}
}
}
void GridFormattingContext::initialize_grid_tracks_for_columns_and_rows()
{
auto const& grid_computed_values = grid_container().computed_values();
auto const& grid_auto_columns = grid_computed_values.grid_auto_columns().track_list();
size_t implicit_column_index = 0;
// NOTE: If there are implicit tracks created by items with negative indexes they should prepend explicitly defined tracks
auto negative_index_implied_column_tracks_count = abs(m_occupation_grid.min_column_index());
for (int column_index = 0; column_index < negative_index_implied_column_tracks_count; column_index++) {
if (grid_auto_columns.size() > 0) {
auto definition = grid_auto_columns[implicit_column_index % grid_auto_columns.size()];
m_grid_columns.append(GridTrack::create_from_definition(definition));
} else {
m_grid_columns.append(GridTrack::create_auto());
}
implicit_column_index++;
}
initialize_grid_tracks_from_definition(GridDimension::Column);
for (size_t column_index = m_grid_columns.size(); column_index < m_occupation_grid.column_count(); column_index++) {
if (grid_auto_columns.size() > 0) {
auto definition = grid_auto_columns[implicit_column_index % grid_auto_columns.size()];
m_grid_columns.append(GridTrack::create_from_definition(definition));
} else {
m_grid_columns.append(GridTrack::create_auto());
}
implicit_column_index++;
}
auto const& grid_auto_rows = grid_computed_values.grid_auto_rows().track_list();
size_t implicit_row_index = 0;
// NOTE: If there are implicit tracks created by items with negative indexes they should prepend explicitly defined tracks
auto negative_index_implied_row_tracks_count = abs(m_occupation_grid.min_row_index());
for (int row_index = 0; row_index < negative_index_implied_row_tracks_count; row_index++) {
if (grid_auto_rows.size() > 0) {
auto definition = grid_auto_rows[implicit_row_index % grid_auto_rows.size()];
m_grid_rows.append(GridTrack::create_from_definition(definition));
} else {
m_grid_rows.append(GridTrack::create_auto());
}
implicit_row_index++;
}
initialize_grid_tracks_from_definition(GridDimension::Row);
for (size_t row_index = m_grid_rows.size(); row_index < m_occupation_grid.row_count(); row_index++) {
if (grid_auto_rows.size() > 0) {
auto definition = grid_auto_rows[implicit_row_index % grid_auto_rows.size()];
m_grid_rows.append(GridTrack::create_from_definition(definition));
} else {
m_grid_rows.append(GridTrack::create_auto());
}
implicit_row_index++;
}
m_column_lines.resize(m_grid_columns.size() + 1);
m_row_lines.resize(m_grid_rows.size() + 1);
}
void GridFormattingContext::initialize_gap_tracks(AvailableSpace const& available_space)
{
2022-11-06 13:45:05 +01:00
// https://www.w3.org/TR/css-grid-2/#gutters
// 11.1. Gutters: the row-gap, column-gap, and gap properties
// For the purpose of track sizing, each gutter is treated as an extra, empty, fixed-size track of the specified
// size, which is spanned by any grid items that span across its corresponding grid line.
if (m_grid_columns.size() > 0) {
CSSPixels column_gap_width = 0;
if (!grid_container().computed_values().column_gap().has<CSS::NormalGap>()) {
column_gap_width = gap_to_px(grid_container().computed_values().column_gap(), grid_container(), available_space.width.to_px_or_zero());
}
m_column_gap_tracks.ensure_capacity(m_grid_columns.size() - 1);
for (size_t column_index = 0; column_index < m_grid_columns.size(); column_index++) {
m_grid_columns_and_gaps.append(m_grid_columns[column_index]);
if (column_index != m_grid_columns.size() - 1) {
m_column_gap_tracks.unchecked_append(GridTrack::create_gap(column_gap_width));
m_grid_columns_and_gaps.append(m_column_gap_tracks.last());
}
}
2022-11-06 13:45:05 +01:00
}
if (!m_grid_rows.is_empty()) {
CSSPixels row_gap_height = 0;
if (!grid_container().computed_values().row_gap().has<CSS::NormalGap>()) {
row_gap_height = gap_to_px(grid_container().computed_values().row_gap(), grid_container(), available_space.height.to_px_or_zero());
}
m_row_gap_tracks.ensure_capacity(m_grid_rows.size() - 1);
for (size_t row_index = 0; row_index < m_grid_rows.size(); row_index++) {
m_grid_rows_and_gaps.append(m_grid_rows[row_index]);
if (row_index != m_grid_rows.size() - 1) {
m_row_gap_tracks.unchecked_append(GridTrack::create_gap(row_gap_height));
m_grid_rows_and_gaps.append(m_row_gap_tracks.last());
}
}
2022-11-06 13:45:05 +01:00
}
}
2022-11-06 13:45:05 +01:00
void GridFormattingContext::initialize_track_sizes(GridDimension dimension)
{
// https://www.w3.org/TR/css-grid-2/#algo-init
// 12.4. Initialize Track Sizes
// Initialize each track’s base size and growth limit.
auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps;
auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
for (auto& track : tracks_and_gaps) {
if (track.is_gap)
2022-11-06 13:45:05 +01:00
continue;
if (track.min_track_sizing_function.is_fixed(available_size)) {
track.base_size = track.min_track_sizing_function.css_size().to_px(grid_container(), available_size.to_px_or_zero());
} else if (track.min_track_sizing_function.is_intrinsic(available_size)) {
track.base_size = 0;
}
if (track.max_track_sizing_function.is_fixed(available_size)) {
track.growth_limit = track.max_track_sizing_function.css_size().to_px(grid_container(), available_size.to_px_or_zero());
} else if (track.max_track_sizing_function.is_flexible_length()) {
track.growth_limit = {};
} else if (track.max_track_sizing_function.is_intrinsic(available_size)) {
track.growth_limit = {};
} else {
VERIFY_NOT_REACHED();
}
// In all cases, if the growth limit is less than the base size, increase the growth limit to match
// the base size.
if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size)
track.growth_limit = track.base_size;
}
}
void GridFormattingContext::resolve_intrinsic_track_sizes(GridDimension dimension)
{
// https://www.w3.org/TR/css-grid-2/#algo-content
// 12.5. Resolve Intrinsic Track Sizes
// This step resolves intrinsic track sizing functions to absolute lengths. First it resolves those
// sizes based on items that are contained wholly within a single track. Then it gradually adds in
// the space requirements of items that span multiple tracks, evenly distributing the extra space
// across those tracks insofar as possible.
auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps;
// FIXME: 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline alignment.
// 2. Size tracks to fit non-spanning items:
increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(dimension, 1);
// 3. Increase sizes to accommodate spanning items crossing content-sized tracks: Next, consider the
// items with a span of 2 that do not span a track with a flexible sizing function.
// Repeat incrementally for items with greater spans until all items have been considered.
size_t max_item_span = 1;
for (auto& item : m_grid_items)
max_item_span = max(item.span(dimension), max_item_span);
for (size_t span = 2; span <= max_item_span; span++)
increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(dimension, span);
// 4. Increase sizes to accommodate spanning items crossing flexible tracks: Next, repeat the previous
// step instead considering (together, rather than grouped by span size) all items that do span a
// track with a flexible sizing function while
increase_sizes_to_accommodate_spanning_items_crossing_flexible_tracks(dimension);
// 5. If any track still has an infinite growth limit (because, for example, it had no items placed in
// it or it is a flexible track), set its growth limit to its base size.
for (auto& track : tracks_and_gaps) {
if (!track.growth_limit.has_value())
track.growth_limit = track.base_size;
}
}
template<typename Match>
void GridFormattingContext::distribute_extra_space_across_spanned_tracks_base_size(GridDimension dimension, CSSPixels item_size_contribution, SpaceDistributionPhase phase, Vector<GridTrack&>& spanned_tracks, Match matcher)
{
auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
Vector<GridTrack&> affected_tracks;
for (auto& track : spanned_tracks) {
if (matcher(track))
affected_tracks.append(track);
}
if (affected_tracks.size() == 0)
return;
for (auto& track : affected_tracks)
track.item_incurred_increase = 0;
// 1. Find the space to distribute:
CSSPixels spanned_tracks_sizes_sum = 0;
for (auto& track : spanned_tracks)
spanned_tracks_sizes_sum += track.base_size;
// Subtract the corresponding size of every spanned track from the item’s size contribution to find the item’s
// remaining size contribution.
auto extra_space = max(CSSPixels(0), item_size_contribution - spanned_tracks_sizes_sum);
// 2. Distribute space up to limits:
while (extra_space > 0) {
auto all_frozen = all_of(affected_tracks, [](auto const& track) { return track.base_size_frozen; });
if (all_frozen)
break;
// Find the item-incurred increase for each spanned track with an affected size by: distributing the space
// equally among such tracks, freezing a track’s item-incurred increase as its affected size + item-incurred
// increase reaches its limit
CSSPixels increase_per_track = max(CSSPixels::smallest_positive_value(), extra_space / affected_tracks.size());
for (auto& track : affected_tracks) {
if (track.base_size_frozen)
continue;
auto increase = min(increase_per_track, extra_space);
if (track.growth_limit.has_value()) {
auto maximum_increase = track.growth_limit.value() - track.base_size;
if (track.item_incurred_increase + increase >= maximum_increase) {
track.base_size_frozen = true;
increase = maximum_increase - track.item_incurred_increase;
}
}
track.item_incurred_increase += increase;
extra_space -= increase;
}
}
// 3. Distribute space beyond limits
if (extra_space > 0) {
Vector<GridTrack&> tracks_to_grow_beyond_limits;
// If space remains after all tracks are frozen, unfreeze and continue to
// distribute space to the item-incurred increase of...
if (phase == SpaceDistributionPhase::AccommodateMinimumContribution || phase == SpaceDistributionPhase::AccommodateMinContentContribution) {
// when accommodating minimum contributions or accommodating min-content contributions: any affected track
// that happens to also have an intrinsic max track sizing function
for (auto& track : affected_tracks) {
if (track.max_track_sizing_function.is_intrinsic(available_size))
tracks_to_grow_beyond_limits.append(track);
}
// if there are no such tracks, then all affected tracks.
if (tracks_to_grow_beyond_limits.size() == 0)
tracks_to_grow_beyond_limits = affected_tracks;
}
// FIXME: when accommodating max-content contributions: any affected track that happens to also have a
// max-content max track sizing function; if there are no such tracks, then all affected tracks.
