AK: Remove unused Complex.h

This commit is contained in:
Andreas Kling 2024-06-18 10:02:14 +02:00 committed by Andreas Kling
parent fe9af7c972
commit b88e0eb50a
Notes: sideshowbarker 2024-07-16 21:45:42 +09:00
5 changed files with 0 additions and 558 deletions

View file

@ -1,294 +0,0 @@
/*
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/Math.h>
namespace AK {
template<AK::Concepts::Arithmetic T>
class [[gnu::packed]] Complex {
public:
constexpr Complex()
: m_real(0)
, m_imag(0)
{
}
constexpr Complex(T real)
: m_real(real)
, m_imag((T)0)
{
}
constexpr Complex(T real, T imaginary)
: m_real(real)
, m_imag(imaginary)
{
}
constexpr T real() const noexcept { return m_real; }
constexpr T imag() const noexcept { return m_imag; }
constexpr T magnitude_squared() const noexcept { return m_real * m_real + m_imag * m_imag; }
constexpr T magnitude() const noexcept
{
return hypot(m_real, m_imag);
}
constexpr T phase() const noexcept
{
return atan2(m_imag, m_real);
}
template<AK::Concepts::Arithmetic U, AK::Concepts::Arithmetic V>
static constexpr Complex<T> from_polar(U magnitude, V phase)
{
V s, c;
sincos(phase, s, c);
return Complex<T>(magnitude * c, magnitude * s);
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T>& operator=(Complex<U> const& other)
{
m_real = other.real();
m_imag = other.imag();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T>& operator=(U const& x)
{
m_real = x;
m_imag = 0;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+=(Complex<U> const& x)
{
m_real += x.real();
m_imag += x.imag();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+=(U const& x)
{
m_real += x;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-=(Complex<U> const& x)
{
m_real -= x.real();
m_imag -= x.imag();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-=(U const& x)
{
m_real -= x;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*=(Complex<U> const& x)
{
T const real = m_real;
m_real = real * x.real() - m_imag * x.imag();
m_imag = real * x.imag() + m_imag * x.real();
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*=(U const& x)
{
m_real *= x;
m_imag *= x;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/=(Complex<U> const& x)
{
T const real = m_real;
T const divisor = x.real() * x.real() + x.imag() * x.imag();
m_real = (real * x.real() + m_imag * x.imag()) / divisor;
m_imag = (m_imag * x.real() - x.real() * x.imag()) / divisor;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/=(U const& x)
{
m_real /= x;
m_imag /= x;
return *this;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+(Complex<U> const& a)
{
Complex<T> x = *this;
x += a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+(U const& a)
{
Complex<T> x = *this;
x += a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-(Complex<U> const& a)
{
Complex<T> x = *this;
x -= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-(U const& a)
{
Complex<T> x = *this;
x -= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*(Complex<U> const& a)
{
Complex<T> x = *this;
x *= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*(U const& a)
{
Complex<T> x = *this;
x *= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/(Complex<U> const& a)
{
Complex<T> x = *this;
x /= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/(U const& a)
{
Complex<T> x = *this;
x /= a;
return x;
}
template<AK::Concepts::Arithmetic U>
constexpr bool operator==(Complex<U> const& a) const
{
return (this->real() == a.real()) && (this->imag() == a.imag());
}
constexpr Complex<T> operator+()
{
return *this;
}
constexpr Complex<T> operator-()
{
return Complex<T>(-m_real, -m_imag);
}
private:
T m_real;
T m_imag;
};
// reverse associativity operators for scalars
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
constexpr Complex<T> operator+(U const& a, Complex<T> const& b)
{
Complex<T> x = a;
x += b;
return x;
}
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
constexpr Complex<T> operator-(U const& a, Complex<T> const& b)
{
Complex<T> x = a;
x -= b;
return x;
}
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
constexpr Complex<T> operator*(U const& a, Complex<T> const& b)
{
Complex<T> x = a;
x *= b;
return x;
}
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
constexpr Complex<T> operator/(U const& a, Complex<T> const& b)
{
Complex<T> x = a;
x /= b;
return x;
}
// some identities
template<AK::Concepts::Arithmetic T>
static constinit Complex<T> complex_real_unit = Complex<T>((T)1, (T)0);
template<AK::Concepts::Arithmetic T>
static constinit Complex<T> complex_imag_unit = Complex<T>((T)0, (T)1);
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
static constexpr bool approx_eq(Complex<T> const& a, Complex<U> const& b, double const margin = 0.000001)
{
auto const x = const_cast<Complex<T>&>(a) - const_cast<Complex<U>&>(b);
return x.magnitude() <= margin;
}
// complex version of exp()
template<AK::Concepts::Arithmetic T>
static constexpr Complex<T> cexp(Complex<T> const& a)
{
// FIXME: this can probably be faster and not use so many "expensive" trigonometric functions
return exp(a.real()) * Complex<T>(cos(a.imag()), sin(a.imag()));
}
}
template<AK::Concepts::Arithmetic T>
struct AK::Formatter<AK::Complex<T>> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder& builder, AK::Complex<T> c)
{
return Formatter<StringView>::format(builder, TRY(String::formatted("{}{:+}i", c.real(), c.imag())));
}
};
#if USING_AK_GLOBALLY
using AK::approx_eq;
using AK::cexp;
using AK::Complex;
using AK::complex_imag_unit;
using AK::complex_real_unit;
#endif

