mirror of
				https://github.com/LadybirdBrowser/ladybird.git
				synced 2025-10-27 03:14:15 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			4298 lines
		
	
	
	
		
			174 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4298 lines
		
	
	
	
		
			174 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | ||
|  * Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
 | ||
|  * Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
 | ||
|  * Copyright (c) 2021, David Tuin <davidot@serenityos.org>
 | ||
|  *
 | ||
|  * SPDX-License-Identifier: BSD-2-Clause
 | ||
|  */
 | ||
| 
 | ||
| #include <AK/Demangle.h>
 | ||
| #include <AK/HashMap.h>
 | ||
| #include <AK/HashTable.h>
 | ||
| #include <AK/ScopeGuard.h>
 | ||
| #include <AK/StringBuilder.h>
 | ||
| #include <AK/TemporaryChange.h>
 | ||
| #include <LibCrypto/BigInt/SignedBigInteger.h>
 | ||
| #include <LibJS/AST.h>
 | ||
| #include <LibJS/Interpreter.h>
 | ||
| #include <LibJS/Runtime/AbstractOperations.h>
 | ||
| #include <LibJS/Runtime/Accessor.h>
 | ||
| #include <LibJS/Runtime/Array.h>
 | ||
| #include <LibJS/Runtime/BigInt.h>
 | ||
| #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
 | ||
| #include <LibJS/Runtime/Error.h>
 | ||
| #include <LibJS/Runtime/FunctionEnvironment.h>
 | ||
| #include <LibJS/Runtime/GlobalObject.h>
 | ||
| #include <LibJS/Runtime/IteratorOperations.h>
 | ||
| #include <LibJS/Runtime/MarkedValueList.h>
 | ||
| #include <LibJS/Runtime/NativeFunction.h>
 | ||
| #include <LibJS/Runtime/ObjectEnvironment.h>
 | ||
| #include <LibJS/Runtime/PrimitiveString.h>
 | ||
| #include <LibJS/Runtime/PromiseConstructor.h>
 | ||
| #include <LibJS/Runtime/PromiseReaction.h>
 | ||
| #include <LibJS/Runtime/Reference.h>
 | ||
| #include <LibJS/Runtime/RegExpObject.h>
 | ||
| #include <LibJS/Runtime/Shape.h>
 | ||
| #include <typeinfo>
 | ||
| 
 | ||
| namespace JS {
 | ||
| 
 | ||
| class InterpreterNodeScope {
 | ||
|     AK_MAKE_NONCOPYABLE(InterpreterNodeScope);
 | ||
|     AK_MAKE_NONMOVABLE(InterpreterNodeScope);
 | ||
| 
 | ||
| public:
 | ||
|     InterpreterNodeScope(Interpreter& interpreter, ASTNode const& node)
 | ||
|         : m_interpreter(interpreter)
 | ||
|         , m_chain_node { nullptr, node }
 | ||
|     {
 | ||
|         m_interpreter.vm().running_execution_context().current_node = &node;
 | ||
|         m_interpreter.push_ast_node(m_chain_node);
 | ||
|     }
 | ||
| 
 | ||
|     ~InterpreterNodeScope()
 | ||
|     {
 | ||
|         m_interpreter.pop_ast_node();
 | ||
|     }
 | ||
| 
 | ||
| private:
 | ||
|     Interpreter& m_interpreter;
 | ||
|     ExecutingASTNodeChain m_chain_node;
 | ||
| };
 | ||
| 
 | ||
| String ASTNode::class_name() const
 | ||
| {
 | ||
|     // NOTE: We strip the "JS::" prefix.
 | ||
|     return demangle(typeid(*this).name()).substring(4);
 | ||
| }
 | ||
| 
 | ||
| static void print_indent(int indent)
 | ||
| {
 | ||
|     out("{}", String::repeated(' ', indent * 2));
 | ||
| }
 | ||
| 
 | ||
| static void update_function_name(Value value, FlyString const& name)
 | ||
| {
 | ||
|     if (!value.is_function())
 | ||
|         return;
 | ||
|     auto& function = value.as_function();
 | ||
|     if (is<ECMAScriptFunctionObject>(function) && function.name().is_empty())
 | ||
|         static_cast<ECMAScriptFunctionObject&>(function).set_name(name);
 | ||
| }
 | ||
| 
 | ||
| static ThrowCompletionOr<String> get_function_name(GlobalObject& global_object, Value value)
 | ||
| {
 | ||
|     if (value.is_symbol())
 | ||
|         return String::formatted("[{}]", value.as_symbol().description());
 | ||
|     if (value.is_string())
 | ||
|         return value.as_string().string();
 | ||
|     return value.to_string(global_object);
 | ||
| }
 | ||
| 
 | ||
| // 14.2.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
 | ||
| // StatementList : StatementList StatementListItem
 | ||
| Completion ScopeNode::evaluate_statements(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     auto completion = normal_completion({});
 | ||
|     for (auto const& node : children()) {
 | ||
|         completion = node.execute(interpreter, global_object).update_empty(completion.value());
 | ||
|         if (completion.is_abrupt())
 | ||
|             break;
 | ||
|     }
 | ||
|     return completion;
 | ||
| }
 | ||
| 
 | ||
| // 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| static Completion labelled_evaluation(Interpreter& interpreter, GlobalObject& global_object, IterationStatement const& statement, Vector<FlyString> const& label_set)
 | ||
| {
 | ||
|     // 1. Let stmtResult be LoopEvaluation of IterationStatement with argument labelSet.
 | ||
|     auto result = statement.loop_evaluation(interpreter, global_object, label_set);
 | ||
| 
 | ||
|     // 2. If stmtResult.[[Type]] is break, then
 | ||
|     if (result.type() == Completion::Type::Break) {
 | ||
|         // a. If stmtResult.[[Target]] is empty, then
 | ||
|         if (!result.target().has_value()) {
 | ||
|             // i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).
 | ||
|             // ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
 | ||
|             result = normal_completion(result.value().value_or(js_undefined()));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return Completion(stmtResult).
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
 | ||
| // BreakableStatement : SwitchStatement
 | ||
| static Completion labelled_evaluation(Interpreter& interpreter, GlobalObject& global_object, SwitchStatement const& statement, Vector<FlyString> const&)
 | ||
| {
 | ||
|     // 1. Let stmtResult be the result of evaluating SwitchStatement.
 | ||
|     auto result = statement.execute_impl(interpreter, global_object);
 | ||
| 
 | ||
|     // 2. If stmtResult.[[Type]] is break, then
 | ||
|     if (result.type() == Completion::Type::Break) {
 | ||
|         // a. If stmtResult.[[Target]] is empty, then
 | ||
|         if (!result.target().has_value()) {
 | ||
|             // i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).
 | ||
|             // ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
 | ||
|             result = normal_completion(result.value().value_or(js_undefined()));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return Completion(stmtResult).
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
 | ||
| // LabelledStatement : LabelIdentifier : LabelledItem
 | ||
| static Completion labelled_evaluation(Interpreter& interpreter, GlobalObject& global_object, LabelledStatement const& statement, Vector<FlyString> const& label_set)
 | ||
| {
 | ||
|     auto const& labelled_item = *statement.labelled_item();
 | ||
| 
 | ||
|     // 1. Let label be the StringValue of LabelIdentifier.
 | ||
|     auto const& label = statement.label();
 | ||
| 
 | ||
|     // 2. Let newLabelSet be the list-concatenation of labelSet and « label ».
 | ||
|     // Optimization: Avoid vector copy if possible.
 | ||
|     Optional<Vector<FlyString>> new_label_set;
 | ||
|     if (is<IterationStatement>(labelled_item) || is<SwitchStatement>(labelled_item) || is<LabelledStatement>(labelled_item)) {
 | ||
|         new_label_set = label_set;
 | ||
|         new_label_set->append(label);
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Let stmtResult be LabelledEvaluation of LabelledItem with argument newLabelSet.
 | ||
|     Completion result;
 | ||
|     if (is<IterationStatement>(labelled_item))
 | ||
|         result = labelled_evaluation(interpreter, global_object, static_cast<IterationStatement const&>(labelled_item), *new_label_set);
 | ||
|     else if (is<SwitchStatement>(labelled_item))
 | ||
|         result = labelled_evaluation(interpreter, global_object, static_cast<SwitchStatement const&>(labelled_item), *new_label_set);
 | ||
|     else if (is<LabelledStatement>(labelled_item))
 | ||
|         result = labelled_evaluation(interpreter, global_object, static_cast<LabelledStatement const&>(labelled_item), *new_label_set);
 | ||
|     else
 | ||
|         result = labelled_item.execute(interpreter, global_object);
 | ||
| 
 | ||
|     // 4. If stmtResult.[[Type]] is break and SameValue(stmtResult.[[Target]], label) is true, then
 | ||
|     if (result.type() == Completion::Type::Break && result.target() == label) {
 | ||
|         // a. Set stmtResult to NormalCompletion(stmtResult.[[Value]]).
 | ||
|         result = normal_completion(result.value());
 | ||
|     }
 | ||
| 
 | ||
|     // 5. Return Completion(stmtResult).