CSSPixels increase_per_track = extra_space / affected_tracks.size();
for (auto& track : affected_tracks) {
auto increase = min(increase_per_track, extra_space);
track.item_incurred_increase += increase;
extra_space -= increase;
}
}
// 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase
// set the track’s planned increase to that value.
for (auto& track : affected_tracks) {
if (track.item_incurred_increase > track.planned_increase)
track.planned_increase = track.item_incurred_increase;
}
}
template<typename Match>
void GridFormattingContext::distribute_extra_space_across_spanned_tracks_growth_limit(CSSPixels item_size_contribution, Vector<GridTrack&>& spanned_tracks, Match matcher)
{
Vector<GridTrack&> affected_tracks;
for (auto& track : spanned_tracks) {
if (matcher(track))
affected_tracks.append(track);
}
for (auto& track : affected_tracks)
track.item_incurred_increase = 0;
if (affected_tracks.size() == 0)
return;
// 1. Find the space to distribute:
CSSPixels spanned_tracks_sizes_sum = 0;
for (auto& track : spanned_tracks) {
if (track.growth_limit.has_value()) {
spanned_tracks_sizes_sum += track.growth_limit.value();
} else {
spanned_tracks_sizes_sum += track.base_size;
}
}
// Subtract the corresponding size of every spanned track from the item’s size contribution to find the item’s
// remaining size contribution.
auto extra_space = max(CSSPixels(0), item_size_contribution - spanned_tracks_sizes_sum);
// 2. Distribute space up to limits:
while (extra_space > 0) {
auto all_frozen = all_of(affected_tracks, [](auto const& track) { return track.growth_limit_frozen; });
if (all_frozen)
break;
// Find the item-incurred increase for each spanned track with an affected size by: distributing the space
// equally among such tracks, freezing a track’s item-incurred increase as its affected size + item-incurred
// increase reaches its limit
CSSPixels increase_per_track = max(CSSPixels::smallest_positive_value(), extra_space / affected_tracks.size());
for (auto& track : affected_tracks) {
if (track.growth_limit_frozen)
continue;
auto increase = min(increase_per_track, extra_space);
// For growth limits, the limit is infinity if it is marked as infinitely growable, and equal to the
// growth limit otherwise.
if (!track.infinitely_growable && track.growth_limit.has_value()) {
auto maximum_increase = track.growth_limit.value() - track.base_size;
if (track.item_incurred_increase + increase >= maximum_increase) {
track.growth_limit_frozen = true;
increase = maximum_increase - track.item_incurred_increase;
}
}
track.item_incurred_increase += increase;
extra_space -= increase;
}
}
// FIXME: 3. Distribute space beyond limits
// 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase
// set the track’s planned increase to that value.
for (auto& track : spanned_tracks) {
if (track.item_incurred_increase > track.planned_increase)
track.planned_increase = track.item_incurred_increase;
}
}
void GridFormattingContext::increase_sizes_to_accommodate_spanning_items_crossing_content_sized_tracks(GridDimension dimension, size_t span)
{
auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
for (auto& item : m_grid_items) {
auto const item_span = item.span(dimension);
if (item_span != span)
continue;
Vector<GridTrack&> spanned_tracks;
for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) {
spanned_tracks.append(track);
});
auto item_spans_tracks_with_flexible_sizing_function = any_of(spanned_tracks, [](auto& track) {
return track.max_track_sizing_function.is_flexible_length();
});
if (item_spans_tracks_with_flexible_sizing_function)
continue;
// 1. For intrinsic minimums: First increase the base size of tracks with an intrinsic min track sizing
// function by distributing extra space as needed to accommodate these items’ minimum contributions.
auto item_size_contribution = [&] {
// If the grid container is being sized under a min- or max-content constraint, use the items’ limited
// min-content contributions in place of their minimum contributions here.
if (available_size.is_intrinsic_sizing_constraint())
return calculate_limited_min_content_contribution(item, dimension);
return calculate_minimum_contribution(item, dimension);
}();
distribute_extra_space_across_spanned_tracks_base_size(dimension, item_size_contribution, SpaceDistributionPhase::AccommodateMinimumContribution, spanned_tracks, [&](GridTrack const& track) {
return track.min_track_sizing_function.is_intrinsic(available_size);
});
for (auto& track : spanned_tracks) {
track.base_size += track.planned_increase;
track.planned_increase = 0;
}
// 2. For content-based minimums: Next continue to increase the base size of tracks with a min track
// sizing function of min-content or max-content by distributing extra space as needed to account for
// these items' min-content contributions.
auto item_min_content_contribution = calculate_min_content_contribution(item, dimension);
distribute_extra_space_across_spanned_tracks_base_size(dimension, item_min_content_contribution, SpaceDistributionPhase::AccommodateMinContentContribution, spanned_tracks, [&](GridTrack const& track) {
return track.min_track_sizing_function.is_min_content() || track.min_track_sizing_function.is_max_content();
});
for (auto& track : spanned_tracks) {
track.base_size += track.planned_increase;
track.planned_increase = 0;
}
// 3. For max-content minimums: Next, if the grid container is being sized under a max-content constraint,
// continue to increase the base size of tracks with a min track sizing function of auto or max-content by
// distributing extra space as needed to account for these items' limited max-content contributions.
if (available_size.is_max_content()) {
auto item_limited_max_content_contribution = calculate_limited_max_content_contribution(item, dimension);
distribute_extra_space_across_spanned_tracks_base_size(dimension, item_limited_max_content_contribution, SpaceDistributionPhase::AccommodateMaxContentContribution, spanned_tracks, [&](GridTrack const& track) {
return track.min_track_sizing_function.is_auto(available_size) || track.min_track_sizing_function.is_max_content();
});
for (auto& track : spanned_tracks) {
track.base_size += track.planned_increase;
track.planned_increase = 0;
}
}
// 4. If at this point any track’s growth limit is now less than its base size, increase its growth limit to
// match its base size.
for (auto& track : tracks) {
if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size)
track.growth_limit = track.base_size;
}
// 5. For intrinsic maximums: Next increase the growth limit of tracks with an intrinsic max track sizing
distribute_extra_space_across_spanned_tracks_growth_limit(item_min_content_contribution, spanned_tracks, [&](GridTrack const& track) {
return track.max_track_sizing_function.is_intrinsic(available_size);
});
for (auto& track : spanned_tracks) {
if (!track.growth_limit.has_value()) {
// If the affected size is an infinite growth limit, set it to the track’s base size plus the planned increase.
track.growth_limit = track.base_size + track.planned_increase;
// Mark any tracks whose growth limit changed from infinite to finite in this step as infinitely growable
// for the next step.
track.infinitely_growable = true;
} else {
track.growth_limit.value() += track.planned_increase;
}
track.planned_increase = 0;
}
// 6. For max-content maximums: Lastly continue to increase the growth limit of tracks with a max track
// sizing function of max-content by distributing extra space as needed to account for these items' max-
// content contributions. However, limit the growth of any fit-content() tracks by their fit-content() argument.
auto item_max_content_contribution = calculate_max_content_contribution(item, dimension);
distribute_extra_space_across_spanned_tracks_growth_limit(item_max_content_contribution, spanned_tracks, [&](GridTrack const& track) {
return track.max_track_sizing_function.is_max_content() || track.max_track_sizing_function.is_auto(available_size) || track.max_track_sizing_function.is_fit_content();
});
for (auto& track : spanned_tracks) {
if (track.max_track_sizing_function.is_fit_content()) {
track.growth_limit.value() += track.planned_increase;
if (track.growth_limit.value() < track.base_size)
track.growth_limit = track.base_size;
if (available_size.is_definite()) {
auto fit_content_limit = track.max_track_sizing_function.css_size().to_px(grid_container(), available_size.to_px_or_zero());
if (track.growth_limit.value() > fit_content_limit)
track.growth_limit = fit_content_limit;
}
} else if (!track.growth_limit.has_value()) {
// If the affected size is an infinite growth limit, set it to the track’s base size plus the planned increase.
track.growth_limit = track.base_size + track.planned_increase;
} else {
track.growth_limit.value() += track.planned_increase;
}
track.planned_increase = 0;
}
}
}
void GridFormattingContext::increase_sizes_to_accommodate_spanning_items_crossing_flexible_tracks(GridDimension dimension)
{
auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
auto const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
for (auto& item : m_grid_items) {
Vector<GridTrack&> spanned_tracks;
for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) {
spanned_tracks.append(track);
});
auto item_spans_tracks_with_flexible_sizing_function = any_of(spanned_tracks, [](auto& track) {
return track.max_track_sizing_function.is_flexible_length();
});
if (!item_spans_tracks_with_flexible_sizing_function)
continue;
// 1. For intrinsic minimums: First increase the base size of tracks with an intrinsic min track sizing
// function by distributing extra space as needed to accommodate these items’ minimum contributions.
auto item_size_contribution = [&] {
// If the grid container is being sized under a min- or max-content constraint, use the items’ limited
// min-content contributions in place of their minimum contributions here.
if (available_size.is_intrinsic_sizing_constraint())
return calculate_limited_min_content_contribution(item, dimension);
return calculate_minimum_contribution(item, dimension);
}();
distribute_extra_space_across_spanned_tracks_base_size(dimension,
item_size_contribution, SpaceDistributionPhase::AccommodateMinimumContribution, spanned_tracks, [&](GridTrack const& track) {
return track.max_track_sizing_function.is_flexible_length();
});
for (auto& track : spanned_tracks) {
track.base_size += track.planned_increase;
track.planned_increase = 0;
}
// 4. If at this point any track’s growth limit is now less than its base size, increase its growth limit to
// match its base size.
for (auto& track : tracks) {
if (track.growth_limit.has_value() && track.growth_limit.value() < track.base_size)
track.growth_limit = track.base_size;
}
}
}
void GridFormattingContext::maximize_tracks_using_available_size(AvailableSpace const& available_space, GridDimension dimension)
{
// https://www.w3.org/TR/css-grid-2/#algo-grow-tracks
// 12.6. Maximize Tracks
auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
auto get_free_space_px = [&]() -> CSSPixels {
// For the purpose of this step: if sizing the grid container under a max-content constraint, the
// free space is infinite; if sizing under a min-content constraint, the free space is zero.
auto free_space = get_free_space(available_space, dimension);
if (free_space.is_max_content() || free_space.is_indefinite())
return CSSPixels::max();
if (free_space.is_min_content())
return 0;
return free_space.to_px_or_zero();
};
auto free_space_px = get_free_space_px();
// If the free space is positive, distribute it equally to the base sizes of all tracks, freezing
// tracks as they reach their growth limits (and continuing to grow the unfrozen tracks as needed).
while (free_space_px > 0) {
auto free_space_to_distribute_per_track = free_space_px / tracks.size();
for (auto& track : tracks) {
if (track.base_size_frozen)
continue;
VERIFY(track.growth_limit.has_value());
track.base_size = min(track.growth_limit.value(), track.base_size + free_space_to_distribute_per_track);
}
if (get_free_space_px() == free_space_px)
break;
free_space_px = get_free_space_px();
}
}
void GridFormattingContext::maximize_tracks(GridDimension dimension)
{
// https://www.w3.org/TR/css-grid-2/#algo-grow-tracks
// 12.6. Maximize Tracks
auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
Vector<CSSPixels> saved_base_sizes;
for (auto& track : tracks)
saved_base_sizes.append(track.base_size);
maximize_tracks_using_available_size(*m_available_space, dimension);
// If this would cause the grid to be larger than the grid container’s inner size as limited by its
// max-width/height, then redo this step, treating the available grid space as equal to the grid
// container’s inner size when it’s sized to its max-width/height.
