/* * Copyright (c) 2020, Stephan Unverwerth * Copyright (c) 2020-2023, Linus Groh * Copyright (c) 2023-2025, Andreas Kling * Copyright (c) 2023, Shannon Booth * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS { GC_DEFINE_ALLOCATOR(ECMAScriptFunctionObject); GC::Ref ECMAScriptFunctionObject::create(Realm& realm, Utf16FlyString name, ByteString source_text, Statement const& ecmascript_code, NonnullRefPtr parameters, i32 function_length, Vector local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, FunctionParsingInsights parsing_insights, bool is_arrow_function, Variant class_field_initializer_name) { Object* prototype = nullptr; switch (kind) { case FunctionKind::Normal: prototype = realm.intrinsics().function_prototype(); break; case FunctionKind::Generator: prototype = realm.intrinsics().generator_function_prototype(); break; case FunctionKind::Async: prototype = realm.intrinsics().async_function_prototype(); break; case FunctionKind::AsyncGenerator: prototype = realm.intrinsics().async_generator_function_prototype(); break; } auto shared_data = realm.heap().allocate( realm.vm(), kind, move(name), function_length, *parameters, ecmascript_code, source_text, is_strict, is_arrow_function, parsing_insights, move(local_variables_names)); shared_data->m_class_field_initializer_name = move(class_field_initializer_name); return realm.create( move(shared_data), parent_environment, private_environment, *prototype); } GC::Ref ECMAScriptFunctionObject::create(Realm& realm, Utf16FlyString name, Object& prototype, ByteString source_text, Statement const& ecmascript_code, NonnullRefPtr parameters, i32 function_length, Vector local_variables_names, Environment* parent_environment, PrivateEnvironment* private_environment, FunctionKind kind, bool is_strict, FunctionParsingInsights parsing_insights, bool is_arrow_function, Variant class_field_initializer_name) { auto shared_data = realm.heap().allocate( realm.vm(), kind, move(name), function_length, *parameters, ecmascript_code, source_text, is_strict, is_arrow_function, parsing_insights, move(local_variables_names)); shared_data->m_class_field_initializer_name = move(class_field_initializer_name); return realm.create( move(shared_data), parent_environment, private_environment, prototype); } GC::Ref ECMAScriptFunctionObject::create_from_function_node( FunctionNode const& function_node, Utf16FlyString name, GC::Ref realm, GC::Ptr parent_environment, GC::Ptr private_environment) { GC::Ptr prototype = nullptr; switch (function_node.kind()) { case FunctionKind::Normal: prototype = realm->intrinsics().function_prototype(); break; case FunctionKind::Generator: prototype = realm->intrinsics().generator_function_prototype(); break; case FunctionKind::Async: prototype = realm->intrinsics().async_function_prototype(); break; case FunctionKind::AsyncGenerator: prototype = realm->intrinsics().async_generator_function_prototype(); break; } auto shared_data = function_node.shared_data(); if (!shared_data) { shared_data = realm->heap().allocate( realm->vm(), function_node.kind(), move(name), function_node.function_length(), function_node.parameters(), *function_node.body_ptr(), function_node.source_text(), function_node.is_strict_mode(), function_node.is_arrow_function(), function_node.parsing_insights(), function_node.local_variables_names()); function_node.set_shared_data(shared_data); } return realm->create( *shared_data, parent_environment, private_environment, *prototype); } ECMAScriptFunctionObject::ECMAScriptFunctionObject( GC::Ref shared_data, Environment* parent_environment, PrivateEnvironment* private_environment, Object& prototype) : FunctionObject(prototype) , m_shared_data(shared_data) , m_environment(parent_environment) , m_private_environment(private_environment) { if (!is_arrow_function() && kind() == FunctionKind::Normal) unsafe_set_shape(realm()->intrinsics().normal_function_shape()); // 15. Set F.[[ScriptOrModule]] to GetActiveScriptOrModule(). m_script_or_module = vm().get_active_script_or_module(); } void ECMAScriptFunctionObject::initialize(Realm& realm) { auto& vm = this->vm(); Base::initialize(realm); // Note: The ordering of these properties must be: length, name, prototype which is the order // they are defined in the spec: https://tc39.es/ecma262/#sec-function-instances . // This is observable through something like: https://tc39.es/ecma262/#sec-ordinaryownpropertykeys // which must give the properties in chronological order which in this case is the order they // are defined in the spec. m_name_string = PrimitiveString::create(vm, name()); if (!is_arrow_function() && kind() == FunctionKind::Normal) { put_direct(realm.intrinsics().normal_function_length_offset(), Value(function_length())); put_direct(realm.intrinsics().normal_function_name_offset(), m_name_string); auto prototype = Object::create_with_premade_shape(realm.intrinsics().normal_function_prototype_shape()); prototype->put_direct(realm.intrinsics().normal_function_prototype_constructor_offset(), this); put_direct(realm.intrinsics().normal_function_prototype_offset(), prototype); } else { PropertyDescriptor length_descriptor { .value = Value(function_length()), .writable = false, .enumerable = false, .configurable = true }; MUST(define_property_or_throw(vm.names.length, length_descriptor)); PropertyDescriptor name_descriptor { .value = m_name_string, .writable = false, .enumerable = false, .configurable = true }; MUST(define_property_or_throw(vm.names.name, name_descriptor)); if (!is_arrow_function()) { Object* prototype = nullptr; switch (kind()) { case FunctionKind::Normal: VERIFY_NOT_REACHED(); break; case FunctionKind::Generator: // prototype is "g1.prototype" in figure-2 (https://tc39.es/ecma262/img/figure-2.png) prototype = Object::create_prototype(realm, realm.intrinsics().generator_function_prototype_prototype()); break; case FunctionKind::Async: break; case FunctionKind::AsyncGenerator: prototype = Object::create_prototype(realm, realm.intrinsics().async_generator_function_prototype_prototype()); break; } // 27.7.4 AsyncFunction Instances, https://tc39.es/ecma262/#sec-async-function-instances // AsyncFunction instances do not have a prototype property as they are not constructible. if (kind() != FunctionKind::Async) define_direct_property(vm.names.prototype, prototype, Attribute::Writable); } } } ThrowCompletionOr ECMAScriptFunctionObject::get_stack_frame_size(size_t& registers_and_constants_and_locals_count, size_t& argument_count) { auto& executable = shared_data().m_executable; if (!executable) { if (is_module_wrapper()) { executable = TRY(Bytecode::compile(vm(), ecmascript_code(), kind(), name())); } else { executable = TRY(Bytecode::compile(vm(), shared_data(), Bytecode::BuiltinAbstractOperationsEnabled::No)); } } registers_and_constants_and_locals_count = executable->registers_and_constants_and_locals_count; argument_count = max(argument_count, formal_parameters().size()); return {}; } // 10.2.1 [[Call]] ( thisArgument, argumentsList ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-call-thisargument-argumentslist FLATTEN ThrowCompletionOr ECMAScriptFunctionObject::internal_call(ExecutionContext& callee_context, Value this_argument) { auto& vm = this->vm(); ASSERT(bytecode_executable()); // 1. Let callerContext be the running execution context. // NOTE: No-op, kept by the VM in its execution context stack. // 2. Let calleeContext be PrepareForOrdinaryCall(F, undefined). prepare_for_ordinary_call(vm, callee_context, nullptr); // 3. Assert: calleeContext is now the running execution context. ASSERT(&vm.running_execution_context() == &callee_context); // 4. If F.[[IsClassConstructor]] is true, then if (is_class_constructor()) [[unlikely]] { // a. Let error be a newly created TypeError object. // b. NOTE: error is created in calleeContext with F's associated Realm Record. auto throw_completion = vm.throw_completion(ErrorType::ClassConstructorWithoutNew, name()); // c. Remove calleeContext from the execution context stack and restore callerContext as the running execution context. vm.pop_execution_context(); // d. Return ThrowCompletion(error). return throw_completion; } // 5. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument). if (uses_this()) ordinary_call_bind_this(vm, callee_context, this_argument); // 6. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)). auto result = ordinary_call_evaluate_body(vm, callee_context); // 7. Remove calleeContext from the execution context stack and restore callerContext as the running execution context. vm.pop_execution_context(); // 8. If result.[[Type]] is return, return result.[[Value]]. // 9. Assert: result is a throw completion. // 10. Return ? result. return result; } // 10.2.2 [[Construct]] ( argumentsList, newTarget ), https://tc39.es/ecma262/#sec-ecmascript-function-objects-construct-argumentslist-newtarget FLATTEN ThrowCompletionOr> ECMAScriptFunctionObject::internal_construct(ExecutionContext& callee_context, FunctionObject& new_target) { auto& vm = this->vm(); ASSERT(bytecode_executable()); // 1. Let callerContext be the running execution context. // NOTE: No-op, kept by the VM in its execution context stack. // 2. Let kind be F.