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // 14.13.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-labelled-statements-runtime-semantics-evaluation
 | ||
| Completion LabelledStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return LabelledEvaluation of this LabelledStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, global_object, *this, {});
 | ||
| }
 | ||
| 
 | ||
| void LabelledStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Label)");
 | ||
|     print_indent(indent + 2);
 | ||
|     outln("\"{}\"", m_label);
 | ||
| 
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Labelled item)");
 | ||
|     m_labelled_item->dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| // 10.2.1.3 Runtime Semantics: EvaluateBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatebody
 | ||
| Completion FunctionBody::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // Note: Scoping should have already been set up by whoever is calling this FunctionBody.
 | ||
|     // 1. Return ? EvaluateFunctionBody of FunctionBody with arguments functionObject and argumentsList.
 | ||
|     return evaluate_statements(interpreter, global_object);
 | ||
| }
 | ||
| 
 | ||
| // 14.2.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
 | ||
| Completion BlockStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     Environment* old_environment { nullptr };
 | ||
|     ArmedScopeGuard restore_environment = [&] {
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
|     };
 | ||
| 
 | ||
|     // Optimization: We only need a new lexical environment if there are any lexical declarations. :^)
 | ||
|     if (has_lexical_declarations()) {
 | ||
|         old_environment = vm.running_execution_context().lexical_environment;
 | ||
|         auto* block_environment = new_declarative_environment(*old_environment);
 | ||
|         block_declaration_instantiation(global_object, block_environment);
 | ||
|         vm.running_execution_context().lexical_environment = block_environment;
 | ||
|     } else {
 | ||
|         restore_environment.disarm();
 | ||
|     }
 | ||
| 
 | ||
|     return evaluate_statements(interpreter, global_object);
 | ||
| }
 | ||
| 
 | ||
| Completion Program::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // FIXME: This tries to be "ScriptEvaluation" and "evaluating scriptBody" at once. It shouldn't.
 | ||
|     //        Clean this up and update perform_eval() / perform_shadow_realm_eval()
 | ||
| 
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     VERIFY(interpreter.lexical_environment() && interpreter.lexical_environment()->is_global_environment());
 | ||
|     auto& global_env = static_cast<GlobalEnvironment&>(*interpreter.lexical_environment());
 | ||
| 
 | ||
|     TRY(global_declaration_instantiation(interpreter, global_object, global_env));
 | ||
| 
 | ||
|     return evaluate_statements(interpreter, global_object);
 | ||
| }
 | ||
| 
 | ||
| // 15.2.6 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-evaluation
 | ||
| Completion FunctionDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     if (m_is_hoisted) {
 | ||
|         // Perform special annexB steps see step 3 of: https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
 | ||
|         auto* variable_environment = interpreter.vm().running_execution_context().variable_environment;
 | ||
|         auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment;
 | ||
|         auto function_object = MUST(lexical_environment->get_binding_value(global_object, name(), false));
 | ||
|         MUST(variable_environment->set_mutable_binding(global_object, name(), function_object, false));
 | ||
|     }
 | ||
| 
 | ||
|     // 1. Return NormalCompletion(empty).
 | ||
|     return normal_completion({});
 | ||
| }
 | ||
| 
 | ||
| // 15.2.6 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-evaluation
 | ||
| Completion FunctionExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return InstantiateOrdinaryFunctionExpression of FunctionExpression.
 | ||
|     return instantiate_ordinary_function_expression(interpreter, global_object, name());
 | ||
| }
 | ||
| 
 | ||
| // 15.2.5 Runtime Semantics: InstantiateOrdinaryFunctionExpression, https://tc39.es/ecma262/#sec-runtime-semantics-instantiateordinaryfunctionexpression
 | ||
| Value FunctionExpression::instantiate_ordinary_function_expression(Interpreter& interpreter, GlobalObject& global_object, FlyString given_name) const
 | ||
| {
 | ||
|     if (given_name.is_empty())
 | ||
|         given_name = "";
 | ||
|     auto has_own_name = !name().is_empty();
 | ||
| 
 | ||
|     auto const& used_name = has_own_name ? name() : given_name;
 | ||
|     auto* scope = interpreter.lexical_environment();
 | ||
|     if (has_own_name) {
 | ||
|         VERIFY(scope);
 | ||
|         scope = new_declarative_environment(*scope);
 | ||
|         MUST(scope->create_immutable_binding(global_object, name(), false));
 | ||
|     }
 | ||
| 
 | ||
|     auto* private_scope = interpreter.vm().running_execution_context().private_environment;
 | ||
| 
 | ||
|     auto closure = ECMAScriptFunctionObject::create(global_object, used_name, body(), parameters(), function_length(), scope, private_scope, kind(), is_strict_mode(), might_need_arguments_object(), contains_direct_call_to_eval(), is_arrow_function());
 | ||
| 
 | ||
|     // FIXME: 6. Perform SetFunctionName(closure, name).
 | ||
|     // FIXME: 7. Perform MakeConstructor(closure).
 | ||
| 
 | ||
|     if (has_own_name)
 | ||
|         MUST(scope->initialize_binding(global_object, name(), closure));
 | ||
| 
 | ||
|     return closure;
 | ||
| }
 | ||
| 
 | ||
| // 14.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-empty-statement-runtime-semantics-evaluation
 | ||
| Completion EmptyStatement::execute(Interpreter&, GlobalObject&) const
 | ||
| {
 | ||
|     // 1. Return NormalCompletion(empty).
 | ||
|     return normal_completion({});
 | ||
| }
 | ||
| 
 | ||
| // 14.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-expression-statement-runtime-semantics-evaluation
 | ||
| Completion ExpressionStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Return ? GetValue(exprRef).
 | ||
|     return m_expression->execute(interpreter, global_object);
 | ||
| }
 | ||
| 
 | ||
| // TODO: This shouldn't exist. Refactor into EvaluateCall.
 | ||
| ThrowCompletionOr<CallExpression::ThisAndCallee> CallExpression::compute_this_and_callee(Interpreter& interpreter, GlobalObject& global_object, Reference const& callee_reference) const
 | ||
| {
 | ||
|     if (callee_reference.is_property_reference()) {
 | ||
|         auto this_value = callee_reference.get_this_value();
 | ||
|         auto callee = TRY(callee_reference.get_value(global_object));
 | ||
| 
 | ||
|         return ThisAndCallee { this_value, callee };
 | ||
|     }
 | ||
| 
 | ||
|     // [[Call]] will handle that in non-strict mode the this value becomes the global object
 | ||
|     return ThisAndCallee {
 | ||
|         js_undefined(),
 | ||
|         callee_reference.is_unresolvable()
 | ||
|             ? TRY(m_callee->execute(interpreter, global_object)).release_value()
 | ||
|             : TRY(callee_reference.get_value(global_object))
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| // 13.3.8.1 Runtime Semantics: ArgumentListEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
 | ||
| static ThrowCompletionOr<void> argument_list_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector<CallExpression::Argument> const& arguments, MarkedValueList& list)
 | ||
| {
 | ||
|     list.ensure_capacity(arguments.size());
 | ||
| 
 | ||
|     for (auto& argument : arguments) {
 | ||
|         auto value = TRY(argument.value->execute(interpreter, global_object)).release_value();
 | ||
|         if (argument.is_spread) {
 | ||
|             auto result = TRY(get_iterator_values(global_object, value, [&](Value iterator_value) -> Optional<Completion> {
 | ||
|                 list.append(iterator_value);
 | ||
|                 return {};
 | ||
|             }));
 | ||
|         } else {
 | ||
|             list.append(value);
 | ||
|         }
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| // 13.3.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-new-operator-runtime-semantics-evaluation
 | ||
| // 13.3.5.1.1 EvaluateNew ( constructExpr, arguments ), https://tc39.es/ecma262/#sec-evaluatenew
 | ||
| Completion NewExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Let ref be the result of evaluating constructExpr.
 | ||
|     // 2. Let constructor be ? GetValue(ref).
 | ||
|     auto constructor = TRY(m_callee->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     // 3. If arguments is empty, let argList be a new empty List.
 | ||
|     // 4. Else,
 | ||
|     //    a. Let argList be ? ArgumentListEvaluation of arguments.
 | ||
|     MarkedValueList arg_list(vm.heap());
 | ||
|     TRY(argument_list_evaluation(interpreter, global_object, m_arguments, arg_list));
 | ||
| 
 | ||
|     // 5. If IsConstructor(constructor) is false, throw a TypeError exception.
 | ||
|     if (!constructor.is_constructor())
 | ||
|         return throw_type_error_for_callee(interpreter, global_object, constructor, "constructor"sv);
 | ||
| 
 | ||
|     // 6. Return ? Construct(constructor, argList).