CSSPixels grid_container_inner_size = 0;
for (auto& track : tracks)
grid_container_inner_size += track.base_size;
auto const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
auto const& computed_values = grid_container().computed_values();
auto should_treat_grid_container_maximum_size_as_none = [&] {
if (dimension == GridDimension::Column)
return should_treat_max_width_as_none(grid_container(), available_size);
return !computed_values.max_height().is_auto();
}();
if (!should_treat_grid_container_maximum_size_as_none) {
auto maximum_size = calculate_grid_container_maximum_size(dimension);
if (grid_container_inner_size > maximum_size) {
for (size_t i = 0; i < tracks.size(); i++)
tracks[i].base_size = saved_base_sizes[i];
auto available_space_with_max_width = *m_available_space;
if (dimension == GridDimension::Column)
available_space_with_max_width.width = AvailableSize::make_definite(maximum_size);
else
available_space_with_max_width.height = AvailableSize::make_definite(maximum_size);
maximize_tracks_using_available_size(available_space_with_max_width, dimension);
}
}
}
void GridFormattingContext::expand_flexible_tracks(GridDimension dimension)
{
// https://drafts.csswg.org/css-grid/#algo-flex-tracks
// 12.7. Expand Flexible Tracks
// This step sizes flexible tracks using the largest value it can assign to an fr without exceeding
// the available space.
auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps;
auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
2025-04-07 10:46:22 +00:00
// FIXME: This should ideally take a Span, as that is more idomatic, but Span does not yet support holding references
auto find_the_size_of_an_fr = [&](Vector<GridTrack&> const& tracks, CSSPixels space_to_fill) -> CSSPixelFraction {
// https://www.w3.org/TR/css-grid-2/#algo-find-fr-size
auto treat_track_as_inflexiable = MUST(AK::Bitmap::create(tracks.size(), false));
do {
// 1. Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.
auto leftover_space = space_to_fill;
for (auto track_index = 0u; track_index < tracks.size(); track_index++) {
if (treat_track_as_inflexiable.view().get(track_index) || !tracks[track_index].max_track_sizing_function.is_flexible_length()) {
leftover_space -= tracks[track_index].base_size;
}
}
// 2. Let flex factor sum be the sum of the flex factors of the flexible tracks.
// If this value is less than 1, set it to 1 instead.
CSSPixels flex_factor_sum = 0;
for (auto track_index = 0u; track_index < tracks.size(); track_index++) {
if (treat_track_as_inflexiable.view().get(track_index) || !tracks[track_index].max_track_sizing_function.is_flexible_length())
continue;
flex_factor_sum += CSSPixels::nearest_value_for(tracks[track_index].max_track_sizing_function.flex_factor());
}
if (flex_factor_sum < 1)
flex_factor_sum = 1;
// 3. Let the hypothetical fr size be the leftover space divided by the flex factor sum.
auto hypothetical_fr_size = leftover_space / flex_factor_sum;
// 4. If the product of the hypothetical fr size and a flexible track’s flex factor is less than the track’s
// base size, restart this algorithm treating all such tracks as inflexible.
bool need_to_restart = false;
for (auto track_index = 0u; track_index < tracks.size(); track_index++) {
if (treat_track_as_inflexiable.view().get(track_index) || !tracks[track_index].max_track_sizing_function.is_flexible_length())
continue;
auto scaled_fraction = CSSPixels::nearest_value_for(tracks[track_index].max_track_sizing_function.flex_factor()) * hypothetical_fr_size;
if (scaled_fraction < tracks[track_index].base_size) {
treat_track_as_inflexiable.set(track_index, true);
need_to_restart = true;
}
}
if (need_to_restart)
continue;
// 5. Return the hypothetical fr size.
return hypothetical_fr_size;
} while (true);
VERIFY_NOT_REACHED();
};
// First, find the grid’s used flex fraction:
auto flex_fraction = [&]() -> CSSPixelFraction {
auto free_space = get_free_space(*m_available_space, dimension);
// If the free space is zero or if sizing the grid container under a min-content constraint:
if ((free_space.is_definite() && free_space.to_px_or_zero() == 0) || available_size.is_min_content()) {
// The used flex fraction is zero.
return 0;
// Otherwise, if the free space is a definite length:
} else if (free_space.is_definite()) {
// The used flex fraction is the result of finding the size of an fr using all of the grid tracks and a space
// to fill of the available grid space.
return find_the_size_of_an_fr(tracks_and_gaps, available_size.to_px_or_zero());
} else {
// Otherwise, if the free space is an indefinite length:
// The used flex fraction is the maximum of:
CSSPixelFraction result = 0;
// For each flexible track, if the flexible track’s flex factor is greater than one, the result of dividing
// the track’s base size by its flex factor; otherwise, the track’s base size.
for (auto& track : tracks) {
if (track.max_track_sizing_function.is_flexible_length()) {
if (track.max_track_sizing_function.flex_factor() > 1) {
result = max(result, track.base_size / CSSPixels::nearest_value_for(track.max_track_sizing_function.flex_factor()));
} else {
result = max(result, track.base_size / 1);
}
}
}
// For each grid item that crosses a flexible track, the result of finding the size of an fr using all the
// grid tracks that the item crosses and a space to fill of the item’s max-content contribution.
for (auto& item : m_grid_items) {
Vector<GridTrack&> spanned_tracks;
bool crosses_flexible_track = false;
for_each_spanned_track_by_item(item, dimension, [&](GridTrack& track) {
spanned_tracks.append(track);
if (track.max_track_sizing_function.is_flexible_length())
crosses_flexible_track = true;
});
if (crosses_flexible_track)
result = max(result, find_the_size_of_an_fr(spanned_tracks, calculate_max_content_contribution(item, dimension)));
}
return result;
}
}();
// For each flexible track, if the product of the used flex fraction and the track’s flex factor is greater than
// the track’s base size, set its base size to that product.
for (auto& track : tracks_and_gaps) {
if (track.max_track_sizing_function.is_flexible_length()) {
auto scaled_fraction = CSSPixels::nearest_value_for(track.max_track_sizing_function.flex_factor()) * flex_fraction;
if (scaled_fraction > track.base_size) {
track.base_size = scaled_fraction;
}
}
}
}
void GridFormattingContext::stretch_auto_tracks(GridDimension dimension)
{
// https://www.w3.org/TR/css-grid-2/#algo-stretch
// 12.8. Stretch auto Tracks
// This step expands tracks that have an auto max track sizing function by dividing any remaining positive,
// definite free space equally amongst them. If the free space is indefinite, but the grid container has a
// definite min-width/height, use that size to calculate the free space for this step instead.
auto content_distribution_property_is_normal_or_stretch = false;
if (dimension == GridDimension::Column) {
auto const& justify_content = grid_container().computed_values().justify_content();
content_distribution_property_is_normal_or_stretch = justify_content == CSS::JustifyContent::Normal || justify_content == CSS::JustifyContent::Stretch;
} else {
auto const& align_content = grid_container().computed_values().align_content();
content_distribution_property_is_normal_or_stretch = align_content == CSS::AlignContent::Normal || align_content == CSS::AlignContent::Stretch;
}
if (!content_distribution_property_is_normal_or_stretch)
return;
auto& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps;
auto& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
auto count_of_auto_max_sizing_tracks = 0;
for (auto& track : tracks_and_gaps) {
if (track.max_track_sizing_function.is_auto(available_size))
count_of_auto_max_sizing_tracks++;
}
if (count_of_auto_max_sizing_tracks == 0)
return;
CSSPixels remaining_space = get_free_space(*m_available_space, dimension).to_px_or_zero();
auto remaining_space_to_distribute_per_track = remaining_space / count_of_auto_max_sizing_tracks;
for (auto& track : tracks_and_gaps) {
if (!track.max_track_sizing_function.is_auto(available_size))
continue;
track.base_size += remaining_space_to_distribute_per_track;
}
}
void GridFormattingContext::run_track_sizing(GridDimension dimension)
{
// https://www.w3.org/TR/css-grid-2/#algo-track-sizing
// 12.3. Track Sizing Algorithm
// 1. Initialize Track Sizes
initialize_track_sizes(dimension);
// 2. Resolve Intrinsic Track Sizes
resolve_intrinsic_track_sizes(dimension);
// 3. Maximize Tracks
maximize_tracks(dimension);
// 4. Expand Flexible Tracks
expand_flexible_tracks(dimension);
// 5. Expand Stretched auto Tracks
stretch_auto_tracks(dimension);
// If calculating the layout of a grid item in this step depends on the available space in the block
// axis, assume the available space that it would have if any row with a definite max track sizing
// function had that size and all other rows were infinite. If both the grid container and all
// tracks have definite sizes, also apply align-content to find the final effective size of any gaps
// spanned by such items; otherwise ignore the effects of track alignment in this estimation.
}
void GridFormattingContext::build_grid_areas()
{
// https://www.w3.org/TR/css-grid-2/#grid-template-areas-property
// If a named grid area spans multiple grid cells, but those cells do not form a single
// filled-in rectangle, the declaration is invalid.
auto const& rows = grid_container().computed_values().grid_template_areas();
HashMap<String, GridArea> grid_areas;
auto find_area_rectangle = [&](size_t x_start, size_t y_start, String const& name) {
bool invalid = false;
size_t x_end = x_start;
size_t y_end = y_start;
while (x_end < rows[y_start].size() && rows[y_start][x_end] == name)
x_end++;
while (y_end < rows.size() && rows[y_end][x_start] == name)
y_end++;
for (size_t y = y_start; y < y_end; y++) {
for (size_t x = x_start; x < x_end; x++) {
if (rows[y][x] != name) {
// If a named grid area spans multiple grid cells, but those cells do not form a single filled-in rectangle, the declaration is invalid.
invalid = true;
break;
}
}
}
grid_areas.set(name, { name, y_start, y_end, x_start, x_end, invalid });
};
for (size_t y = 0; y < rows.size(); y++) {
for (size_t x = 0; x < rows[y].size(); x++) {
auto name = rows[y][x];
if (auto grid_area = grid_areas.get(name); grid_area.has_value())
continue;
find_area_rectangle(x, y, name);
}
}
size_t max_column_line_index_of_area = 0;
size_t max_row_line_index_of_area = 0;
for (auto const& grid_area : grid_areas) {
max_column_line_index_of_area = max(max_column_line_index_of_area, grid_area.value.column_end);
max_row_line_index_of_area = max(max_row_line_index_of_area, grid_area.value.row_end);
}
if (max_column_line_index_of_area >= m_column_lines.size())
m_column_lines.resize(max_column_line_index_of_area + 1);
if (max_row_line_index_of_area >= m_row_lines.size())
m_row_lines.resize(max_row_line_index_of_area + 1);
// https://www.w3.org/TR/css-grid-2/#implicitly-assigned-line-name
// 7.3.2. Implicitly-Assigned Line Names
// The grid-template-areas property generates implicitly-assigned line names from the named grid areas in the
// template. For each named grid area foo, four implicitly-assigned line names are created: two named foo-start,
// naming the row-start and column-start lines of the named grid area, and two named foo-end, naming the row-end
// and column-end lines of the named grid area.