View file

@ -45,7 +45,6 @@ shared_library("AK") {
"CircularBuffer.cpp",
"CircularBuffer.h",
"CircularQueue.h",
"Complex.h",
"Concepts.h",
"ConstrainedStream.cpp",
"ConstrainedStream.h",

View file

@ -18,7 +18,6 @@ tests = [
"TestChecked",
"TestCircularBuffer",
"TestCircularQueue",
"TestComplex",
"TestByteString",
"TestDisjointChunks",
"TestDistinctNumeric",

View file

@ -17,7 +17,6 @@ set(AK_TEST_SOURCES
TestChecked.cpp
TestCircularBuffer.cpp
TestCircularQueue.cpp
TestComplex.cpp
TestDisjointChunks.cpp
TestDistinctNumeric.cpp
TestDoublyLinkedList.cpp

View file

@ -1,261 +0,0 @@
/*
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibTest/TestCase.h>
#include <AK/Complex.h>
using namespace Test::Randomized;
namespace {
Complex<f64> gen_complex()
{
auto r = Gen::number_f64();
auto i = Gen::number_f64();
return Complex<f64>(r, i);
}
Complex<f64> gen_complex(f64 min, f64 max)
{
auto r = Gen::number_f64(min, max);
auto i = Gen::number_f64(min, max);
return Complex<f64>(r, i);
}
}
template<typename T>
void expect_approximate_complex(Complex<T> a, Complex<T> b)
{
EXPECT_APPROXIMATE(a.real(), b.real());
EXPECT_APPROXIMATE(a.imag(), b.imag());
}
TEST_CASE(Complex)
{
auto a = Complex<float> { 1.f, 1.f };
auto b = complex_real_unit<double> + Complex<double> { 0, 1 } * 1;
EXPECT_APPROXIMATE(a.real(), b.real());
EXPECT_APPROXIMATE(a.imag(), b.imag());
#ifdef AKCOMPLEX_CAN_USE_MATH_H
EXPECT_APPROXIMATE((complex_imag_unit<float> - complex_imag_unit<float>).magnitude(), 0);
EXPECT_APPROXIMATE((complex_imag_unit<float> + complex_real_unit<float>).magnitude(), sqrt(2));
auto c = Complex<double> { 0., 1. };
auto d = Complex<double>::from_polar(1., M_PI / 2.);
EXPECT_APPROXIMATE(c.real(), d.real());
EXPECT_APPROXIMATE(c.imag(), d.imag());
c = Complex<double> { -1., 1. };
d = Complex<double>::from_polar(sqrt(2.), 3. * M_PI / 4.);
EXPECT_APPROXIMATE(c.real(), d.real());
EXPECT_APPROXIMATE(c.imag(), d.imag());
EXPECT_APPROXIMATE(d.phase(), 3. * M_PI / 4.);
EXPECT_APPROXIMATE(c.magnitude(), d.magnitude());
EXPECT_APPROXIMATE(c.magnitude(), sqrt(2.));
#endif
EXPECT_EQ((complex_imag_unit<double> * complex_imag_unit<double>).real(), -1.);
EXPECT_EQ((complex_imag_unit<double> / complex_imag_unit<double>).real(), 1.);
EXPECT_EQ(Complex(1., 10.) == (Complex<double>(1., 0.) + Complex(0., 10.)), true);
EXPECT_EQ(Complex(1., 10.) != (Complex<double>(1., 1.) + Complex(0., 10.)), true);
#ifdef AKCOMPLEX_CAN_USE_MATH_H
EXPECT_EQ(approx_eq(Complex<int>(1), Complex<float>(1.0000004f)), true);
EXPECT_APPROXIMATE(cexp(Complex<double>(0., 1.) * M_PI).real(), -1.);
#endif
}
TEST_CASE(real_operators_regression)
{
{
auto c = Complex(0., 0.);
c += 1;
EXPECT_EQ(c.real(), 1);
}
{
auto c = Complex(0., 0.);
c -= 1;
EXPECT_EQ(c.real(), -1);
}
{
auto c1 = Complex(1., 1.);
auto c2 = 1 - c1;
EXPECT_EQ(c2.real(), 0);
EXPECT_EQ(c2.imag(), -1);
}
{
auto c1 = Complex(1., 1.);
auto c2 = 1 / c1;
EXPECT_EQ(c2.real(), 0.5);
EXPECT_EQ(c2.imag(), -0.5);
}
}
TEST_CASE(constructor_0_is_origin)
{
auto c = Complex<f64>();
EXPECT_EQ(c.real(), 0L);
EXPECT_EQ(c.imag(), 0L);
}
RANDOMIZED_TEST_CASE(constructor_1)
{
GEN(r, Gen::number_f64());
auto c = Complex<f64>(r);
EXPECT_EQ(c.real(), r);
EXPECT_EQ(c.imag(), 0L);
}
RANDOMIZED_TEST_CASE(constructor_2)
{
GEN(r, Gen::number_f64());
GEN(i, Gen::number_f64());