 | ||
|     return Value { TRY(construct(global_object, constructor.as_function(), move(arg_list))) };
 | ||
| }
 | ||
| 
 | ||
| Completion CallExpression::throw_type_error_for_callee(Interpreter& interpreter, GlobalObject& global_object, Value callee_value, StringView call_type) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     if (is<Identifier>(*m_callee) || is<MemberExpression>(*m_callee)) {
 | ||
|         String expression_string;
 | ||
|         if (is<Identifier>(*m_callee)) {
 | ||
|             expression_string = static_cast<Identifier const&>(*m_callee).string();
 | ||
|         } else {
 | ||
|             expression_string = static_cast<MemberExpression const&>(*m_callee).to_string_approximation();
 | ||
|         }
 | ||
|         return vm.throw_completion<TypeError>(global_object, ErrorType::IsNotAEvaluatedFrom, callee_value.to_string_without_side_effects(), call_type, expression_string);
 | ||
|     } else {
 | ||
|         return vm.throw_completion<TypeError>(global_object, ErrorType::IsNotA, callee_value.to_string_without_side_effects(), call_type);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // 13.3.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-calls-runtime-semantics-evaluation
 | ||
| Completion CallExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto callee_reference = TRY(m_callee->to_reference(interpreter, global_object));
 | ||
| 
 | ||
|     auto [this_value, callee] = TRY(compute_this_and_callee(interpreter, global_object, callee_reference));
 | ||
| 
 | ||
|     VERIFY(!callee.is_empty());
 | ||
| 
 | ||
|     MarkedValueList arg_list(vm.heap());
 | ||
|     TRY(argument_list_evaluation(interpreter, global_object, m_arguments, arg_list));
 | ||
| 
 | ||
|     if (!callee.is_function())
 | ||
|         return throw_type_error_for_callee(interpreter, global_object, callee, "function"sv);
 | ||
| 
 | ||
|     auto& function = callee.as_function();
 | ||
| 
 | ||
|     if (&function == global_object.eval_function()
 | ||
|         && callee_reference.is_environment_reference()
 | ||
|         && callee_reference.name().is_string()
 | ||
|         && callee_reference.name().as_string() == vm.names.eval.as_string()) {
 | ||
| 
 | ||
|         auto script_value = arg_list.size() == 0 ? js_undefined() : arg_list[0];
 | ||
|         return perform_eval(script_value, global_object, vm.in_strict_mode() ? CallerMode::Strict : CallerMode::NonStrict, EvalMode::Direct);
 | ||
|     }
 | ||
| 
 | ||
|     return vm.call(function, this_value, move(arg_list));
 | ||
| }
 | ||
| 
 | ||
| // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
 | ||
| // SuperCall : super Arguments
 | ||
| Completion SuperCall::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Let newTarget be GetNewTarget().
 | ||
|     auto new_target = vm.get_new_target();
 | ||
| 
 | ||
|     // 2. Assert: Type(newTarget) is Object.
 | ||
|     VERIFY(new_target.is_function());
 | ||
| 
 | ||
|     // 3. Let func be ! GetSuperConstructor().
 | ||
|     auto* func = get_super_constructor(interpreter.vm());
 | ||
|     VERIFY(!vm.exception());
 | ||
| 
 | ||
|     // 4. Let argList be ? ArgumentListEvaluation of Arguments.
 | ||
|     MarkedValueList arg_list(vm.heap());
 | ||
|     TRY(argument_list_evaluation(interpreter, global_object, m_arguments, arg_list));
 | ||
| 
 | ||
|     // 5. If IsConstructor(func) is false, throw a TypeError exception.
 | ||
|     if (!func || !Value(func).is_constructor())
 | ||
|         return vm.throw_completion<TypeError>(global_object, ErrorType::NotAConstructor, "Super constructor");
 | ||
| 
 | ||
|     // 6. Let result be ? Construct(func, argList, newTarget).
 | ||
|     auto* result = TRY(construct(global_object, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
 | ||
| 
 | ||
|     // 7. Let thisER be GetThisEnvironment().
 | ||
|     auto& this_er = verify_cast<FunctionEnvironment>(get_this_environment(interpreter.vm()));
 | ||
| 
 | ||
|     // 8. Perform ? thisER.BindThisValue(result).
 | ||
|     TRY(this_er.bind_this_value(global_object, result));
 | ||
| 
 | ||
|     // 9. Let F be thisER.[[FunctionObject]].
 | ||
|     // 10. Assert: F is an ECMAScript function object. (NOTE: This is implied by the strong C++ type.)
 | ||
|     [[maybe_unused]] auto& f = this_er.function_object();
 | ||
| 
 | ||
|     // 11. Perform ? InitializeInstanceElements(result, F).
 | ||
|     TRY(vm.initialize_instance_elements(*result, f));
 | ||
| 
 | ||
|     // 12. Return result.
 | ||
|     return Value { result };
 | ||
| }
 | ||
| 
 | ||
| // 15.5.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-generator-function-definitions-runtime-semantics-evaluation
 | ||
| Completion YieldExpression::execute(Interpreter&, GlobalObject&) const
 | ||
| {
 | ||
|     // This should be transformed to a return.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 15.8.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-async-function-definitions-runtime-semantics-evaluation
 | ||
| Completion AwaitExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let exprRef be the result of evaluating UnaryExpression.
 | ||
|     // 2. Let value be ? GetValue(exprRef).
 | ||
|     auto value = TRY(m_argument->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     // 3. Return ? Await(value).
 | ||
|     return await(global_object, value);
 | ||
| }
 | ||
| 
 | ||
| // 14.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-return-statement-runtime-semantics-evaluation
 | ||
| Completion ReturnStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // ReturnStatement : return ;
 | ||
|     if (!m_argument) {
 | ||
|         // 1. Return Completion { [[Type]]: return, [[Value]]: undefined, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Return, js_undefined(), {} };
 | ||
|     }
 | ||
| 
 | ||
|     // ReturnStatement : return Expression ;
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Let exprValue be ? GetValue(exprRef).
 | ||
|     auto value = TRY(m_argument->execute(interpreter, global_object));
 | ||
| 
 | ||
|     // NOTE: Generators are not supported in the AST interpreter
 | ||
|     // 3. If ! GetGeneratorKind() is async, set exprValue to ? Await(exprValue).
 | ||
| 
 | ||
|     // 4. Return Completion { [[Type]]: return, [[Value]]: exprValue, [[Target]]: empty }.
 | ||
|     return { Completion::Type::Return, value, {} };
 | ||
| }
 | ||
| 
 | ||
| // 14.6.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-if-statement-runtime-semantics-evaluation
 | ||
| Completion IfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // IfStatement : if ( Expression ) Statement else Statement
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Let exprValue be ! ToBoolean(? GetValue(exprRef)).
 | ||
|     auto predicate_result = TRY(m_predicate->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     // 3. If exprValue is true, then
 | ||
|     if (predicate_result.to_boolean()) {
 | ||
|         // a. Let stmtCompletion be the result of evaluating the first Statement.
 | ||
|         // 5. Return Completion(UpdateEmpty(stmtCompletion, undefined)).
 | ||
|         return m_consequent->execute(interpreter, global_object).update_empty(js_undefined());
 | ||
|     }
 | ||
| 
 | ||
|     // 4. Else,
 | ||
|     if (m_alternate) {
 | ||
|         // a. Let stmtCompletion be the result of evaluating the second Statement.
 | ||
|         // 5. Return Completion(UpdateEmpty(stmtCompletion, undefined)).
 | ||
|         return m_alternate->execute(interpreter, global_object).update_empty(js_undefined());
 | ||
|     }
 | ||
| 
 | ||
|     // IfStatement : if ( Expression ) Statement
 | ||
|     // 3. If exprValue is false, then
 | ||
|     //    a. Return NormalCompletion(undefined).
 | ||
|     return normal_completion(js_undefined());
 | ||
| }
 | ||
| 
 | ||
| // 14.11.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-with-statement-runtime-semantics-evaluation
 | ||
| // WithStatement : with ( Expression ) Statement
 | ||
| Completion WithStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let value be the result of evaluating Expression.
 | ||
|     auto value = TRY(m_object->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     // 2. Let obj be ? ToObject(? GetValue(value)).
 | ||
|     auto* object = TRY(value.to_object(global_object));
 | ||
| 
 | ||
|     // 3. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     auto* old_environment = interpreter.vm().running_execution_context().lexical_environment;
 | ||
| 
 | ||
|     // 4. Let newEnv be NewObjectEnvironment(obj, true, oldEnv).
 | ||
|     auto* new_environment = new_object_environment(*object, true, old_environment);
 | ||
| 
 | ||
|     // 5. Set the running execution context's LexicalEnvironment to newEnv.
 | ||
|     interpreter.vm().running_execution_context().lexical_environment = new_environment;
 | ||
| 
 | ||
|     // 6. Let C be the result of evaluating Statement.
 | ||
|     auto result = m_body->execute(interpreter, global_object);
 | ||
| 
 | ||
|     // 7. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|     interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|     // 8. Return Completion(UpdateEmpty(C, undefined)).
 | ||
|     return result.update_empty(js_undefined());
 | ||
| }
 | ||
| 
 | ||
| // 14.7.1.1 LoopContinues ( completion, labelSet ), https://tc39.es/ecma262/#sec-loopcontinues
 | ||
| static bool loop_continues(Completion const& completion, Vector<FlyString> const& label_set)
 | ||
| {
 | ||
|     // 1. If completion.[[Type]] is normal, return true.
 | ||
|     if (completion.type() == Completion::Type::Normal)
 | ||
|         return true;
 | ||
| 
 | ||
|     // 2. If completion.[[Type]] is not continue, return false.
 | ||
|     if (completion.type() != Completion::Type::Continue)
 | ||
|         return false;
 | ||
| 
 | ||
|     // 3. If completion.[[Target]] is empty, return true.
 | ||
|     if (!completion.target().has_value())
 | ||
|         return true;
 | ||
| 
 | ||
|     // 4. If completion.[[Target]] is an element of labelSet, return true.
 | ||
|     if (label_set.contains_slow(*completion.target()))
 | ||
|         return true;
 | ||
| 
 | ||
|     // 5. Return false.