for (auto const& it : grid_areas) {
auto const& grid_area = it.value;
m_column_lines[grid_area.column_start].append({ .name = MUST(String::formatted("{}-start", grid_area.name)), .implicit = true });
m_column_lines[grid_area.column_end].append({ .name = MUST(String::formatted("{}-end", grid_area.name)), .implicit = true });
m_row_lines[grid_area.row_start].append({ .name = MUST(String::formatted("{}-start", grid_area.name)), .implicit = true });
m_row_lines[grid_area.row_end].append({ .name = MUST(String::formatted("{}-end", grid_area.name)), .implicit = true });
}
}
void GridFormattingContext::place_grid_items()
{
auto grid_template_columns = grid_container().computed_values().grid_template_columns();
auto grid_template_rows = grid_container().computed_values().grid_template_rows();
auto column_tracks_count = m_column_lines.size() - 1;
auto row_tracks_count = m_row_lines.size() - 1;
// https://drafts.csswg.org/css-grid/#overview-placement
// 2.2. Placing Items
// The contents of the grid container are organized into individual grid items (analogous to
// flex items), which are then assigned to predefined areas in the grid. They can be explicitly
// placed using coordinates through the grid-placement properties or implicitly placed into
// empty areas using auto-placement.
HashMap<int, Vector<GC::Ref<Box const>>> order_item_bucket;
grid_container().for_each_child_of_type<Box>([&](Box& child_box) {
if (can_skip_is_anonymous_text_run(child_box))
return IterationDecision::Continue;
if (child_box.is_out_of_flow(*this))
return IterationDecision::Continue;
child_box.set_grid_item(true);
auto& order_bucket = order_item_bucket.ensure(child_box.computed_values().order());
order_bucket.append(child_box);
return IterationDecision::Continue;
});
m_occupation_grid = OccupationGrid(column_tracks_count, row_tracks_count);
// https://drafts.csswg.org/css-grid/#auto-placement-algo
// 8.5. Grid Item Placement Algorithm
auto keys = order_item_bucket.keys();
quick_sort(keys, [](auto& a, auto& b) { return a < b; });
// FIXME: 0. Generate anonymous grid items
// 1. Position anything that's not auto-positioned.
for (auto key : keys) {
auto& boxes_to_place = order_item_bucket.get(key).value();
for (size_t i = 0; i < boxes_to_place.size(); i++) {
auto const& child_box = boxes_to_place[i];
auto const& computed_values = child_box->computed_values();
if (is_auto_positioned_track(computed_values.grid_row_start(), computed_values.grid_row_end())
|| is_auto_positioned_track(computed_values.grid_column_start(), computed_values.grid_column_end()))
continue;
place_item_with_row_and_column_position(child_box);
boxes_to_place.remove(i);
i--;
}
}
// 2. Process the items locked to a given row.
// FIXME: Do "dense" packing
for (auto key : keys) {
auto& boxes_to_place = order_item_bucket.get(key).value();
for (size_t i = 0; i < boxes_to_place.size(); i++) {
auto const& child_box = boxes_to_place[i];
auto const& computed_values = child_box->computed_values();
if (is_auto_positioned_track(computed_values.grid_row_start(), computed_values.grid_row_end()))
continue;
place_item_with_row_position(child_box);
boxes_to_place.remove(i);
i--;
}
}
// 3. Determine the columns in the implicit grid.
// NOTE: "implicit grid" here is the same as the m_occupation_grid
// 3.1. Start with the columns from the explicit grid.
// NOTE: Done in step 1.
// 3.2. Among all the items with a definite column position (explicitly positioned items, items
// positioned in the previous step, and items not yet positioned but with a definite column) add
// columns to the beginning and end of the implicit grid as necessary to accommodate those items.
// NOTE: "Explicitly positioned items" and "items positioned in the previous step" done in step 1
// and 2, respectively. Adding columns for "items not yet positioned but with a definite column"
// will be done in step 4.
// 3.3. If the largest column span among all the items without a definite column position is larger
// than the width of the implicit grid, add columns to the end of the implicit grid to accommodate
// that column span.
for (auto key : keys) {
auto& boxes_to_place = order_item_bucket.get(key).value();
for (auto const& child_box : boxes_to_place) {
auto const& grid_column_start = child_box->computed_values().grid_column_start();
auto const& grid_column_end = child_box->computed_values().grid_column_end();
CSS::CalculationResolutionContext resolution_context { .length_resolution_context = CSS::Length::ResolutionContext::for_layout_node(child_box) };
int column_span = 1;
if (grid_column_start.is_span())
column_span = grid_column_start.span().resolved(resolution_context).value();
else if (grid_column_end.is_span())
column_span = grid_column_end.span().resolved(resolution_context).value();
if (column_span - 1 > m_occupation_grid.max_column_index())
m_occupation_grid.set_max_column_index(column_span - 1);
}
}
// 4. Position the remaining grid items.
// For each grid item that hasn't been positioned by the previous steps, in order-modified document
// order:
auto auto_placement_cursor_x = 0;
auto auto_placement_cursor_y = 0;
for (auto key : keys) {
auto& boxes_to_place = order_item_bucket.get(key).value();
for (size_t i = 0; i < boxes_to_place.size(); i++) {
auto const& child_box = boxes_to_place[i];
auto const& computed_values = child_box->computed_values();
// 4.1. For sparse packing:
// FIXME: no distinction made. See #4.2
// 4.1.1. If the item has a definite column position:
if (!is_auto_positioned_track(computed_values.grid_column_start(), computed_values.grid_column_end()))
place_item_with_column_position(child_box, auto_placement_cursor_x, auto_placement_cursor_y);
// 4.1.2. If the item has an automatic grid position in both axes:
else
place_item_with_no_declared_position(child_box, auto_placement_cursor_x, auto_placement_cursor_y);
boxes_to_place.remove(i);
i--;
// FIXME: 4.2. For dense packing:
}
}
// NOTE: When final implicit grid sizes are known, we can offset their positions so leftmost grid track has 0 index.
for (auto& item : m_grid_items) {
item.row = item.row.value() - m_occupation_grid.min_row_index();
item.column = item.column.value() - m_occupation_grid.min_column_index();
}
}
void GridFormattingContext::determine_grid_container_height()
{
CSSPixels total_y = 0;
for (auto& grid_row : m_grid_rows_and_gaps)
total_y += grid_row.base_size;
m_automatic_content_height = total_y;
}
Alignment GridFormattingContext::alignment_for_item(Box const& box, GridDimension dimension) const
{
if (dimension == GridDimension::Column) {
switch (box.computed_values().justify_self()) {
case CSS::JustifySelf::Auto:
return to_alignment(grid_container().computed_values().justify_items());
case CSS::JustifySelf::End:
return Alignment::End;
case CSS::JustifySelf::Normal:
return Alignment::Normal;
case CSS::JustifySelf::SelfStart:
return Alignment::SelfStart;
case CSS::JustifySelf::SelfEnd:
return Alignment::SelfEnd;
case CSS::JustifySelf::FlexStart:
return Alignment::Start;
case CSS::JustifySelf::FlexEnd:
return Alignment::End;
case CSS::JustifySelf::Center:
return Alignment::Center;
case CSS::JustifySelf::Baseline:
return Alignment::Baseline;
case CSS::JustifySelf::Start:
return Alignment::Start;
case CSS::JustifySelf::Stretch:
return Alignment::Stretch;
case CSS::JustifySelf::Safe:
return Alignment::Safe;
case CSS::JustifySelf::Unsafe:
return Alignment::Unsafe;
case CSS::JustifySelf::Left:
return Alignment::Start;
case CSS::JustifySelf::Right:
return Alignment::End;
default:
VERIFY_NOT_REACHED();
}
}
switch (box.computed_values().align_self()) {
case CSS::AlignSelf::Auto:
return to_alignment(grid_container().computed_values().align_items());
case CSS::AlignSelf::End:
return Alignment::End;
case CSS::AlignSelf::Normal:
return Alignment::Normal;
case CSS::AlignSelf::SelfStart:
return Alignment::SelfStart;
case CSS::AlignSelf::SelfEnd:
return Alignment::SelfEnd;
case CSS::AlignSelf::FlexStart:
return Alignment::Start;
case CSS::AlignSelf::FlexEnd:
return Alignment::End;
case CSS::AlignSelf::Center:
return Alignment::Center;
case CSS::AlignSelf::Baseline:
return Alignment::Baseline;
case CSS::AlignSelf::Start:
return Alignment::Start;
case CSS::AlignSelf::Stretch:
return Alignment::Stretch;
case CSS::AlignSelf::Safe:
return Alignment::Safe;
case CSS::AlignSelf::Unsafe:
return Alignment::Unsafe;
default:
VERIFY_NOT_REACHED();
}
}
void GridFormattingContext::resolve_grid_item_sizes(GridDimension dimension)
{
for (auto& item : m_grid_items) {
CSSPixels containing_block_size = containing_block_size_for_item(item, dimension);
Alignment alignment = alignment_for_item(item.box, dimension);
auto const& preferred_size = item.preferred_size(dimension);
struct ItemAlignment {
CSSPixels margin_start;
CSSPixels margin_end;
CSSPixels size;
};
auto try_compute_size = [&item, containing_block_size, alignment, dimension](CSSPixels a_size, CSS::Size const& css_size) -> ItemAlignment {
ItemAlignment result = {
.margin_start = item.used_margin_start(dimension),
.margin_end = item.used_margin_end(dimension),
.size = a_size
};
// Auto margins absorb positive free space prior to alignment via the box alignment properties.