[[ConstructorKind]]. auto kind = constructor_kind(); GC::Ptr this_argument; // 3. If kind is base, then if (kind == ConstructorKind::Base) { // a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%Object.prototype%"). this_argument = TRY(ordinary_create_from_constructor(vm, *realm(), new_target, &Intrinsics::object_prototype, ConstructWithPrototypeTag::Tag)); } // 4. Let calleeContext be PrepareForOrdinaryCall(F, newTarget). prepare_for_ordinary_call(vm, callee_context, &new_target); // 5. Assert: calleeContext is now the running execution context. ASSERT(&vm.running_execution_context() == &callee_context); // 6. If kind is base, then if (kind == ConstructorKind::Base) { // a. Perform OrdinaryCallBindThis(F, calleeContext, thisArgument). if (uses_this()) ordinary_call_bind_this(vm, callee_context, this_argument); // b. Let initializeResult be Completion(InitializeInstanceElements(thisArgument, F)). auto initialize_result = this_argument->initialize_instance_elements(*this); // c. If initializeResult is an abrupt completion, then if (initialize_result.is_throw_completion()) { // i. Remove calleeContext from the execution context stack and restore callerContext as the running execution context. vm.pop_execution_context(); // ii. Return ? initializeResult. return initialize_result.throw_completion(); } } // 7. Let constructorEnv be the LexicalEnvironment of calleeContext. auto constructor_env = callee_context.lexical_environment; // 8. Let result be Completion(OrdinaryCallEvaluateBody(F, argumentsList)). auto result = ordinary_call_evaluate_body(vm, callee_context); // 9. Remove calleeContext from the execution context stack and restore callerContext as the running execution context. vm.pop_execution_context(); // 10. If result is a throw completion, then if (result.is_error()) { // a. Return ? result. return result.release_error(); } // 11. Assert: result is a return completion. // NOTE: We already checked !is_error() above. // 12. If Type(result.[[Value]]) is Object, return result.[[Value]]. if (result.value().is_object()) return GC::Ref { const_cast(result.value().as_object()) }; // 13. If kind is base, return thisArgument. if (kind == ConstructorKind::Base) return *this_argument; // 14. If result.[[Value]] is not undefined, throw a TypeError exception. if (!result.value().is_undefined()) return vm.throw_completion(ErrorType::DerivedConstructorReturningInvalidValue); // 15. Let thisBinding be ? constructorEnv.GetThisBinding(). auto this_binding = TRY(constructor_env->get_this_binding(vm)); // 16. Assert: Type(thisBinding) is Object. ASSERT(this_binding.is_object()); // 17. Return thisBinding. return this_binding.as_object(); } void ECMAScriptFunctionObject::visit_edges(Visitor& visitor) { Base::visit_edges(visitor); visitor.visit(m_environment); visitor.visit(m_private_environment); visitor.visit(m_home_object); visitor.visit(m_name_string); visitor.visit(m_shared_data); if (m_class_data) { for (auto& field : m_class_data->fields) { field.initializer.visit( [&visitor](GC::Ref& initializer) { visitor.visit(initializer); }, [&visitor](Value initializer) { visitor.visit(initializer); }, [](Empty) {}); if (auto* property_key_ptr = field.name.get_pointer(); property_key_ptr && property_key_ptr->is_symbol()) visitor.visit(property_key_ptr->as_symbol()); } for (auto& private_element : m_class_data->private_methods) visitor.visit(private_element.value); } m_script_or_module.visit( [](Empty) {}, [&](auto& script_or_module) { visitor.visit(script_or_module); }); } // 10.2.7 MakeMethod ( F, homeObject ), https://tc39.es/ecma262/#sec-makemethod void ECMAScriptFunctionObject::make_method(Object& home_object) { // 1. Set F.[[HomeObject]] to homeObject. m_home_object = &home_object; // 2. Return unused. } // 10.2.1.1 PrepareForOrdinaryCall ( F, newTarget ), https://tc39.es/ecma262/#sec-prepareforordinarycall void ECMAScriptFunctionObject::prepare_for_ordinary_call(VM& vm, ExecutionContext& callee_context, Object* new_target) { // 1. Let callerContext be the running execution context. // 2. Let calleeContext be a new ECMAScript code execution context. // 3. Set the Function of calleeContext to F. callee_context.function = this; // 4. Let calleeRealm be F.[[Realm]]. // 5. Set the Realm of calleeContext to calleeRealm. callee_context.realm = realm(); // 6. Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]]. callee_context.script_or_module = m_script_or_module; if (function_environment_needed()) { // 7. Let localEnv be NewFunctionEnvironment(F, newTarget). auto local_environment = new_function_environment(*this, new_target); local_environment->ensure_capacity(shared_data().m_function_environment_bindings_count); // 8. Set the LexicalEnvironment of calleeContext to localEnv. callee_context.lexical_environment = local_environment; // 9. Set the VariableEnvironment of calleeContext to localEnv. callee_context.variable_environment = local_environment; } else { callee_context.lexical_environment = environment(); callee_context.variable_environment = environment(); } // 10. Set the PrivateEnvironment of calleeContext to F.