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion WhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, global_object, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.3.2 Runtime Semantics: WhileLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-whileloopevaluation
 | ||
| Completion WhileStatement::loop_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector<FlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     // 2. Repeat,
 | ||
|     for (;;) {
 | ||
|         // a. Let exprRef be the result of evaluating Expression.
 | ||
|         // b. Let exprValue be ? GetValue(exprRef).
 | ||
|         auto test_result = TRY(m_test->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|         // c. If ! ToBoolean(exprValue) is false, return NormalCompletion(V).
 | ||
|         if (!test_result.to_boolean())
 | ||
|             return normal_completion(last_value);
 | ||
| 
 | ||
|         // d. Let stmtResult be the result of evaluating Statement.
 | ||
|         auto body_result = m_body->execute(interpreter, global_object);
 | ||
| 
 | ||
|         // e. If LoopContinues(stmtResult, labelSet) is false, return Completion(UpdateEmpty(stmtResult, V)).
 | ||
|         if (!loop_continues(body_result, label_set))
 | ||
|             return body_result.update_empty(last_value);
 | ||
| 
 | ||
|         // f. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
 | ||
|         if (body_result.value().has_value())
 | ||
|             last_value = *body_result.value();
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion DoWhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, global_object, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.2.2 Runtime Semantics: DoWhileLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-dowhileloopevaluation
 | ||
| Completion DoWhileStatement::loop_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector<FlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     // 2. Repeat,
 | ||
|     for (;;) {
 | ||
|         // a. Let stmtResult be the result of evaluating Statement.
 | ||
|         auto body_result = m_body->execute(interpreter, global_object);
 | ||
| 
 | ||
|         // b. If LoopContinues(stmtResult, labelSet) is false, return Completion(UpdateEmpty(stmtResult, V)).
 | ||
|         if (!loop_continues(body_result, label_set))
 | ||
|             return body_result.update_empty(last_value);
 | ||
| 
 | ||
|         // c. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
 | ||
|         if (body_result.value().has_value())
 | ||
|             last_value = *body_result.value();
 | ||
| 
 | ||
|         // d. Let exprRef be the result of evaluating Expression.
 | ||
|         // e. Let exprValue be ? GetValue(exprRef).
 | ||
|         auto test_result = TRY(m_test->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|         // f. If ! ToBoolean(exprValue) is false, return NormalCompletion(V).
 | ||
|         if (!test_result.to_boolean())
 | ||
|             return normal_completion(last_value);
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion ForStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, global_object, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.4.2 Runtime Semantics: ForLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forloopevaluation
 | ||
| Completion ForStatement::loop_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector<FlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // Note we don't always set a new environment but to use RAII we must do this here.
 | ||
|     auto* old_environment = interpreter.lexical_environment();
 | ||
|     ScopeGuard restore_old_environment = [&] {
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
|     };
 | ||
| 
 | ||
|     Vector<FlyString> let_declarations;
 | ||
| 
 | ||
|     if (m_init) {
 | ||
|         if (is<VariableDeclaration>(*m_init) && static_cast<VariableDeclaration const&>(*m_init).declaration_kind() != DeclarationKind::Var) {
 | ||
|             auto* loop_environment = new_declarative_environment(*old_environment);
 | ||
|             auto& declaration = static_cast<VariableDeclaration const&>(*m_init);
 | ||
|             declaration.for_each_bound_name([&](auto const& name) {
 | ||
|                 if (declaration.declaration_kind() == DeclarationKind::Const) {
 | ||
|                     MUST(loop_environment->create_immutable_binding(global_object, name, true));
 | ||
|                 } else {
 | ||
|                     MUST(loop_environment->create_mutable_binding(global_object, name, false));
 | ||
|                     let_declarations.append(name);
 | ||
|                 }
 | ||
|             });
 | ||
| 
 | ||
|             interpreter.vm().running_execution_context().lexical_environment = loop_environment;
 | ||
|         }
 | ||
| 
 | ||
|         (void)TRY(m_init->execute(interpreter, global_object));
 | ||
|     }
 | ||
| 
 | ||
|     // 14.7.4.4 CreatePerIterationEnvironment ( perIterationBindings ), https://tc39.es/ecma262/#sec-createperiterationenvironment
 | ||
|     auto create_per_iteration_environment = [&]() -> ThrowCompletionOr<void> {
 | ||
|         // 1. If perIterationBindings has any elements, then
 | ||
|         if (let_declarations.is_empty())
 | ||
|             return {};
 | ||
| 
 | ||
|         // a. Let lastIterationEnv be the running execution context's LexicalEnvironment.
 | ||
|         auto* last_iteration_env = interpreter.lexical_environment();
 | ||
| 
 | ||
|         // b. Let outer be lastIterationEnv.[[OuterEnv]].
 | ||
|         auto* outer = last_iteration_env->outer_environment();
 | ||
| 
 | ||
|         // c. Assert: outer is not null.
 | ||
|         VERIFY(outer);
 | ||
| 
 | ||
|         // d. Let thisIterationEnv be NewDeclarativeEnvironment(outer).
 | ||
|         auto* this_iteration_env = new_declarative_environment(*outer);
 | ||
| 
 | ||
|         // e. For each element bn of perIterationBindings, do
 | ||
|         for (auto& name : let_declarations) {
 | ||
|             // i. Perform ! thisIterationEnv.CreateMutableBinding(bn, false).
 | ||
|             MUST(this_iteration_env->create_mutable_binding(global_object, name, false));
 | ||
| 
 | ||
|             // ii. Let lastValue be ? lastIterationEnv.GetBindingValue(bn, true).
 | ||
|             auto last_value = TRY(last_iteration_env->get_binding_value(global_object, name, true));
 | ||
|             VERIFY(!last_value.is_empty());
 | ||
| 
 | ||
|             // iii. Perform thisIterationEnv.InitializeBinding(bn, lastValue).
 | ||
|             MUST(this_iteration_env->initialize_binding(global_object, name, last_value));
 | ||
|         }
 | ||
| 
 | ||
|         // f. Set the running execution context's LexicalEnvironment to thisIterationEnv.
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = this_iteration_env;
 | ||
| 
 | ||
|         // 2. Return undefined.
 | ||
|         return {};
 | ||
|     };
 | ||
| 
 | ||
|     // 14.7.4.3 ForBodyEvaluation ( test, increment, stmt, perIterationBindings, labelSet ), https://tc39.es/ecma262/#sec-forbodyevaluation
 | ||
| 
 | ||
|     // 1. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     // 2. Perform ? CreatePerIterationEnvironment(perIterationBindings).
 | ||
|     TRY(create_per_iteration_environment());
 | ||
| 
 | ||
|     // 3. Repeat,
 | ||
|     while (true) {
 | ||
|         // a. If test is not [empty], then
 | ||
|         if (m_test) {
 | ||
|             // i. Let testRef be the result of evaluating test.
 | ||
|             // ii. Let testValue be ? GetValue(testRef).
 | ||
|             auto test_value = TRY(m_test->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|             // iii. If ! ToBoolean(testValue) is false, return NormalCompletion(V).
 | ||
|             if (!test_value.to_boolean())
 | ||
|                 return normal_completion(last_value);
 | ||
|         }
 | ||
| 
 | ||
|         // b. Let result be the result of evaluating stmt.
 | ||
|         auto result = m_body->execute(interpreter, global_object);
 | ||
| 
 | ||
|         // c. If LoopContinues(result, labelSet) is false, return Completion(UpdateEmpty(result, V)).
 | ||
|         if (!loop_continues(result, label_set))
 | ||
|             return result.update_empty(last_value);
 | ||
| 
 | ||
|         // d. If result.[[Value]] is not empty, set V to result.[[Value]].
 | ||
|         if (result.value().has_value())
 | ||
|             last_value = *result.value();
 | ||
| 
 | ||
|         // e. Perform ? CreatePerIterationEnvironment(perIterationBindings).
 | ||
|         TRY(create_per_iteration_environment());
 | ||
| 
 | ||
|         // f. If increment is not [empty], then
 | ||
|         if (m_update) {
 | ||
|             // i. Let incRef be the result of evaluating increment.
 | ||
|             // ii. Perform ? GetValue(incRef).
 | ||
|             (void)TRY(m_update->execute(interpreter, global_object));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| struct ForInOfHeadState {
 | ||
|     explicit ForInOfHeadState(Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> lhs)
 | ||
|     {
 | ||
|         lhs.visit(
 | ||
|             [&](NonnullRefPtr<ASTNode>& ast_node) {
 | ||
|                 expression_lhs = ast_node.ptr();
 | ||
|             },
 | ||
|             [&](NonnullRefPtr<BindingPattern>& pattern) {
 | ||
|                 pattern_lhs = pattern.ptr();
 | ||
|                 destructuring = true;
 | ||
|                 lhs_kind = Assignment;
 | ||
|             });
 | ||
|     }
 | ||
| 
 | ||
|     ASTNode* expression_lhs = nullptr;
 | ||
|     BindingPattern* pattern_lhs = nullptr;
 | ||
|     enum LhsKind {
 | ||
|         Assignment,
 | ||
|         VarBinding,
 | ||
|         LexicalBinding
 | ||
|     };
 | ||
|     LhsKind lhs_kind = Assignment;
 | ||
|     bool destructuring = false;
 | ||
| 
 | ||
|     Value rhs_value;
 | ||
| 
 | ||
|     // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
 | ||
|     // Note: This is only steps 6.g through 6.j of the method because we currently implement for-in without an iterator so to prevent duplicated code we do this part here.