auto free_space_left_for_margins = containing_block_size - result.size - item.used_margin_box_start(dimension) - item.used_margin_box_end(dimension);
if (item.margin_start(dimension).is_auto() && item.margin_end(dimension).is_auto()) {
result.margin_start = free_space_left_for_margins / 2;
result.margin_end = free_space_left_for_margins / 2;
} else if (item.margin_start(dimension).is_auto()) {
result.margin_start = free_space_left_for_margins;
} else if (item.margin_end(dimension).is_auto()) {
result.margin_end = free_space_left_for_margins;
} else if (css_size.is_auto() && !item.box->is_replaced_box()) {
result.size += free_space_left_for_margins;
}
auto free_space_left_for_alignment = containing_block_size - a_size - item.used_margin_box_start(dimension) - item.used_margin_box_end(dimension);
switch (alignment) {
case Alignment::Normal:
case Alignment::Stretch:
break;
case Alignment::Center:
result.margin_start += free_space_left_for_alignment / 2;
result.margin_end += free_space_left_for_alignment / 2;
result.size = a_size;
break;
case Alignment::Baseline:
case Alignment::Start:
result.margin_end += free_space_left_for_alignment;
result.size = a_size;
break;
case Alignment::End:
result.margin_start += free_space_left_for_alignment;
result.size = a_size;
break;
default:
break;
}
return result;
};
AvailableSpace available_space {
AvailableSize::make_definite(containing_block_size_for_item(item, GridDimension::Column)),
AvailableSize::make_definite(containing_block_size_for_item(item, GridDimension::Row))
};
auto calculate_inner_size = [this, &item, dimension, available_space](CSS::Size const& size) {
if (dimension == GridDimension::Column)
return calculate_inner_width(item.box, available_space.width, size);
return calculate_inner_height(item.box, available_space, size);
};
auto tentative_size_for_replaced_element = [this, &item, dimension, available_space](CSS::Size const& size) {
if (dimension == GridDimension::Column)
return tentative_width_for_replaced_element(item.box, size, available_space);
return tentative_height_for_replaced_element(item.box, size, available_space);
};
ItemAlignment used_alignment;
if (item.box->is_replaced_box() && item.box->has_natural_width()) {
auto width = tentative_size_for_replaced_element(preferred_size);
used_alignment = try_compute_size(width, item.preferred_size(dimension));
} else {
if (preferred_size.is_auto() || preferred_size.is_fit_content()) {
auto fit_content_size = dimension == GridDimension::Column ? calculate_fit_content_width(item.box, available_space) : calculate_fit_content_height(item.box, available_space);
used_alignment = try_compute_size(fit_content_size, preferred_size);
} else {
auto size_px = calculate_inner_size(preferred_size);
used_alignment = try_compute_size(size_px, preferred_size);
}
}
bool should_treat_maximum_size_as_none = dimension == GridDimension::Column ? should_treat_max_width_as_none(item.box, available_space.width) : should_treat_max_height_as_none(item.box, available_space.height);
if (!should_treat_maximum_size_as_none) {
auto const& maximum_size = item.maximum_size(dimension);
auto max_size_px = calculate_inner_size(maximum_size);
auto max_width_alignment = try_compute_size(max_size_px, maximum_size);
if (used_alignment.size > max_width_alignment.size) {
used_alignment = max_width_alignment;
}
}
auto const& minimum_size = item.minimum_size(dimension);
if (!minimum_size.is_auto()) {
auto min_size_alignment = try_compute_size(calculate_inner_size(minimum_size), minimum_size);
if (used_alignment.size < min_size_alignment.size) {
used_alignment = min_size_alignment;
}
}
if (dimension == GridDimension::Column) {
item.used_values.margin_left = used_alignment.margin_start;
item.used_values.margin_right = used_alignment.margin_end;
item.used_values.set_content_width(used_alignment.size);
} else {
item.used_values.margin_top = used_alignment.margin_start;
item.used_values.margin_bottom = used_alignment.margin_end;
item.used_values.set_content_height(used_alignment.size);
}
}
}
void GridFormattingContext::resolve_track_spacing(GridDimension dimension)
{
auto is_column_dimension = dimension == GridDimension::Column;
auto total_gap_space = is_column_dimension ? m_available_space->width.to_px_or_zero() : m_available_space->height.to_px_or_zero();
auto& grid_tracks = is_column_dimension ? m_grid_columns : m_grid_rows;
for (auto& track : grid_tracks) {
total_gap_space -= track.base_size;
}
total_gap_space = max(total_gap_space, 0);
auto gap_track_count = is_column_dimension ? m_column_gap_tracks.size() : m_row_gap_tracks.size();
if (gap_track_count == 0)
return;
CSSPixels space_between_tracks = 0;
Alignment alignment;
if (is_column_dimension) {
alignment = to_alignment(grid_container().computed_values().justify_content());
} else {
alignment = to_alignment(grid_container().computed_values().align_content());
}
switch (alignment) {
case Alignment::SpaceBetween:
space_between_tracks = CSSPixels(total_gap_space / gap_track_count);
break;
case Alignment::SpaceAround:
space_between_tracks = CSSPixels(total_gap_space / (gap_track_count + 1));
break;
case Alignment::SpaceEvenly:
space_between_tracks = CSSPixels(total_gap_space / (gap_track_count + 2));
break;
case Alignment::Normal:
case Alignment::Stretch:
case Alignment::Start:
case Alignment::End:
case Alignment::Center:
default:
break;
}
auto const& computed_gap = is_column_dimension ? grid_container().computed_values().column_gap() : grid_container().computed_values().row_gap();
auto const& available_size = is_column_dimension ? m_available_space->width.to_px_or_zero() : m_available_space->height.to_px_or_zero();
space_between_tracks = max(space_between_tracks, gap_to_px(computed_gap, grid_container(), available_size));
auto& gap_tracks = is_column_dimension ? m_column_gap_tracks : m_row_gap_tracks;
for (auto& track : gap_tracks) {
track.base_size = space_between_tracks;
}
}
void GridFormattingContext::resolve_items_box_metrics(GridDimension dimension)
{
for (auto& item : m_grid_items) {
auto& computed_values = item.box->computed_values();
CSSPixels containing_block_width = containing_block_size_for_item(item, GridDimension::Column);
if (dimension == GridDimension::Column) {
item.used_values.padding_right = computed_values.padding().right().to_px(grid_container(), containing_block_width);
item.used_values.padding_left = computed_values.padding().left().to_px(grid_container(), containing_block_width);
item.used_values.margin_right = computed_values.margin().right().to_px(grid_container(), containing_block_width);
item.used_values.margin_left = computed_values.margin().left().to_px(grid_container(), containing_block_width);
item.used_values.border_right = computed_values.border_right().width;
item.used_values.border_left = computed_values.border_left().width;
} else {
item.used_values.padding_top = computed_values.padding().top().to_px(grid_container(), containing_block_width);
item.used_values.padding_bottom = computed_values.padding().bottom().to_px(grid_container(), containing_block_width);
item.used_values.margin_top = computed_values.margin().top().to_px(grid_container(), containing_block_width);
item.used_values.margin_bottom = computed_values.margin().bottom().to_px(grid_container(), containing_block_width);
item.used_values.border_top = computed_values.border_top().width;
item.used_values.border_bottom = computed_values.border_bottom().width;
}
}
}
void GridFormattingContext::collapse_auto_fit_tracks_if_needed(GridDimension dimension)
{
// https://www.w3.org/TR/css-grid-2/#auto-repeat
// The auto-fit keyword behaves the same as auto-fill, except that after grid item placement any
// empty repeated tracks are collapsed. An empty track is one with no in-flow grid items placed into
// or spanning across it. (This can result in all tracks being collapsed, if they’re all empty.)
auto& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
for (size_t track_index = 0; track_index < tracks.size(); track_index++) {
if (!tracks[track_index].is_auto_fit)
continue;
if (m_occupation_grid.is_occupied(dimension == GridDimension::Column ? track_index : 0, dimension == GridDimension::Row ? track_index : 0))
continue;
// NOTE: A collapsed track is treated as having a fixed track sizing function of 0px
tracks[track_index].min_track_sizing_function = CSS::GridSize(CSS::Length::make_px(0));
tracks[track_index].max_track_sizing_function = CSS::GridSize(CSS::Length::make_px(0));
}
}
CSSPixelRect GridFormattingContext::get_grid_area_rect(GridItem const& grid_item) const
{
CSSPixelRect area_rect;
auto place_into_track = [&](GridDimension dimension) {
auto const& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps;
auto resolved_span = grid_item.span(dimension) * 2;
auto gap_adjusted_position = grid_item.gap_adjusted_position(dimension);
int start = gap_adjusted_position;
int end = start + resolved_span;
VERIFY(start <= end);
auto grid_container_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
CSSPixels sum_of_base_sizes_including_gaps = 0;
for (auto const& track : tracks_and_gaps) {
sum_of_base_sizes_including_gaps += track.base_size;
}
Alignment alignment;
if (dimension == GridDimension::Column) {
alignment = to_alignment(grid_container().computed_values().justify_content());
} else {
alignment = to_alignment(grid_container().computed_values().align_content());
}
CSSPixels start_offset = 0;
CSSPixels end_offset = 0;
if (alignment == Alignment::Center || alignment == Alignment::SpaceAround || alignment == Alignment::SpaceEvenly) {
auto free_space = grid_container_size.to_px_or_zero() - sum_of_base_sizes_including_gaps;
free_space = max(free_space, 0);
start_offset = free_space / 2;
end_offset = free_space / 2;
} else if (alignment == Alignment::End) {
auto free_space = grid_container_size.to_px_or_zero() - sum_of_base_sizes_including_gaps;
start_offset = free_space;
end_offset = free_space;
}
for (int i = 0; i < min(start, tracks_and_gaps.size()); i++)
start_offset += tracks_and_gaps[i].base_size;
for (int i = 0; i < min(end, tracks_and_gaps.size()); i++) {
end_offset += tracks_and_gaps[i].base_size;
}
if (dimension == GridDimension::Column) {
area_rect.set_x(start_offset);
area_rect.set_width(end_offset - start_offset);
} else {
area_rect.set_y(start_offset);
area_rect.set_height(end_offset - start_offset);
}
};
auto place_into_track_formed_by_last_line_and_grid_container_padding_edge = [&](GridDimension dimension) {
VERIFY(grid_item.box->is_absolutely_positioned());
auto const& tracks_and_gaps = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps;
CSSPixels offset = 0;
for (auto const& row_track : tracks_and_gaps) {
offset += row_track.base_size;
}
CSSPixels size = dimension == GridDimension::Column ? m_grid_container_used_values.padding_right : m_grid_container_used_values.padding_bottom;
if (dimension == GridDimension::Column) {
area_rect.set_x(offset);
area_rect.set_width(size);
} else {
area_rect.set_y(offset);
area_rect.set_height(size);
}
};
if (grid_item.row.has_value()) {
if (grid_item.row == (int)m_grid_rows.size()) {
place_into_track_formed_by_last_line_and_grid_container_padding_edge(GridDimension::Row);
} else {
place_into_track(GridDimension::Row);
}
} else {
// https://www.w3.org/TR/css-grid-2/#abspos-items
// Instead of auto-placement, an auto value for a grid-placement property contributes a special line to the placement whose position
// is that of the corresponding padding edge of the grid container (the padding edge of the scrollable area, if the grid container
// overflows). These lines become the first and last lines (0th and -0th) of the augmented grid used for positioning absolutely-positioned items.