[[PrivateEnvironment]]. callee_context.private_environment = m_private_environment; // 11. If callerContext is not already suspended, suspend callerContext. // 12. Push calleeContext onto the execution context stack; calleeContext is now the running execution context. // NOTE: We don't check for stack overflow here. The bytecode interpreter will do it anyway // when entering the function we're about to call. vm.push_execution_context(callee_context); // 13. NOTE: Any exception objects produced after this point are associated with calleeRealm. // 14. Return calleeContext. // NOTE: See the comment after step 2 above about how contexts are allocated on the C++ stack. } // 10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArgument ), https://tc39.es/ecma262/#sec-ordinarycallbindthis void ECMAScriptFunctionObject::ordinary_call_bind_this(VM& vm, ExecutionContext& callee_context, Value this_argument) { // 1. Let thisMode be F.[[ThisMode]]. // If thisMode is lexical, return unused. if (this_mode() == ThisMode::Lexical) return; // 3. Let calleeRealm be F.[[Realm]]. auto callee_realm = realm(); // 4. Let localEnv be the LexicalEnvironment of calleeContext. auto local_env = callee_context.lexical_environment; Value this_value; // 5. If thisMode is strict, let thisValue be thisArgument. if (this_mode() == ThisMode::Strict) { this_value = this_argument; } // 6. Else, else { // a. If thisArgument is undefined or null, then if (this_argument.is_nullish()) { // i. Let globalEnv be calleeRealm.[[GlobalEnv]]. // ii. Assert: globalEnv is a global Environment Record. auto& global_env = callee_realm->global_environment(); // iii. Let thisValue be globalEnv.[[GlobalThisValue]]. this_value = &global_env.global_this_value(); } // b. Else, else { // i. Let thisValue be ! ToObject(thisArgument). this_value = MUST(this_argument.to_object(vm)); // ii. NOTE: ToObject produces wrapper objects using calleeRealm. ASSERT(vm.current_realm() == callee_realm); } } // 7. Assert: localEnv is a function Environment Record. // 8. Assert: The next step never returns an abrupt completion because localEnv.[[ThisBindingStatus]] is not initialized. // 9. Perform ! localEnv.BindThisValue(thisValue). callee_context.this_value = this_value; if (function_environment_needed()) MUST(as(*local_env).bind_this_value(vm, this_value)); // 10. Return unused. } // 27.7.5.1 AsyncFunctionStart ( promiseCapability, asyncFunctionBody ), https://tc39.es/ecma262/#sec-async-functions-abstract-operations-async-function-start template void async_function_start(VM& vm, PromiseCapability const& promise_capability, T const& async_function_body) { // 1. Let runningContext be the running execution context. auto& running_context = vm.running_execution_context(); // 2. Let asyncContext be a copy of runningContext. auto async_context = running_context.copy(); // 3. NOTE: Copying the execution state is required for AsyncBlockStart to resume its execution. It is ill-defined to resume a currently executing context. // 4. Perform AsyncBlockStart(promiseCapability, asyncFunctionBody, asyncContext). async_block_start(vm, async_function_body, promise_capability, *async_context); // 5. Return unused. } // 27.7.5.2 AsyncBlockStart ( promiseCapability, asyncBody, asyncContext ), https://tc39.es/ecma262/#sec-asyncblockstart template void async_block_start(VM& vm, T const& async_body, PromiseCapability const& promise_capability, ExecutionContext& async_context) { auto& realm = *vm.current_realm(); // 1. Let runningContext be the running execution context. auto& running_context = vm.running_execution_context(); // 2. Let closure be a new Abstract Closure with no parameters that captures promiseCapability and asyncBody and performs the following steps when called: auto closure = NativeFunction::create(realm, {}, [&async_body, &promise_capability](auto& vm) -> ThrowCompletionOr { Completion result; // a. Let acAsyncContext be the running execution context. // b. If asyncBody is a Parse Node, then if constexpr (!IsSame>) { // i. Let result be Completion(Evaluation of asyncBody). auto maybe_executable = Bytecode::compile(vm, async_body, FunctionKind::Async, "AsyncBlockStart"_utf16_fly_string); if (maybe_executable.is_error()) result = maybe_executable.release_error(); else result = vm.bytecode_interpreter().run_executable(vm.running_execution_context(), *maybe_executable.value(), {}); } // c. Else, else { // i. Assert: asyncBody is an Abstract Closure with no parameters. // ii. Let result be asyncBody(). result = async_body.function()(); } // d. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done. // e. Remove acAsyncContext from the execution context stack and restore the execution context that is at the top of the execution context stack as the running execution context. vm.pop_execution_context(); // f. If result is a normal completion, then if (result.type() == Completion::Type::Normal) { // i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « undefined »). MUST(call(vm, *promise_capability.resolve(), js_undefined(), js_undefined())); } // g. Else if result is a return completion, then else if (result.type() == Completion::Type::Return) { // i. Perform ! Call(promiseCapability.[[Resolve]], undefined, « result.[[Value]] »). MUST(call(vm, *promise_capability.resolve(), js_undefined(), result.value())); } // h. Else, else { // i. Assert: result is a throw completion. VERIFY(result.type() == Completion::Type::Throw); // ii. Perform ! Call(promiseCapability.[[Reject]], undefined, « result.[[Value]] »). MUST(call(vm, *promise_capability.reject(), js_undefined(), result.value())); } // i. Return unused. // NOTE: We don't support returning an empty/optional/unused value here. return js_undefined(); }); // 3. Set the code evaluation state of asyncContext such that when evaluation is resumed for that execution context, closure will be called with no arguments. // 4. Push asyncContext onto the execution context stack; asyncContext is now the running execution context. auto push_result = vm.push_execution_context(async_context, {}); if (push_result.is_error()) return; // 5. Resume the suspended evaluation of asyncContext. Let result be the value returned by the resumed computation. auto result = call(vm, *closure, *async_context.this_value); // 6. Assert: When we return here, asyncContext has already been removed from the execution context stack and runningContext is the currently running execution context. VERIFY(&vm.running_execution_context() == &running_context); // 7. Assert: result is a normal completion with a value of unused. The possible sources of this value are Await or, if the async function doesn't await anything, step 2.i above. VERIFY(result.has_value() && result.value().is_undefined()); // 8. Return unused. } template void async_block_start(VM&, NonnullRefPtr const& async_body, PromiseCapability const&, ExecutionContext&); template void async_function_start(VM&, PromiseCapability const&, NonnullRefPtr const& async_function_body); template void async_block_start(VM&, GC::Function const& async_body, PromiseCapability const&, ExecutionContext&); template void async_function_start(VM&, PromiseCapability const&, GC::Function const& async_function_body); // 10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList ), https://tc39.es/ecma262/#sec-ordinarycallevaluatebody // 15.8.4 Runtime Semantics: EvaluateAsyncFunctionBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatefunctionbody ThrowCompletionOr ECMAScriptFunctionObject::ordinary_call_evaluate_body(VM& vm, ExecutionContext& context) { auto result = TRY(vm.bytecode_interpreter().run_executable(context, *bytecode_executable(), {})); // NOTE: Running the bytecode should eventually return a completion. // Until it does, we assume "return" and include the undefined fallback from the call site. if (kind() == FunctionKind::Normal) return result; if (kind() == FunctionKind::AsyncGenerator) return AsyncGenerator::create(*context.realm, result, GC::Ref { *this }, context.copy()); auto generator_object = GeneratorObject::create(*context.realm, result, GC::Ref { *this }, context.copy()); // NOTE: Async functions are entirely transformed to generator functions, and wrapped in a custom driver that returns a promise // See AwaitExpression::generate_bytecode() for the transformation. if (kind() == FunctionKind::Async) return AsyncFunctionDriverWrapper::create(*context.realm, generator_object); ASSERT(kind() == FunctionKind::Generator); return generator_object; } void ECMAScriptFunctionObject::set_name(Utf16FlyString const& name) { auto& vm = this->vm(); const_cast(shared_data()).m_name = name; m_name_string = PrimitiveString::create(vm, name); PropertyDescriptor descriptor { .value = m_name_string, .writable = false, .enumerable = false, .configurable = true }; MUST(define_property_or_throw(vm.names.name, descriptor)); } ECMAScriptFunctionObject::ClassData& ECMAScriptFunctionObject::ensure_class_data() const { if (!m_class_data) m_class_data = make(); return *m_class_data; } Utf16String ECMAScriptFunctionObject::name_for_call_stack() const { return m_name_string->utf16_string(); } }