 | ||
|     ThrowCompletionOr<void> execute_head(Interpreter& interpreter, GlobalObject& global_object, Value next_value) const
 | ||
|     {
 | ||
|         VERIFY(!next_value.is_empty());
 | ||
| 
 | ||
|         Optional<Reference> lhs_reference;
 | ||
|         Environment* iteration_environment = nullptr;
 | ||
| 
 | ||
|         // g. If lhsKind is either assignment or varBinding, then
 | ||
|         if (lhs_kind == Assignment || lhs_kind == VarBinding) {
 | ||
|             if (!destructuring) {
 | ||
|                 VERIFY(expression_lhs);
 | ||
|                 if (is<VariableDeclaration>(*expression_lhs)) {
 | ||
|                     auto& declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
 | ||
|                     VERIFY(declaration.declarations().first().target().has<NonnullRefPtr<Identifier>>());
 | ||
|                     lhs_reference = TRY(declaration.declarations().first().target().get<NonnullRefPtr<Identifier>>()->to_reference(interpreter, global_object));
 | ||
|                 } else {
 | ||
|                     VERIFY(is<Identifier>(*expression_lhs) || is<MemberExpression>(*expression_lhs));
 | ||
|                     auto& expression = static_cast<Expression const&>(*expression_lhs);
 | ||
|                     lhs_reference = TRY(expression.to_reference(interpreter, global_object));
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|         // h. Else,
 | ||
|         else {
 | ||
|             VERIFY(expression_lhs && is<VariableDeclaration>(*expression_lhs));
 | ||
|             iteration_environment = new_declarative_environment(*interpreter.lexical_environment());
 | ||
|             auto& for_declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
 | ||
|             for_declaration.for_each_bound_name([&](auto const& name) {
 | ||
|                 if (for_declaration.declaration_kind() == DeclarationKind::Const)
 | ||
|                     MUST(iteration_environment->create_immutable_binding(global_object, name, false));
 | ||
|                 else
 | ||
|                     MUST(iteration_environment->create_mutable_binding(global_object, name, true));
 | ||
|             });
 | ||
|             interpreter.vm().running_execution_context().lexical_environment = iteration_environment;
 | ||
| 
 | ||
|             if (!destructuring) {
 | ||
|                 VERIFY(for_declaration.declarations().first().target().has<NonnullRefPtr<Identifier>>());
 | ||
|                 lhs_reference = MUST(interpreter.vm().resolve_binding(for_declaration.declarations().first().target().get<NonnullRefPtr<Identifier>>()->string()));
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // i. If destructuring is false, then
 | ||
|         if (!destructuring) {
 | ||
|             VERIFY(lhs_reference.has_value());
 | ||
|             if (lhs_kind == LexicalBinding)
 | ||
|                 return lhs_reference->initialize_referenced_binding(global_object, next_value);
 | ||
|             else
 | ||
|                 return lhs_reference->put_value(global_object, next_value);
 | ||
|         }
 | ||
| 
 | ||
|         // j. Else,
 | ||
|         if (lhs_kind == Assignment) {
 | ||
|             VERIFY(pattern_lhs);
 | ||
|             return interpreter.vm().destructuring_assignment_evaluation(*pattern_lhs, next_value, global_object);
 | ||
|         }
 | ||
|         VERIFY(expression_lhs && is<VariableDeclaration>(*expression_lhs));
 | ||
|         auto& for_declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
 | ||
|         auto& binding_pattern = for_declaration.declarations().first().target().get<NonnullRefPtr<BindingPattern>>();
 | ||
|         VERIFY(lhs_kind == VarBinding || iteration_environment);
 | ||
| 
 | ||
|         // At this point iteration_environment is undefined if lhs_kind == VarBinding which means this does both
 | ||
|         // branch j.ii and j.iii because ForBindingInitialization is just a forwarding call to BindingInitialization.
 | ||
|         return interpreter.vm().binding_initialization(binding_pattern, next_value, iteration_environment, global_object);
 | ||
|     }
 | ||
| };
 | ||
| 
 | ||
| // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
 | ||
| // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
| // This method combines ForInOfLoopEvaluation and ForIn/OfHeadEvaluation for similar reason as ForIn/OfBodyEvaluation, to prevent code duplication.
 | ||
| // For the same reason we also skip step 6 and 7 of ForIn/OfHeadEvaluation as this is done by the appropriate for loop type.
 | ||
| static ThrowCompletionOr<ForInOfHeadState> for_in_of_head_execute(Interpreter& interpreter, GlobalObject& global_object, Variant<NonnullRefPtr<ASTNode>, NonnullRefPtr<BindingPattern>> lhs, Expression const& rhs)
 | ||
| {
 | ||
|     ForInOfHeadState state(lhs);
 | ||
|     if (auto* ast_ptr = lhs.get_pointer<NonnullRefPtr<ASTNode>>(); ast_ptr && is<VariableDeclaration>(*(*ast_ptr))) {
 | ||
|         // Runtime Semantics: ForInOfLoopEvaluation, for any of:
 | ||
|         //  ForInOfStatement : for ( var ForBinding in Expression ) Statement
 | ||
|         //  ForInOfStatement : for ( ForDeclaration in Expression ) Statement
 | ||
|         //  ForInOfStatement : for ( var ForBinding of AssignmentExpression ) Statement
 | ||
|         //  ForInOfStatement : for ( ForDeclaration of AssignmentExpression ) Statement
 | ||
| 
 | ||
|         // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
|         Environment* new_environment = nullptr;
 | ||
| 
 | ||
|         auto& variable_declaration = static_cast<VariableDeclaration const&>(*(*ast_ptr));
 | ||
|         VERIFY(variable_declaration.declarations().size() == 1);
 | ||
|         state.destructuring = variable_declaration.declarations().first().target().has<NonnullRefPtr<BindingPattern>>();
 | ||
|         if (variable_declaration.declaration_kind() == DeclarationKind::Var) {
 | ||
|             state.lhs_kind = ForInOfHeadState::VarBinding;
 | ||
|             auto& variable = variable_declaration.declarations().first();
 | ||
|             // B.3.5 Initializers in ForIn Statement Heads, https://tc39.es/ecma262/#sec-initializers-in-forin-statement-heads
 | ||
|             if (variable.init()) {
 | ||
|                 VERIFY(variable.target().has<NonnullRefPtr<Identifier>>());
 | ||
|                 auto& binding_id = variable.target().get<NonnullRefPtr<Identifier>>()->string();
 | ||
|                 auto reference = TRY(interpreter.vm().resolve_binding(binding_id));
 | ||
|                 auto result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(global_object, *variable.init(), binding_id));
 | ||
|                 TRY(reference.put_value(global_object, result));
 | ||
|             }
 | ||
|         } else {
 | ||
|             state.lhs_kind = ForInOfHeadState::LexicalBinding;
 | ||
|             new_environment = new_declarative_environment(*interpreter.lexical_environment());
 | ||
|             variable_declaration.for_each_bound_name([&](auto const& name) {
 | ||
|                 MUST(new_environment->create_mutable_binding(global_object, name, false));
 | ||
|             });
 | ||
|         }
 | ||
| 
 | ||
|         if (new_environment) {
 | ||
|             // 2.d Set the running execution context's LexicalEnvironment to newEnv.
 | ||
|             TemporaryChange<Environment*> scope_change(interpreter.vm().running_execution_context().lexical_environment, new_environment);
 | ||
| 
 | ||
|             // 3. Let exprRef be the result of evaluating expr.
 | ||
|             // 5. Let exprValue be ? GetValue(exprRef).
 | ||
|             state.rhs_value = TRY(rhs.execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|             // Note that since a reference stores its environment it doesn't matter we only reset
 | ||
|             // this after step 5. (Also we have no way of separating these steps at this point)
 | ||
|             // 4. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         } else {
 | ||
|             // 3. Let exprRef be the result of evaluating expr.
 | ||
|             // 5. Let exprValue be ? GetValue(exprRef).
 | ||
|             state.rhs_value = TRY(rhs.execute(interpreter, global_object)).release_value();
 | ||
|         }
 | ||
| 
 | ||
|         return state;
 | ||
|     }
 | ||
| 
 | ||
|     // Runtime Semantics: ForInOfLoopEvaluation, for any of:
 | ||
|     //  ForInOfStatement : for ( LeftHandSideExpression in Expression ) Statement
 | ||
|     //  ForInOfStatement : for ( LeftHandSideExpression of AssignmentExpression ) Statement
 | ||
| 
 | ||
|     // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
| 
 | ||
|     // We can skip step 1, 2 and 4 here (on top of already skipping step 6 and 7).
 | ||
|     // 3. Let exprRef be the result of evaluating expr.
 | ||
|     // 5. Let exprValue be ? GetValue(exprRef).
 | ||
|     state.rhs_value = TRY(rhs.execute(interpreter, global_object)).release_value();
 | ||
|     return state;
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion ForInStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, global_object, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
 | ||
| Completion ForInStatement::loop_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector<FlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto for_in_head_state = TRY(for_in_of_head_execute(interpreter, global_object, m_lhs, *m_rhs));
 | ||
| 
 | ||
|     auto rhs_result = for_in_head_state.rhs_value;
 | ||
| 
 | ||
|     // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
| 
 | ||
|     // a. If exprValue is undefined or null, then
 | ||
|     if (rhs_result.is_nullish()) {
 | ||
|         // i. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Break, {}, {} };
 | ||
|     }
 | ||
| 
 | ||
|     // b. Let obj be ! ToObject(exprValue).