CSSPixels height = 0;
for (auto const& row_track : m_grid_rows_and_gaps) {
height += row_track.base_size;
}
height += m_grid_container_used_values.padding_top;
height += m_grid_container_used_values.padding_bottom;
area_rect.set_height(height);
area_rect.set_y(-m_grid_container_used_values.padding_top);
}
if (grid_item.column.has_value()) {
if (grid_item.column == (int)m_grid_columns.size()) {
place_into_track_formed_by_last_line_and_grid_container_padding_edge(GridDimension::Column);
} else {
place_into_track(GridDimension::Column);
}
} else {
CSSPixels width = 0;
for (auto const& col_track : m_grid_columns_and_gaps) {
width += col_track.base_size;
}
width += m_grid_container_used_values.padding_left;
width += m_grid_container_used_values.padding_right;
area_rect.set_width(width);
area_rect.set_x(-m_grid_container_used_values.padding_left);
}
return area_rect;
}
void GridFormattingContext::run(AvailableSpace const& available_space)
{
// OPTIMIZATION: If we're in intrinsic sizing layout, but the grid container is not the
// box being measured, we can skip everything here.
// The parent formatting context has already figured out our size anyway.
if (m_layout_mode == LayoutMode::IntrinsicSizing
&& !available_space.width.is_intrinsic_sizing_constraint()
&& !available_space.height.is_intrinsic_sizing_constraint()) {
return;
}
m_available_space = available_space;
init_grid_lines(GridDimension::Column);
init_grid_lines(GridDimension::Row);
build_grid_areas();
auto const& grid_computed_values = grid_container().computed_values();
// NOTE: We store explicit grid sizes to later use in determining the position of items with negative index.
m_explicit_columns_line_count = m_column_lines.size();
m_explicit_rows_line_count = m_row_lines.size();
place_grid_items();
initialize_grid_tracks_for_columns_and_rows();
initialize_gap_tracks(available_space);
collapse_auto_fit_tracks_if_needed(GridDimension::Column);
collapse_auto_fit_tracks_if_needed(GridDimension::Row);
for (auto& item : m_grid_items) {
auto& computed_values = item.box->computed_values();
// NOTE: As the containing blocks of grid items are created by implicit grid areas that are not present in the
// layout tree, the initial value of has_definite_width/height computed by LayoutState::UsedValues::set_node
// will be incorrect for anything other (auto, percentage, calculated) than fixed lengths.
// Therefor, it becomes necessary to reset this value to indefinite.
// TODO: Handle this in LayoutState::UsedValues::set_node
if (!computed_values.width().is_length())
item.used_values.set_indefinite_content_width();
if (!computed_values.height().is_length())
item.used_values.set_indefinite_content_height();
if (item.box->is_replaced_box()) {
auto& replaced_box = static_cast<Layout::ReplacedBox const&>(*item.box);
// FIXME: This const_cast is gross.
const_cast<Layout::ReplacedBox&>(replaced_box).prepare_for_replaced_layout();
}
}
// Do the first pass of resolving grid items box metrics to compute values that are independent of a track width
resolve_items_box_metrics(GridDimension::Column);
run_track_sizing(GridDimension::Column);
// Do the second pass of resolving box metrics to compute values that depend on a track width
resolve_items_box_metrics(GridDimension::Column);
// Once the sizes of column tracks, which determine the widths of the grid areas forming the containing blocks
// for grid items, ara calculated, it becomes possible to determine the final widths of the grid items.
resolve_grid_item_sizes(GridDimension::Column);
// Do the first pass of resolving grid items box metrics to compute values that are independent of a track height
resolve_items_box_metrics(GridDimension::Row);
run_track_sizing(GridDimension::Row);
// Do the second pass of resolving box metrics to compute values that depend on a track height
resolve_items_box_metrics(GridDimension::Row);
resolve_grid_item_sizes(GridDimension::Row);
determine_grid_container_height();
resolve_track_spacing(GridDimension::Column);
resolve_track_spacing(GridDimension::Row);
CSSPixels min_height = 0;
if (!grid_computed_values.min_height().is_auto())
min_height = calculate_inner_height(grid_container(), available_space, grid_computed_values.min_height());
// If automatic grid container height is less than min-height, we need to re-run the track sizing algorithm
if (m_automatic_content_height < min_height) {
resolve_items_box_metrics(GridDimension::Row);
AvailableSize width(available_space.width);
AvailableSize height(AvailableSize::make_definite(min_height));
m_available_space = AvailableSpace(width, height);
run_track_sizing(GridDimension::Row);
resolve_items_box_metrics(GridDimension::Row);
resolve_grid_item_sizes(GridDimension::Row);
determine_grid_container_height();
}
if (m_layout_mode == LayoutMode::IntrinsicSizing) {
determine_intrinsic_size_of_grid_container(available_space);
return;
}
for (auto& grid_item : m_grid_items) {
CSSPixelPoint margin_offset = { grid_item.used_values.margin_box_left(), grid_item.used_values.margin_box_top() };
auto const grid_area_rect = get_grid_area_rect(grid_item);
grid_item.used_values.offset = grid_area_rect.top_left() + margin_offset;
compute_inset(grid_item.box, grid_area_rect.size());
auto available_space_for_children = AvailableSpace(AvailableSize::make_definite(grid_item.used_values.content_width()), AvailableSize::make_definite(grid_item.used_values.content_height()));
grid_item.used_values.set_has_definite_width(true);
grid_item.used_values.set_has_definite_height(true);
if (auto independent_formatting_context = layout_inside(grid_item.box, LayoutMode::Normal, available_space_for_children))
independent_formatting_context->parent_context_did_dimension_child_root_box();
}
auto serialize = [](auto const& tracks, auto const& lines) {
CSS::GridTrackSizeList result;
for (size_t i = 0; i < lines.size(); ++i) {
auto const& names = lines[i];
if (!names.is_empty()) {
CSS::GridLineNames grid_line_names;
for (auto const& [name, implicit] : names) {
if (!implicit)
grid_line_names.append(name);
}
result.append(CSS::GridLineNames { move(grid_line_names) });
}
if (i < tracks.size()) {
auto const& track = tracks[i];
result.append(CSS::ExplicitGridTrack { CSS::GridSize { CSS::LengthPercentage(CSS::Length::make_px(track.base_size)) } });
}
}
return result;
};
auto grid_track_columns = serialize(m_grid_columns, m_column_lines);
auto grid_track_rows = serialize(m_grid_rows, m_row_lines);
// getComputedStyle() needs to return the resolved values of grid-template-columns and grid-template-rows
// so they need to be saved in the state, and then assigned to paintables in LayoutState::commit()
m_grid_container_used_values.set_grid_template_columns(CSS::GridTrackSizeListStyleValue::create(move(grid_track_columns)));
m_grid_container_used_values.set_grid_template_rows(CSS::GridTrackSizeListStyleValue::create(move(grid_track_rows)));
}
// https://www.w3.org/TR/css-grid-2/#abspos-items
void GridFormattingContext::layout_absolutely_positioned_element(Box const& box)
{
auto& box_state = m_state.get_mutable(box);
auto const& computed_values = box.computed_values();
auto grid_area_rect = [&] -> CSSPixelRect {
// NOTE: Grid areas form containing blocks for abspos elements, but
// `Node::containing_block()` is not aware of that. Therefore, we need to
// find the closest grid item ancestor in order to identify grid area it belongs to.
NodeWithStyle const* containing_grid_item = &box;
while (containing_grid_item->parent() && containing_grid_item->parent() != &grid_container())
containing_grid_item = containing_grid_item->parent();
auto const& computed_values = containing_grid_item->computed_values();
VERIFY(containing_grid_item);
// NOTE: If abspos box is contained by in-flow grid item its grid position is already determined.
if (containing_grid_item->is_grid_item()) {
auto item = *m_grid_items.find_if([containing_grid_item](GridItem const& grid_item) {
return grid_item.box == containing_grid_item;
});
return get_grid_area_rect(item);
}
GridItem item { as<Box>(*containing_grid_item), box_state, {}, {}, {}, {} };
auto is_auto_row = is_auto_positioned_track(computed_values.grid_row_start(), computed_values.grid_row_end());
auto is_auto_column = is_auto_positioned_track(computed_values.grid_column_start(), computed_values.grid_column_end());
auto row_placement_position = resolve_grid_position(box, GridDimension::Row);
auto column_placement_position = resolve_grid_position(box, GridDimension::Column);
if (!is_auto_row) {
item.row = row_placement_position.start;
item.row_span = row_placement_position.span;
}
if (!is_auto_column) {
item.column = column_placement_position.start;
item.column_span = column_placement_position.span;
}
return get_grid_area_rect(item);
}();
auto available_width = AvailableSize::make_definite(grid_area_rect.width());
auto available_height = AvailableSize::make_definite(grid_area_rect.height());
AvailableSpace available_space { available_width, available_height };
// The border computed values are not changed by the compute_height & width calculations below.
// The spec only adjusts and computes sizes, insets and margins.
box_state.border_left = box.computed_values().border_left().width;
box_state.border_right = box.computed_values().border_right().width;
box_state.border_top = box.computed_values().border_top().width;
box_state.border_bottom = box.computed_values().border_bottom().width;
box_state.padding_left = box.computed_values().padding().left().to_px(grid_container(), grid_area_rect.width());
box_state.padding_right = box.computed_values().padding().right().to_px(grid_container(), grid_area_rect.width());
box_state.padding_top = box.computed_values().padding().top().to_px(grid_container(), grid_area_rect.width());
box_state.padding_bottom = box.computed_values().padding().bottom().to_px(grid_container(), grid_area_rect.width());
compute_width_for_absolutely_positioned_element(box, available_space);
// NOTE: We compute height before *and* after doing inside layout.
// This is done so that inside layout can resolve percentage heights.
// In some situations, e.g with non-auto top & bottom values, the height can be determined early.
compute_height_for_absolutely_positioned_element(box, available_space, BeforeOrAfterInsideLayout::Before);
auto independent_formatting_context = layout_inside(box, LayoutMode::Normal, box_state.available_inner_space_or_constraints_from(available_space));
compute_height_for_absolutely_positioned_element(box, available_space, BeforeOrAfterInsideLayout::After);
if (computed_values.inset().left().is_auto() && computed_values.inset().right().is_auto()) {
auto width_left_for_alignment = grid_area_rect.width() - box_state.margin_box_width();
switch (alignment_for_item(box, GridDimension::Column)) {
case Alignment::Normal:
case Alignment::Stretch:
break;
case Alignment::Center:
box_state.inset_left = width_left_for_alignment / 2;
box_state.inset_right = width_left_for_alignment / 2;
break;
case Alignment::Start:
box_state.inset_right = width_left_for_alignment;
break;
case Alignment::End:
box_state.inset_left = width_left_for_alignment;
break;
default:
break;
}
}
if (computed_values.inset().top().is_auto() && computed_values.inset().bottom().is_auto()) {
auto height_left_for_alignment = grid_area_rect.height() - box_state.margin_box_height();
switch (alignment_for_item(box, GridDimension::Row)) {
case Alignment::Baseline:
// FIXME: Not implemented
case Alignment::Stretch:
case Alignment::Normal:
break;
case Alignment::Start:
case Alignment::SelfStart:
box_state.inset_bottom = height_left_for_alignment;
break;
case Alignment::End:
case Alignment::SelfEnd: {
box_state.inset_top = height_left_for_alignment;
break;
}
case Alignment::Center:
box_state.inset_top = height_left_for_alignment / 2;
box_state.inset_bottom = height_left_for_alignment / 2;
break;
default:
break;
}
}
// If an absolutely positioned element’s containing block is generated by a grid container,
// the containing block corresponds to the grid area determined by its grid-placement properties.