auto c = Complex<f64>(r, i);
EXPECT_EQ(c.real(), r);
EXPECT_EQ(c.imag(), i);
}
RANDOMIZED_TEST_CASE(magnitude_squared)
{
GEN(c, gen_complex());
auto magnitude_squared = c.magnitude_squared();
auto magnitude = c.magnitude();
EXPECT_APPROXIMATE(magnitude_squared, magnitude * magnitude);
}
RANDOMIZED_TEST_CASE(from_polar_magnitude)
{
// Magnitude only makes sense non-negative, but the library allows it to be negative.
GEN(m, Gen::number_f64(-1000, 1000));
GEN(p, Gen::number_f64(-1000, 1000));
auto c = Complex<f64>::from_polar(m, p);
EXPECT_APPROXIMATE(c.magnitude(), abs(m));
}
RANDOMIZED_TEST_CASE(from_polar_phase)
{
// To have a meaningful phase, magnitude needs to be >0.
GEN(m, Gen::number_f64(1, 1000));
GEN(p, Gen::number_f64(-1000, 1000));
auto c = Complex<f64>::from_polar(m, p);
// Returned phase is in the (-pi,pi] interval.
// We need to mod from our randomly generated [-1000,1000] interval]
// down to [0,2pi) or (-2pi,0] depending on our sign.
// Then we can adjust and get into the -pi..pi range by adding/subtracting
// one last 2pi.
auto wanted_p = fmod(p, 2 * M_PI);
if (wanted_p > M_PI)
wanted_p -= 2 * M_PI;
else if (wanted_p < -M_PI)
wanted_p += 2 * M_PI;
EXPECT_APPROXIMATE(c.phase(), wanted_p);
}
RANDOMIZED_TEST_CASE(imag_untouched_c_plus_r)
{
GEN(c1, gen_complex());
GEN(r2, Gen::number_f64());
auto c2 = c1 + r2;
EXPECT_EQ(c2.imag(), c1.imag());
}
RANDOMIZED_TEST_CASE(imag_untouched_c_minus_r)
{
GEN(c1, gen_complex());
GEN(r2, Gen::number_f64());
auto c2 = c1 - r2;
EXPECT_EQ(c2.imag(), c1.imag());
}
RANDOMIZED_TEST_CASE(assignment_same_as_binop_plus)
{
GEN(c1, gen_complex());
GEN(c2, gen_complex());
auto out1 = c1 + c2;
auto out2 = c1;
out2 += c2;
EXPECT_EQ(out2, out1);
}
RANDOMIZED_TEST_CASE(assignment_same_as_binop_minus)
{
GEN(c1, gen_complex());
GEN(c2, gen_complex());
auto out1 = c1 - c2;
auto out2 = c1;
out2 -= c2;
EXPECT_EQ(out2, out1);
}
RANDOMIZED_TEST_CASE(assignment_same_as_binop_mult)
{
GEN(c1, gen_complex(-1000, 1000));
GEN(c2, gen_complex(-1000, 1000));
auto out1 = c1 * c2;
auto out2 = c1;
out2 *= c2;
EXPECT_EQ(out2, out1);
}
RANDOMIZED_TEST_CASE(assignment_same_as_binop_div)
{
GEN(c1, gen_complex(-1000, 1000));
GEN(c2, gen_complex(-1000, 1000));
auto out1 = c1 / c2;
auto out2 = c1;
out2 /= c2;
EXPECT_EQ(out2, out1);
}
RANDOMIZED_TEST_CASE(commutativity_c_c)
{
GEN(c1, gen_complex());
GEN(c2, gen_complex());
expect_approximate_complex(c1 + c2, c2 + c1);
expect_approximate_complex(c1 * c2, c2 * c1);
}
RANDOMIZED_TEST_CASE(commutativity_c_r)
{
GEN(c, gen_complex());
GEN(r, Gen::number_f64());
expect_approximate_complex(r + c, c + r);
expect_approximate_complex(r * c, c * r);
}
RANDOMIZED_TEST_CASE(unary_plus_noop)
{
GEN(c, gen_complex());
EXPECT_EQ(+c, c);
}
RANDOMIZED_TEST_CASE(unary_minus_inverse)
{
GEN(c, gen_complex());
expect_approximate_complex(-(-c), c);
}
RANDOMIZED_TEST_CASE(wrapping_real)
{
GEN(c, gen_complex(-1000, 1000));
GEN(r, Gen::number_f64(-1000, 1000));
auto cr = Complex<f64>(r);
expect_approximate_complex(r + c, cr + c);
expect_approximate_complex(r - c, cr - c);
expect_approximate_complex(r * c, cr * c);
expect_approximate_complex(r / c, cr / c);
expect_approximate_complex(c + r, c + cr);
expect_approximate_complex(c - r, c - cr);
expect_approximate_complex(c * r, c * cr);
expect_approximate_complex(c / r, c / cr);
}