 | ||
|     auto* object = MUST(rhs_result.to_object(global_object));
 | ||
| 
 | ||
|     // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
 | ||
| 
 | ||
|     // 2. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     Environment* old_environment = interpreter.lexical_environment();
 | ||
|     auto restore_scope = ScopeGuard([&] {
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
|     });
 | ||
| 
 | ||
|     // 3. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     while (object) {
 | ||
|         auto property_names = TRY(object->enumerable_own_property_names(Object::PropertyKind::Key));
 | ||
|         for (auto& value : property_names) {
 | ||
|             TRY(for_in_head_state.execute_head(interpreter, global_object, value));
 | ||
| 
 | ||
|             // l. Let result be the result of evaluating stmt.
 | ||
|             auto result = m_body->execute(interpreter, global_object);
 | ||
| 
 | ||
|             // m. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|             interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|             // n. If LoopContinues(result, labelSet) is false, then
 | ||
|             if (!loop_continues(result, label_set)) {
 | ||
|                 // 1. Return Completion(UpdateEmpty(result, V)).
 | ||
|                 return result.update_empty(last_value);
 | ||
|             }
 | ||
| 
 | ||
|             // o. If result.[[Value]] is not empty, set V to result.[[Value]].
 | ||
|             if (result.value().has_value())
 | ||
|                 last_value = *result.value();
 | ||
|         }
 | ||
|         object = TRY(object->internal_get_prototype_of());
 | ||
|     }
 | ||
|     return last_value;
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion ForOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, global_object, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
 | ||
| Completion ForOfStatement::loop_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector<FlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto for_of_head_state = TRY(for_in_of_head_execute(interpreter, global_object, m_lhs, m_rhs));
 | ||
| 
 | ||
|     auto rhs_result = for_of_head_state.rhs_value;
 | ||
| 
 | ||
|     // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
 | ||
|     // We use get_iterator_values which behaves like ForIn/OfBodyEvaluation with iteratorKind iterate.
 | ||
| 
 | ||
|     // 2. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     Environment* old_environment = interpreter.lexical_environment();
 | ||
|     auto restore_scope = ScopeGuard([&] {
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
|     });
 | ||
| 
 | ||
|     // 3. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     Optional<Completion> status;
 | ||
| 
 | ||
|     (void)TRY(get_iterator_values(global_object, rhs_result, [&](Value value) -> Optional<Completion> {
 | ||
|         TRY(for_of_head_state.execute_head(interpreter, global_object, value));
 | ||
| 
 | ||
|         // l. Let result be the result of evaluating stmt.
 | ||
|         auto result = m_body->execute(interpreter, global_object);
 | ||
| 
 | ||
|         // m. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|         // n. If LoopContinues(result, labelSet) is false, then
 | ||
|         if (!loop_continues(result, label_set)) {
 | ||
|             // 2. Set status to UpdateEmpty(result, V).
 | ||
|             status = result.update_empty(last_value);
 | ||
| 
 | ||
|             // 4. Return ? IteratorClose(iteratorRecord, status).
 | ||
|             // NOTE: This is done by returning a completion from the callback.
 | ||
|             return status;
 | ||
|         }
 | ||
| 
 | ||
|         // o. If result.[[Value]] is not empty, set V to result.[[Value]].
 | ||
|         if (result.value().has_value())
 | ||
|             last_value = *result.value();
 | ||
| 
 | ||
|         return {};
 | ||
|     }));
 | ||
| 
 | ||
|     // Return `status` set during step n.2. in the callback, or...
 | ||
|     // e. If done is true, return NormalCompletion(V).
 | ||
|     return status.value_or(normal_completion(last_value));
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion ForAwaitOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, global_object, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
 | ||
| Completion ForAwaitOfStatement::loop_evaluation(Interpreter& interpreter, GlobalObject& global_object, Vector<FlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
|     // Note: Performs only steps 1 through 5.
 | ||
|     auto for_of_head_state = TRY(for_in_of_head_execute(interpreter, global_object, m_lhs, m_rhs));
 | ||
| 
 | ||
|     auto rhs_result = for_of_head_state.rhs_value;
 | ||
| 
 | ||
|     // NOTE: Perform step 7 from ForIn/OfHeadEvaluation. And since this is always async we only have to do step 7.d.
 | ||
|     // d. Return ? GetIterator(exprValue, iteratorHint).
 | ||
|     auto iterator = TRY(get_iterator(global_object, rhs_result, IteratorHint::Async));
 | ||
| 
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
 | ||
|     // NOTE: Here iteratorKind is always async.
 | ||
|     // 2. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     Environment* old_environment = interpreter.lexical_environment();
 | ||
|     auto restore_scope = ScopeGuard([&] {
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
|     });
 | ||
|     // 3. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     // NOTE: Step 4 and 5 are just extracting properties from the head which is done already in for_in_of_head_execute.
 | ||
|     //       And these are only used in step 6.g through 6.k which is done with for_of_head_state.execute_head.
 | ||
| 
 | ||
|     // 6. Repeat,
 | ||
|     while (true) {
 | ||
|         // a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]]).
 | ||
|         auto next_result = TRY(call(global_object, iterator.next_method, iterator.iterator));
 | ||
| 
 | ||
|         // b. If iteratorKind is async, set nextResult to ? Await(nextResult).
 | ||
|         next_result = TRY(await(global_object, next_result));
 | ||
| 
 | ||
|         // c. If Type(nextResult) is not Object, throw a TypeError exception.
 | ||
|         if (!next_result.is_object())
 | ||
|             return vm.throw_completion<TypeError>(global_object, ErrorType::IterableNextBadReturn);
 | ||
| 
 | ||
|         // d. Let done be ? IteratorComplete(nextResult).
 | ||
|         auto done = TRY(iterator_complete(global_object, next_result.as_object()));
 | ||
| 
 | ||
|         // e. If done is true, return NormalCompletion(V).
 | ||
|         if (done)
 | ||
|             return last_value;
 | ||
| 
 | ||
|         // f. Let nextValue be ? IteratorValue(nextResult).
 | ||
|         auto next_value = TRY(iterator_value(global_object, next_result.as_object()));
 | ||
| 
 | ||
|         // NOTE: This performs steps g. through to k.
 | ||
|         TRY(for_of_head_state.execute_head(interpreter, global_object, next_value));
 | ||
| 
 | ||
|         // l. Let result be the result of evaluating stmt.
 | ||
|         auto result = m_body->execute(interpreter, global_object);
 | ||
| 
 | ||
|         // m. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|         // n. If LoopContinues(result, labelSet) is false, then
 | ||
|         if (!loop_continues(result, label_set)) {
 | ||
|             // 2. Set status to UpdateEmpty(result, V).
 | ||
|             auto status = result.update_empty(last_value);
 | ||
| 
 | ||
|             // 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
 | ||
|             return async_iterator_close(global_object, iterator, move(status));
 | ||
|         }
 | ||
| 
 | ||
|         // o. If result.[[Value]] is not empty, set V to result.[[Value]].
 | ||
|         if (result.value().has_value())
 | ||
|             last_value = *result.value();
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 13.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-exp-operator-runtime-semantics-evaluation
 | ||
| // 13.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-multiplicative-operators-runtime-semantics-evaluation
 | ||
| // 13.8.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-addition-operator-plus-runtime-semantics-evaluation
 | ||
| // 13.8.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-subtraction-operator-minus-runtime-semantics-evaluation
 | ||
| // 13.9.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-left-shift-operator-runtime-semantics-evaluation
 | ||
| // 13.9.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-signed-right-shift-operator-runtime-semantics-evaluation
 | ||
| // 13.9.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unsigned-right-shift-operator-runtime-semantics-evaluation
 | ||
| // 13.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
 | ||
| // 13.11.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-equality-operators-runtime-semantics-evaluation
 | ||
| Completion BinaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // Special case in which we cannot execute the lhs.  RelationalExpression : PrivateIdentifier in ShiftExpression
 | ||
|     //  RelationalExpression : PrivateIdentifier in ShiftExpression, https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
 | ||
|     if (m_op == BinaryOp::In && is<PrivateIdentifier>(*m_lhs)) {
 | ||
|         auto& private_identifier = static_cast<PrivateIdentifier const&>(*m_lhs).string();
 | ||
| 
 | ||
|         auto rhs_result = TRY(m_rhs->execute(interpreter, global_object)).release_value();
 | ||
|         if (!rhs_result.is_object())
 | ||
|             return interpreter.vm().throw_completion<TypeError>(global_object, ErrorType::InOperatorWithObject);
 | ||
|         auto* private_environment = interpreter.vm().running_execution_context().private_environment;
 | ||
|         VERIFY(private_environment);
 | ||
|         auto private_name = private_environment->resolve_private_identifier(private_identifier);
 | ||
|         return Value(rhs_result.as_object().private_element_find(private_name) != nullptr);
 | ||
|     }
 | ||
| 
 | ||
|     auto lhs_result = TRY(m_lhs->execute(interpreter, global_object)).release_value();
 | ||
|     auto rhs_result = TRY(m_rhs->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     switch (m_op) {
 | ||
|     case BinaryOp::Addition:
 | ||
|         return TRY(add(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Subtraction:
 | ||
|         return TRY(sub(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Multiplication:
 | ||
|         return TRY(mul(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Division:
 | ||
|         return TRY(div(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Modulo:
 | ||
|         return TRY(mod(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Exponentiation:
 | ||
|         return TRY(exp(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::StrictlyEquals:
 | ||
|         return Value(is_strictly_equal(lhs_result, rhs_result));
 | ||
|     case BinaryOp::StrictlyInequals:
 | ||
|         return Value(!is_strictly_equal(lhs_result, rhs_result));
 | ||
|     case BinaryOp::LooselyEquals:
 | ||
|         return Value(TRY(is_loosely_equal(global_object, lhs_result, rhs_result)));
 | ||
|     case BinaryOp::LooselyInequals:
 | ||
|         return Value(!TRY(is_loosely_equal(global_object, lhs_result, rhs_result)));
 | ||
|     case BinaryOp::GreaterThan:
 | ||
|         return TRY(greater_than(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::GreaterThanEquals:
 | ||
|         return TRY(greater_than_equals(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::LessThan:
 | ||
|         return TRY(less_than(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::LessThanEquals:
 | ||
|         return TRY(less_than_equals(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::BitwiseAnd:
 | ||
|         return TRY(bitwise_and(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::BitwiseOr:
 | ||
|         return TRY(bitwise_or(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::BitwiseXor:
 | ||
|         return TRY(bitwise_xor(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::LeftShift:
 | ||
|         return TRY(left_shift(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::RightShift:
 | ||
|         return TRY(right_shift(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::UnsignedRightShift:
 | ||
|         return TRY(unsigned_right_shift(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::In:
 | ||
|         return TRY(in(global_object, lhs_result, rhs_result));
 | ||
|     case BinaryOp::InstanceOf:
 | ||
|         return TRY(instance_of(global_object, lhs_result, rhs_result));
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 13.13.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-binary-logical-operators-runtime-semantics-evaluation
 | ||
| Completion LogicalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let lref be the result of evaluating <Expression>.