// The offset properties (top/right/bottom/left) then indicate offsets inwards from the corresponding
// edges of this containing block, as normal.
CSSPixelPoint used_offset;
used_offset.set_x(grid_area_rect.x() + box_state.inset_left + box_state.margin_box_left());
used_offset.set_y(grid_area_rect.y() + box_state.inset_top + box_state.margin_box_top());
box_state.set_content_offset(used_offset);
if (independent_formatting_context)
independent_formatting_context->parent_context_did_dimension_child_root_box();
}
void GridFormattingContext::parent_context_did_dimension_child_root_box()
{
if (m_layout_mode != LayoutMode::Normal)
return;
grid_container().for_each_child_of_type<Box>([&](Layout::Box& box) {
if (box.is_absolutely_positioned()) {
m_state.get_mutable(box).set_static_position_rect(calculate_static_position_rect(box));
}
return IterationDecision::Continue;
});
for (auto const& child : grid_container().contained_abspos_children()) {
auto const& box = as<Box>(*child);
layout_absolutely_positioned_element(box);
}
}
void GridFormattingContext::determine_intrinsic_size_of_grid_container(AvailableSpace const& available_space)
{
// https://www.w3.org/TR/css-grid-1/#intrinsic-sizes
// The max-content size (min-content size) of a grid container is the sum of the grid container’s track sizes
// (including gutters) in the appropriate axis, when the grid is sized under a max-content constraint (min-content constraint).
if (available_space.height.is_intrinsic_sizing_constraint()) {
CSSPixels grid_container_height = 0;
for (auto& track : m_grid_rows_and_gaps) {
grid_container_height += track.base_size;
}
m_grid_container_used_values.set_content_height(grid_container_height);
}
if (available_space.width.is_intrinsic_sizing_constraint()) {
CSSPixels grid_container_width = 0;
for (auto& track : m_grid_columns_and_gaps) {
grid_container_width += track.base_size;
}
m_grid_container_used_values.set_content_width(grid_container_width);
}
}
CSSPixels GridFormattingContext::automatic_content_width() const
{
return m_grid_container_used_values.content_width();
}
CSSPixels GridFormattingContext::automatic_content_height() const
{
return m_automatic_content_height;
2022-09-07 15:37:40 +02:00
}
bool GridFormattingContext::is_auto_positioned_track(CSS::GridTrackPlacement const& grid_track_start, CSS::GridTrackPlacement const& grid_track_end) const
{
return grid_track_start.is_auto_positioned() && grid_track_end.is_auto_positioned();
}
AvailableSize GridFormattingContext::get_free_space(AvailableSpace const& available_space, GridDimension dimension) const
{
// https://www.w3.org/TR/css-grid-2/#algo-terms
// free space: Equal to the available grid space minus the sum of the base sizes of all the grid
// tracks (including gutters), floored at zero. If available grid space is indefinite, the free
// space is indefinite as well.
auto& available_size = dimension == GridDimension::Column ? available_space.width : available_space.height;
auto& tracks = dimension == GridDimension::Column ? m_grid_columns_and_gaps : m_grid_rows_and_gaps;
if (available_size.is_definite()) {
CSSPixels sum_base_sizes = 0;
for (auto& track : tracks)
sum_base_sizes += track.base_size;
return AvailableSize::make_definite(max(CSSPixels(0), available_size.to_px_or_zero() - sum_base_sizes));
}
return available_size;
}
Optional<int> GridFormattingContext::get_nth_line_index_by_line_name(GridDimension dimension, String const& line_name, int nth_line)
{
auto const& lines = dimension == GridDimension::Column ? m_column_lines : m_row_lines;
size_t line_index = nth_line < 0 ? lines.size() + nth_line : nth_line - 1;
// FIXME: If not enough lines with the name exist, all implicit grid lines on the side
// of the explicit grid corresponding to the search direction are assumed to have that name for the purpose of counting this span.
// Source: https://drafts.csswg.org/css-grid/#line-placement
for (size_t actual_line_index = 0; actual_line_index < lines.size(); actual_line_index++) {
for (auto const& line : lines[actual_line_index]) {
if (line.name == line_name) {
// https://drafts.csswg.org/css-grid/#line-placement
// Contributes the nth grid line to the grid item’s placement.
if (line_index == 0)
return static_cast<int>(actual_line_index);
else
line_index--;
}
}
}
return {};
}
void GridFormattingContext::init_grid_lines(GridDimension dimension)
{
auto const& grid_computed_values = grid_container().computed_values();
auto const& lines_definition = dimension == GridDimension::Column ? grid_computed_values.grid_template_columns() : grid_computed_values.grid_template_rows();
auto& lines = dimension == GridDimension::Column ? m_column_lines : m_row_lines;
Vector<CSS::GridLineName> line_names;
Function<void(CSS::GridTrackSizeList const&)> expand_lines_definition = [&](CSS::GridTrackSizeList const& lines_definition) {
for (auto const& item : lines_definition.list()) {
if (item.has<CSS::GridLineNames>()) {
line_names.extend(item.get<CSS::GridLineNames>().names());
} else if (item.has<CSS::ExplicitGridTrack>()) {
auto const& explicit_track = item.get<CSS::ExplicitGridTrack>();
if (explicit_track.is_default() || explicit_track.is_minmax()) {
lines.append(line_names);
line_names.clear();
} else if (explicit_track.is_repeat()) {
int repeat_count = 0;
if (explicit_track.repeat().is_auto_fill() || explicit_track.repeat().is_auto_fit())
repeat_count = count_of_repeated_auto_fill_or_fit_tracks(dimension, explicit_track);
else
repeat_count = explicit_track.repeat().repeat_count();
auto const& repeat_track = explicit_track.repeat();
for (int i = 0; i < repeat_count; i++)
expand_lines_definition(repeat_track.grid_track_size_list());
} else {
VERIFY_NOT_REACHED();
}
}
}
};
expand_lines_definition(lines_definition);
lines.append(line_names);
}
void OccupationGrid::set_occupied(int column_start, int column_end, int row_start, int row_end)
{
for (int row_index = row_start; row_index < row_end; row_index++) {
for (int column_index = column_start; column_index < column_end; column_index++) {
m_min_column_index = min(m_min_column_index, column_index);
m_max_column_index = max(m_max_column_index, column_index);
m_min_row_index = min(m_min_row_index, row_index);
m_max_row_index = max(m_max_row_index, row_index);
m_occupation_grid.set(GridPosition { .row = row_index, .column = column_index });
}
}
}
bool OccupationGrid::is_occupied(int column_index, int row_index) const
{
return m_occupation_grid.contains(GridPosition { row_index, column_index });
}
int GridItem::gap_adjusted_row() const
{
return row.value() * 2;
}
int GridItem::gap_adjusted_column() const
{
return column.value() * 2;
}
CSSPixels GridFormattingContext::calculate_grid_container_maximum_size(GridDimension dimension) const
{
auto const& computed_values = grid_container().computed_values();
if (dimension == GridDimension::Column)
return calculate_inner_width(grid_container(), m_available_space->width, computed_values.max_width());
return calculate_inner_height(grid_container(), m_available_space.value(), computed_values.max_height());
}
CSSPixels GridFormattingContext::calculate_min_content_size(GridItem const& item, GridDimension dimension) const
{
if (dimension == GridDimension::Column) {
return calculate_min_content_width(item.box);
}
return calculate_min_content_height(item.box, item.available_space().width.to_px_or_zero());
}
CSSPixels GridFormattingContext::calculate_max_content_size(GridItem const& item, GridDimension dimension) const
{
if (dimension == GridDimension::Column) {
return calculate_max_content_width(item.box);
}
return calculate_max_content_height(item.box, item.available_space().width.to_px_or_zero());
}
CSSPixels GridFormattingContext::containing_block_size_for_item(GridItem const& item, GridDimension dimension) const
{
CSSPixels containing_block_size = 0;
for_each_spanned_track_by_item(item, dimension, [&](GridTrack const& track) {
containing_block_size += track.base_size;
});
return containing_block_size;
}
CSSPixels GridFormattingContext::calculate_min_content_contribution(GridItem const& item, GridDimension dimension) const
{
auto available_space_for_item = item.available_space();
auto should_treat_preferred_size_as_auto = [&] {
if (dimension == GridDimension::Column)
return should_treat_width_as_auto(item.box, available_space_for_item);
return should_treat_height_as_auto(item.box, available_space_for_item);
}();
2025-04-07 10:46:22 +00:00
auto maximum_size = CSSPixels::max();
if (auto const& css_maximum_size = item.maximum_size(dimension); css_maximum_size.is_length()) {
2025-04-07 10:46:22 +00:00
maximum_size = css_maximum_size.length().to_px(item.box);
}
if (should_treat_preferred_size_as_auto) {
auto result = item.add_margin_box_sizes(calculate_min_content_size(item, dimension), dimension);
2025-04-07 10:46:22 +00:00
return min(result, maximum_size);
}
auto preferred_size = item.preferred_size(dimension);
if (dimension == GridDimension::Column) {
auto width = calculate_inner_width(item.box, m_available_space->width, preferred_size);
2025-04-07 10:46:22 +00:00
return min(item.add_margin_box_sizes(width, dimension), maximum_size);
}
auto height = calculate_inner_height(item.box, *m_available_space, preferred_size);
2025-04-07 10:46:22 +00:00
return min(item.add_margin_box_sizes(height, dimension), maximum_size);
}
CSSPixels GridFormattingContext::calculate_max_content_contribution(GridItem const& item, GridDimension dimension) const
{
auto available_space_for_item = item.available_space();
auto should_treat_preferred_size_as_auto = [&] {
if (dimension == GridDimension::Column)
return should_treat_width_as_auto(item.box, available_space_for_item);
return should_treat_height_as_auto(item.box, available_space_for_item);
}();
2025-04-07 10:46:22 +00:00
auto maximum_size = CSSPixels::max();
if (auto const& css_maximum_size = item.maximum_size(dimension); css_maximum_size.is_length()) {
2025-04-07 10:46:22 +00:00
maximum_size = css_maximum_size.length().to_px(item.box);
}
auto preferred_size = item.preferred_size(dimension);
if (should_treat_preferred_size_as_auto || preferred_size.is_fit_content()) {
auto fit_content_size = dimension == GridDimension::Column ? calculate_fit_content_width(item.box, available_space_for_item) : calculate_fit_content_height(item.box, available_space_for_item);
auto result = item.add_margin_box_sizes(fit_content_size, dimension);
2025-04-07 10:46:22 +00:00
return min(result, maximum_size);
}
auto containing_block_size = containing_block_size_for_item(item, dimension);
auto result = item.add_margin_box_sizes(preferred_size.to_px(grid_container(), containing_block_size), dimension);
2025-04-07 10:46:22 +00:00
return min(result, maximum_size);
}
CSSPixels GridFormattingContext::calculate_limited_min_content_contribution(GridItem const& item, GridDimension dimension) const
{
// The limited min-content contribution of an item is its min-content contribution,
// limited by the max track sizing function (which could be the argument to a fit-content() track
// sizing function) if that is fixed and ultimately floored by its minimum contribution.
