This is used by tests to set the default time zone to UTC.
This is because certain tests create JavaScript Date objects, which are
in the current timezone.
If transferring a cached response body fails for any reason, we will now
issue a network request instead of failing the request outright.
The catch here is that we will have already transferred the response
code and headers to the client, and potentially some of the body. So we
attempt to only request the remaining data over the network using a
range request. This feels a bit sketchy, but this is also how Chromium
behaves.
However, the server may or may not support range requests. If they do,
we can expect an HTTP 206 response with the bytes we need. If not, we
will receive an HTTP 200 (assuming the request succeeded), along with
the entire object's body. In this case, we also behave like Chromium,
and internally drop number of bytes we had already transferred.
If we are unable to pipe the response body from a cache file to the
client, let's take the extra safe approach of deleting the cache file
for now. We already remove the file if we weren't able to read its
metadata during initialization.
This is a bit of a blunt hammer, but this hooks an action to clear the
HTTP disk cache into the existing Clear Cache action. Upon invocation,
it stops all existing cache entries from making further progress, and
then deletes the entire cache index and all cache files.
In the future, we will of course want more fine-grained control over
cache deletion, e.g. via an about:history page.
This adds a disk cache for HTTP responses received from the network. For
now, we take a rather conservative approach to caching. We don't cache a
response until we're 100% sure it is cacheable (there are heuristics we
can implement in the future based on the absence of specific headers).
The cache is broken into 2 categories of files:
1. An index file. This is a SQL database containing metadata about each
cache entry (URL, timestamps, etc.).
2. Cache files. Each cached response is in its own file. The file is an
amalgamation of all info needed to reconstruct an HTTP response. This
includes the status code, headers, body, etc.
A cache entry is created once we receive the headers for a response. The
index, however, is not updated at this point. We stream the body into
the cache entry as it is received. Once we've successfully cached the
entire body, we create an index entry in the database. If any of these
steps failed along the way, the cache entry is removed and the index is
left untouched.
Subsequent requests are checked for cache hits from the index. If a hit
is found, we read just enough of the cache entry to inform WebContent of
the status code and headers. The body of the response is piped to WC via
syscalls, such that the transfer happens entirely in the kernel; no need
to allocate the memory for the body in userspace (WC still allocates a
buffer to hold the data, of course). If an error occurs while piping the
body, we currently error out the request. There is a FIXME to switch to
a network request.
Cache hits are also validated for freshness before they are used. If a
response has expired, we remove it and its index entry, and proceed with
a network request.
I noticed the existing code would end up calling
`computed_properties->property(PropertyID::Custom)`
so let's actually ask for the custom property instead.
Global Privacy Control aims to be a replacement for Do Not Track. DNT
ended up not being a great solution, as it wasn't enforced by law. This
actually resulted in the DNT header serving as an extra fingerprinting
data point.
GPC is becoming enforced by law in USA states such as California and
Colorado. CA is further working on a bill which requires that browsers
implement such an opt-out preference signal (OOPS):
https://cppa.ca.gov/announcements/2025/20250911.html
This patch replaces DNT with GPC and hooks up the associated settings.
Allows formulas to update on Google Sheets, which uses a Worker to
update them and makes cookie authenticated requests, which was failing
before this commit.
This has the limitation that it has to proxy through the WebContent
process, but that's how the current infrastructure is, which is outside
the scope of this commit.
And make it a DOM::Node, not DOM::Element. This makes everything flow
much better, such as spec texts that explicitly mention "focused area"
as the fact that we don't necessarily need to traverse a tree of
elements, since a Node can be focusable as well.
Eventually this will need to be a struct with a separate "focused area"
and "DOM anchor", but this change will make it easier to achieve that.
Before this change, clients were kept alive by making them children of
the TCPServer object. This ownership model is going away (and this was
the only remaining use of it!) so let's just put the clients in a hash
table instead.
This reverts 0e3487b9ab.
Back when I made that change, I thought we could make our StyleValue
classes match the typed-om definitions directly. However, they have
different requirements. Typed-om types need to be mutable and GCed,
whereas StyleValues are immutable and ideally wouldn't require a JS VM.
While I was already making such a cataclysmic change, I've moved it into
the StyleValues directory, because it *not* being there has bothered me
for a long time. 😅
This has quite a lot of fall out. But the majority of it is just type or
UDL substitution, where the changes just fall through to other function
calls.
By changing property key storage to UTF-16, the main affected areas are:
* NativeFunction names must now be UTF-16
* Bytecode identifiers must now be UTF-16
* Module/binding names must now be UTF-16