 | ||
|     // 2. Let lval be ? GetValue(lref).
 | ||
|     auto lhs_result = TRY(m_lhs->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     switch (m_op) {
 | ||
|     // LogicalANDExpression : LogicalANDExpression && BitwiseORExpression
 | ||
|     case LogicalOp::And:
 | ||
|         // 3. Let lbool be ! ToBoolean(lval).
 | ||
|         // 4. If lbool is false, return lval.
 | ||
|         if (!lhs_result.to_boolean())
 | ||
|             return lhs_result;
 | ||
| 
 | ||
|         // 5. Let rref be the result of evaluating BitwiseORExpression.
 | ||
|         // 6. Return ? GetValue(rref).
 | ||
|         return m_rhs->execute(interpreter, global_object);
 | ||
| 
 | ||
|     // LogicalORExpression : LogicalORExpression || LogicalANDExpression
 | ||
|     case LogicalOp::Or:
 | ||
|         // 3. Let lbool be ! ToBoolean(lval).
 | ||
|         // 4. If lbool is true, return lval.
 | ||
|         if (lhs_result.to_boolean())
 | ||
|             return lhs_result;
 | ||
| 
 | ||
|         // 5. Let rref be the result of evaluating LogicalANDExpression.
 | ||
|         // 6. Return ? GetValue(rref).
 | ||
|         return m_rhs->execute(interpreter, global_object);
 | ||
| 
 | ||
|     // CoalesceExpression : CoalesceExpressionHead ?? BitwiseORExpression
 | ||
|     case LogicalOp::NullishCoalescing:
 | ||
|         // 3. If lval is undefined or null, then
 | ||
|         if (lhs_result.is_nullish()) {
 | ||
|             // a. Let rref be the result of evaluating BitwiseORExpression.
 | ||
|             // b. Return ? GetValue(rref).
 | ||
|             return m_rhs->execute(interpreter, global_object);
 | ||
|         }
 | ||
| 
 | ||
|         // 4. Otherwise, return lval.
 | ||
|         return lhs_result;
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<Reference> Expression::to_reference(Interpreter&, GlobalObject&) const
 | ||
| {
 | ||
|     return Reference {};
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<Reference> Identifier::to_reference(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     if (m_cached_environment_coordinate.has_value()) {
 | ||
|         auto* environment = interpreter.vm().running_execution_context().lexical_environment;
 | ||
|         for (size_t i = 0; i < m_cached_environment_coordinate->hops; ++i)
 | ||
|             environment = environment->outer_environment();
 | ||
|         VERIFY(environment);
 | ||
|         VERIFY(environment->is_declarative_environment());
 | ||
|         if (!environment->is_permanently_screwed_by_eval()) {
 | ||
|             return Reference { *environment, string(), interpreter.vm().in_strict_mode(), m_cached_environment_coordinate };
 | ||
|         }
 | ||
|         m_cached_environment_coordinate = {};
 | ||
|     }
 | ||
| 
 | ||
|     auto reference = TRY(interpreter.vm().resolve_binding(string()));
 | ||
|     if (reference.environment_coordinate().has_value())
 | ||
|         m_cached_environment_coordinate = reference.environment_coordinate();
 | ||
|     return reference;
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<Reference> MemberExpression::to_reference(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 13.3.7.1 Runtime Semantics: Evaluation
 | ||
|     // SuperProperty : super [ Expression ]
 | ||
|     // SuperProperty : super . IdentifierName
 | ||
|     // https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
 | ||
|     if (is<SuperExpression>(object())) {
 | ||
|         // 1. Let env be GetThisEnvironment().
 | ||
|         auto& environment = get_this_environment(interpreter.vm());
 | ||
|         // 2. Let actualThis be ? env.GetThisBinding().
 | ||
|         auto actual_this = TRY(environment.get_this_binding(global_object));
 | ||
| 
 | ||
|         PropertyKey property_key;
 | ||
| 
 | ||
|         if (is_computed()) {
 | ||
|             // SuperProperty : super [ Expression ]
 | ||
| 
 | ||
|             // 3. Let propertyNameReference be the result of evaluating Expression.
 | ||
|             // 4. Let propertyNameValue be ? GetValue(propertyNameReference).
 | ||
|             auto property_name_value = TRY(m_property->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|             // 5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
 | ||
|             property_key = TRY(property_name_value.to_property_key(global_object));
 | ||
|         } else {
 | ||
|             // SuperProperty : super . IdentifierName
 | ||
| 
 | ||
|             // 3. Let propertyKey be StringValue of IdentifierName.
 | ||
|             VERIFY(is<Identifier>(property()));
 | ||
|             property_key = static_cast<Identifier const&>(property()).string();
 | ||
|         }
 | ||
| 
 | ||
|         // 6. If the code matched by this SuperProperty is strict mode code, let strict be true; else let strict be false.
 | ||
|         bool strict = interpreter.vm().in_strict_mode();
 | ||
| 
 | ||
|         // 7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
 | ||
|         return TRY(make_super_property_reference(global_object, actual_this, property_key, strict));
 | ||
|     }
 | ||
| 
 | ||
|     auto base_reference = TRY(m_object->to_reference(interpreter, global_object));
 | ||
| 
 | ||
|     Value base_value;
 | ||
| 
 | ||
|     if (base_reference.is_valid_reference())
 | ||
|         base_value = TRY(base_reference.get_value(global_object));
 | ||
|     else
 | ||
|         base_value = TRY(m_object->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     VERIFY(!base_value.is_empty());
 | ||
| 
 | ||
|     // From here on equivalent to
 | ||
|     // 13.3.4 EvaluatePropertyAccessWithIdentifierKey ( baseValue, identifierName, strict ), https://tc39.es/ecma262/#sec-evaluate-property-access-with-identifier-key
 | ||
|     PropertyKey property_name;
 | ||
|     if (is_computed()) {
 | ||
|         // Weird order which I can't quite find from the specs.
 | ||
|         auto value = TRY(m_property->execute(interpreter, global_object)).release_value();
 | ||
|         VERIFY(!value.is_empty());
 | ||
| 
 | ||
|         TRY(require_object_coercible(global_object, base_value));
 | ||
| 
 | ||
|         property_name = TRY(PropertyKey::from_value(global_object, value));
 | ||
|     } else if (is<PrivateIdentifier>(*m_property)) {
 | ||
|         auto& private_identifier = static_cast<PrivateIdentifier const&>(*m_property);
 | ||
|         return make_private_reference(interpreter.vm(), base_value, private_identifier.string());
 | ||
|     } else {
 | ||
|         property_name = verify_cast<Identifier>(*m_property).string();
 | ||
|         TRY(require_object_coercible(global_object, base_value));
 | ||
|     }
 | ||
|     if (!property_name.is_valid())
 | ||
|         return Reference {};
 | ||
| 
 | ||
|     auto strict = interpreter.vm().in_strict_mode();
 | ||
|     return Reference { base_value, move(property_name), {}, strict };
 | ||
| }
 | ||
| 
 | ||
| // 13.5.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
 | ||
| // 13.5.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-void-operator-runtime-semantics-evaluation
 | ||
| // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
 | ||
| // 13.5.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unary-plus-operator-runtime-semantics-evaluation
 | ||
| // 13.5.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unary-minus-operator-runtime-semantics-evaluation
 | ||
| // 13.5.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-bitwise-not-operator-runtime-semantics-evaluation
 | ||
| // 13.5.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-logical-not-operator-runtime-semantics-evaluation
 | ||
| Completion UnaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     if (m_op == UnaryOp::Delete) {
 | ||
|         auto reference = TRY(m_lhs->to_reference(interpreter, global_object));
 | ||
|         return Value(TRY(reference.delete_(global_object)));
 | ||
|     }
 | ||
| 
 | ||
|     Value lhs_result;
 | ||
|     if (m_op == UnaryOp::Typeof && is<Identifier>(*m_lhs)) {
 | ||
|         auto reference = TRY(m_lhs->to_reference(interpreter, global_object));
 | ||
| 
 | ||
|         if (reference.is_unresolvable())
 | ||
|             lhs_result = js_undefined();
 | ||
|         else
 | ||
|             lhs_result = TRY(reference.get_value(global_object));
 | ||
|         VERIFY(!lhs_result.is_empty());
 | ||
|     } else {
 | ||
|         // 1. Let expr be the result of evaluating UnaryExpression.