auto min_content_contribution = calculate_min_content_contribution(item, dimension);
auto minimum_contribution = calculate_minimum_contribution(item, dimension);
if (min_content_contribution < minimum_contribution)
return minimum_contribution;
auto should_treat_max_size_as_none = [&]() {
switch (dimension) {
case GridDimension::Row:
return should_treat_max_height_as_none(grid_container(), m_available_space->height);
case GridDimension::Column:
return should_treat_max_width_as_none(grid_container(), m_available_space->width);
default:
VERIFY_NOT_REACHED();
}
}();
// FIXME: limit by max track sizing function instead of grid container maximum size
if (!should_treat_max_size_as_none) {
auto max_size = calculate_grid_container_maximum_size(dimension);
if (min_content_contribution > max_size)
return max_size;
}
return min_content_contribution;
}
CSSPixels GridFormattingContext::calculate_limited_max_content_contribution(GridItem const& item, GridDimension dimension) const
{
// The limited max-content contribution of an item is its max-content contribution,
// limited by the max track sizing function (which could be the argument to a fit-content() track
// sizing function) if that is fixed and ultimately floored by its minimum contribution.
auto max_content_contribution = calculate_max_content_contribution(item, dimension);
auto minimum_contribution = calculate_minimum_contribution(item, dimension);
if (max_content_contribution < minimum_contribution)
return minimum_contribution;
// FIXME: limit by max track sizing function instead of grid container maximum size
auto const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
if (!should_treat_max_width_as_none(grid_container(), available_size)) {
auto max_width = calculate_grid_container_maximum_size(dimension);
if (max_content_contribution > max_width)
return max_width;
}
return max_content_contribution;
}
CSSPixels GridFormattingContext::content_size_suggestion(GridItem const& item, GridDimension dimension) const
{
// The content size suggestion is the min-content size in the relevant axis
// FIXME: clamped, if it has a preferred aspect ratio, by any definite opposite-axis minimum and maximum sizes
// converted through the aspect ratio.
return calculate_min_content_size(item, dimension);
}
Optional<CSSPixels> GridFormattingContext::specified_size_suggestion(GridItem const& item, GridDimension dimension) const
{
// https://www.w3.org/TR/css-grid-1/#specified-size-suggestion
// If the item’s preferred size in the relevant axis is definite, then the specified size suggestion is that size.
// It is otherwise undefined.
auto has_definite_preferred_size = dimension == GridDimension::Column ? item.used_values.has_definite_width() : item.used_values.has_definite_height();
if (has_definite_preferred_size) {
// FIXME: consider margins, padding and borders because it is outer size.
auto containing_block_size = containing_block_size_for_item(item, dimension);
return item.preferred_size(dimension).to_px(item.box, containing_block_size);
}
return {};
}
Optional<CSSPixels> GridFormattingContext::transferred_size_suggestion(GridItem const& item, GridDimension dimension) const
{
// https://www.w3.org/TR/css-grid-2/#transferred-size-suggestion
// If the item has a preferred aspect ratio and its preferred size in the opposite axis is definite, then the transferred
// size suggestion is that size (clamped by the opposite-axis minimum and maximum sizes if they are definite), converted
// through the aspect ratio. It is otherwise undefined.
if (!item.box->preferred_aspect_ratio().has_value()) {
return {};
}
CSS::Size const& preferred_size_in_opposite_axis = item.preferred_size(dimension == GridDimension::Column ? GridDimension::Row : GridDimension::Column);
if (preferred_size_in_opposite_axis.is_length()) {
auto opposite_axis_size = preferred_size_in_opposite_axis.length().to_px(item.box);
// FIXME: Clamp by opposite-axis minimum and maximum sizes if they are definite
return opposite_axis_size * item.box->preferred_aspect_ratio().value();
}
return {};
}
CSSPixels GridFormattingContext::content_based_minimum_size(GridItem const& item, GridDimension dimension) const
{
// https://www.w3.org/TR/css-grid-1/#content-based-minimum-size
CSSPixels result = 0;
// The content-based minimum size for a grid item in a given dimension is its specified size suggestion if it exists,
if (auto specified_size_suggestion = this->specified_size_suggestion(item, dimension); specified_size_suggestion.has_value()) {
result = specified_size_suggestion.value();
}
// otherwise its transferred size suggestion if that exists,
else if (auto transferred_size_suggestion = this->transferred_size_suggestion(item, dimension); transferred_size_suggestion.has_value()) {
result = transferred_size_suggestion.value();
}
// else its content size suggestion.
else {
result = content_size_suggestion(item, dimension);
}
// However, if in a given dimension the grid item spans only grid tracks that have a fixed max track sizing function, then
// its specified size suggestion and content size suggestion in that dimension (and its input from this dimension to the
// transferred size suggestion in the opposite dimension) are further clamped to less than or equal to the stretch fit into
// the grid area’s maximum size in that dimension, as represented by the sum of those grid tracks’ max track sizing functions
// plus any intervening fixed gutters.
// FIXME: Account for intervening fixed gutters.
auto const& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
auto const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
auto item_track_index = item.raw_position(dimension);
auto item_track_span = item.span(dimension);
bool spans_only_tracks_with_limited_max_track_sizing_function = true;
CSSPixels sum_of_max_sizing_functions = 0;
for (size_t index = 0; index < item_track_span; index++) {
auto const& track = tracks[item_track_index + index];
if (!track.max_track_sizing_function.is_fixed(available_size)) {
spans_only_tracks_with_limited_max_track_sizing_function = false;
break;
}
sum_of_max_sizing_functions += track.max_track_sizing_function.length_percentage().to_px(item.box, m_available_space->width.to_px_or_zero());
}
if (spans_only_tracks_with_limited_max_track_sizing_function) {
result = min(result, sum_of_max_sizing_functions);
}
// In all cases, the size suggestion is additionally clamped by the maximum size in the affected axis, if it’s definite.
auto const& maximum_size = item.maximum_size(dimension);
if (maximum_size.is_length()) {
auto maximum_size_px = maximum_size.length().to_px(item.box);
result = min(result, maximum_size_px);
}
// If the item is a compressible replaced element, and has a definite preferred size or maximum size in the relevant axis,
// the size suggestion is capped by those sizes; for this purpose, any indefinite percentages in these sizes are resolved
// against zero (and considered definite).
// FIXME: "compressible replaced element" includes more elements than is_replaced_box().
auto const& preferred_size = item.preferred_size(dimension);
if (item.box->is_replaced_box() && (preferred_size.is_percentage() || maximum_size.is_percentage())) {
// NOTE: Implements "for this purpose, any indefinite percentages in these sizes are resolved
// against zero (and considered definite)." part.
result = 0;
}
return result;
}
CSSPixels GridFormattingContext::automatic_minimum_size(GridItem const& item, GridDimension dimension) const
{
// To provide a more reasonable default minimum size for grid items, the used value of its automatic minimum size
// in a given axis is the content-based minimum size if all of the following are true:
// - it is not a scroll container
// - it spans at least one track in that axis whose min track sizing function is auto
// - if it spans more than one track in that axis, none of those tracks are flexible
auto const& tracks = dimension == GridDimension::Column ? m_grid_columns : m_grid_rows;
auto item_track_index = item.raw_position(dimension);
auto item_track_span = item.span(dimension);
AvailableSize const& available_size = dimension == GridDimension::Column ? m_available_space->width : m_available_space->height;
bool spans_auto_tracks = false;
bool spans_flexible_tracks = false;
for (size_t index = 0; index < item_track_span; index++) {
auto const& track = tracks[item_track_index + index];
if (track.max_track_sizing_function.is_flexible_length())
spans_flexible_tracks = true;
if (track.min_track_sizing_function.is_auto(available_size))
spans_auto_tracks = true;
}
if (spans_auto_tracks && !item.box->is_scroll_container() && (item_track_span == 1 || !spans_flexible_tracks)) {
return content_based_minimum_size(item, dimension);
}
// Otherwise, the automatic minimum size is zero, as usual.
return 0;
}
CSSPixels GridFormattingContext::calculate_minimum_contribution(GridItem const& item, GridDimension dimension) const
{
// The minimum contribution of an item is the smallest outer size it can have.
// Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its
// containing block in the relevant axis, its minimum contribution is the outer size that would
// result from assuming the item’s used minimum size as its preferred size; else the item’s minimum
// contribution is its min-content contribution. Because the minimum contribution often depends on
// the size of the item’s content, it is considered a type of intrinsic size contribution.
auto preferred_size = item.preferred_size(dimension);
auto should_treat_preferred_size_as_auto = [&] {
if (dimension == GridDimension::Column)
return should_treat_width_as_auto(item.box, item.available_space());
return should_treat_height_as_auto(item.box, item.available_space());
}();
if (should_treat_preferred_size_as_auto) {
auto minimum_size = item.minimum_size(dimension);
if (minimum_size.is_auto())
return item.add_margin_box_sizes(automatic_minimum_size(item, dimension), dimension);
auto containing_block_size = containing_block_size_for_item(item, dimension);
return item.add_margin_box_sizes(minimum_size.to_px(grid_container(), containing_block_size), dimension);
}
return calculate_min_content_contribution(item, dimension);
}
StaticPositionRect GridFormattingContext::calculate_static_position_rect(Box const& box) const
{
// Result of this function is only used when containing block is not a grid container.
// If the containing block is a grid container then static position is a grid area rect and
// layout_absolutely_positioned_element() defined for GFC knows how to handle this case.
StaticPositionRect static_position;
auto const& box_state = m_state.get(box);
static_position.rect = { { 0, 0 }, { box_state.content_width(), box_state.content_height() } };
return static_position;
}
2022-08-23 10:36:27 +02:00
}
namespace AK {
template<>
struct Traits<Web::Layout::GridPosition> : public DefaultTraits<Web::Layout::GridPosition> {
static unsigned hash(Web::Layout::GridPosition const& key) { return pair_int_hash(key.row, key.column); }
};
}