 | ||
|         lhs_result = TRY(m_lhs->execute(interpreter, global_object)).release_value();
 | ||
|     }
 | ||
| 
 | ||
|     switch (m_op) {
 | ||
|     case UnaryOp::BitwiseNot:
 | ||
|         return TRY(bitwise_not(global_object, lhs_result));
 | ||
|     case UnaryOp::Not:
 | ||
|         return Value(!lhs_result.to_boolean());
 | ||
|     case UnaryOp::Plus:
 | ||
|         return TRY(unary_plus(global_object, lhs_result));
 | ||
|     case UnaryOp::Minus:
 | ||
|         return TRY(unary_minus(global_object, lhs_result));
 | ||
|     case UnaryOp::Typeof:
 | ||
|         return Value { js_string(vm, lhs_result.typeof()) };
 | ||
|     case UnaryOp::Void:
 | ||
|         return js_undefined();
 | ||
|     case UnaryOp::Delete:
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| Completion SuperExpression::execute(Interpreter&, GlobalObject&) const
 | ||
| {
 | ||
|     // The semantics for SuperExpression are handled in CallExpression and SuperCall.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| Completion ClassElement::execute(Interpreter&, GlobalObject&) const
 | ||
| {
 | ||
|     // Note: The semantics of class element are handled in class_element_evaluation
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| static ThrowCompletionOr<ClassElement::ClassElementName> class_key_to_property_name(Interpreter& interpreter, GlobalObject& global_object, Expression const& key)
 | ||
| {
 | ||
|     if (is<PrivateIdentifier>(key)) {
 | ||
|         auto& private_identifier = static_cast<PrivateIdentifier const&>(key);
 | ||
|         auto* private_environment = interpreter.vm().running_execution_context().private_environment;
 | ||
|         VERIFY(private_environment);
 | ||
|         return ClassElement::ClassElementName { private_environment->resolve_private_identifier(private_identifier.string()) };
 | ||
|     }
 | ||
| 
 | ||
|     auto prop_key = TRY(key.execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     if (prop_key.is_object())
 | ||
|         prop_key = TRY(prop_key.to_primitive(global_object, Value::PreferredType::String));
 | ||
| 
 | ||
|     auto property_key = TRY(PropertyKey::from_value(global_object, prop_key));
 | ||
|     return ClassElement::ClassElementName { property_key };
 | ||
| }
 | ||
| 
 | ||
| // 15.4.5 Runtime Semantics: MethodDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-methoddefinitionevaluation
 | ||
| ThrowCompletionOr<ClassElement::ClassValue> ClassMethod::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& target) const
 | ||
| {
 | ||
|     auto property_key = TRY(class_key_to_property_name(interpreter, global_object, *m_key));
 | ||
| 
 | ||
|     auto method_value = TRY(m_function->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     auto& method_function = static_cast<ECMAScriptFunctionObject&>(method_value.as_function());
 | ||
|     method_function.make_method(target);
 | ||
| 
 | ||
|     auto set_function_name = [&](String prefix = "") {
 | ||
|         auto property_name = property_key.visit(
 | ||
|             [&](PropertyKey const& property_name) -> String {
 | ||
|                 if (property_name.is_symbol()) {
 | ||
|                     auto description = property_name.as_symbol()->description();
 | ||
|                     if (description.is_empty())
 | ||
|                         return "";
 | ||
|                     return String::formatted("[{}]", description);
 | ||
|                 } else {
 | ||
|                     return property_name.to_string();
 | ||
|                 }
 | ||
|             },
 | ||
|             [&](PrivateName const& private_name) -> String {
 | ||
|                 return private_name.description;
 | ||
|             });
 | ||
| 
 | ||
|         update_function_name(method_value, String::formatted("{}{}{}", prefix, prefix.is_empty() ? "" : " ", property_name));
 | ||
|     };
 | ||
| 
 | ||
|     if (property_key.has<PropertyKey>()) {
 | ||
|         auto& property_name = property_key.get<PropertyKey>();
 | ||
|         switch (kind()) {
 | ||
|         case ClassMethod::Kind::Method:
 | ||
|             set_function_name();
 | ||
|             TRY(target.define_property_or_throw(property_name, { .value = method_value, .writable = true, .enumerable = false, .configurable = true }));
 | ||
|             break;
 | ||
|         case ClassMethod::Kind::Getter:
 | ||
|             set_function_name("get");
 | ||
|             TRY(target.define_property_or_throw(property_name, { .get = &method_function, .enumerable = true, .configurable = true }));
 | ||
|             break;
 | ||
|         case ClassMethod::Kind::Setter:
 | ||
|             set_function_name("set");
 | ||
|             TRY(target.define_property_or_throw(property_name, { .set = &method_function, .enumerable = true, .configurable = true }));
 | ||
|             break;
 | ||
|         default:
 | ||
|             VERIFY_NOT_REACHED();
 | ||
|         }
 | ||
| 
 | ||
|         return ClassValue { normal_completion({}) };
 | ||
|     } else {
 | ||
|         auto& private_name = property_key.get<PrivateName>();
 | ||
|         switch (kind()) {
 | ||
|         case Kind::Method:
 | ||
|             set_function_name();
 | ||
|             return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Method, method_value } };
 | ||
|         case Kind::Getter:
 | ||
|             set_function_name("get");
 | ||
|             return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), &method_function, nullptr) } };
 | ||
|         case Kind::Setter:
 | ||
|             set_function_name("set");
 | ||
|             return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), nullptr, &method_function) } };
 | ||
|         default:
 | ||
|             VERIFY_NOT_REACHED();
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // We use this class to mimic  Initializer : = AssignmentExpression of
 | ||
| // 10.2.1.3 Runtime Semantics: EvaluateBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatebody
 | ||
| class ClassFieldInitializerStatement : public Statement {
 | ||
| public:
 | ||
|     ClassFieldInitializerStatement(SourceRange source_range, NonnullRefPtr<Expression> expression, FlyString field_name)
 | ||
|         : Statement(source_range)
 | ||
|         , m_expression(move(expression))
 | ||
|         , m_class_field_identifier_name(move(field_name))
 | ||
|     {
 | ||
|     }
 | ||
| 
 | ||
|     Completion execute(Interpreter& interpreter, GlobalObject& global_object) const override
 | ||
|     {
 | ||
|         // 1. Assert: argumentsList is empty.
 | ||
|         VERIFY(interpreter.vm().argument_count() == 0);
 | ||
| 
 | ||
|         // 2. Assert: functionObject.[[ClassFieldInitializerName]] is not empty.
 | ||
|         VERIFY(!m_class_field_identifier_name.is_empty());
 | ||
| 
 | ||
|         // 3. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then
 | ||
|         //    a. Let value be NamedEvaluation of Initializer with argument functionObject.[[ClassFieldInitializerName]].
 | ||
|         // 4. Else,
 | ||
|         //    a. Let rhs be the result of evaluating AssignmentExpression.
 | ||
|         //    b. Let value be ? GetValue(rhs).
 | ||
|         auto value = TRY(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_expression, m_class_field_identifier_name));
 | ||
| 
 | ||
|         // 5. Return Completion { [[Type]]: return, [[Value]]: value, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Return, value, {} };
 | ||
|     }
 | ||
| 
 | ||
|     void dump(int) const override
 | ||
|     {
 | ||
|         // This should not be dumped as it is never part of an actual AST.
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
| 
 | ||
| private:
 | ||
|     NonnullRefPtr<Expression> m_expression;
 | ||
|     FlyString m_class_field_identifier_name; // [[ClassFieldIdentifierName]]
 | ||
| };
 | ||
| 
 | ||
| // 15.7.10 Runtime Semantics: ClassFieldDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classfielddefinitionevaluation
 | ||
| ThrowCompletionOr<ClassElement::ClassValue> ClassField::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& target) const
 | ||
| {
 | ||
|     auto property_key = TRY(class_key_to_property_name(interpreter, global_object, *m_key));
 | ||
|     ECMAScriptFunctionObject* initializer = nullptr;
 | ||
|     if (m_initializer) {
 | ||
|         auto copy_initializer = m_initializer;
 | ||
|         auto name = property_key.visit(
 | ||
|             [&](PropertyKey const& property_name) -> String {
 | ||
|                 return property_name.is_number() ? property_name.to_string() : property_name.to_string_or_symbol().to_display_string();
 | ||
|             },
 | ||
|             [&](PrivateName const& private_name) -> String {
 | ||
|                 return private_name.description;
 | ||
|             });
 | ||
| 
 | ||
|         // FIXME: A potential optimization is not creating the functions here since these are never directly accessible.
 | ||
|         auto function_code = create_ast_node<ClassFieldInitializerStatement>(m_initializer->source_range(), copy_initializer.release_nonnull(), name);
 | ||
|         initializer = ECMAScriptFunctionObject::create(interpreter.global_object(), String::empty(), *function_code, {}, 0, interpreter.lexical_environment(), interpreter.vm().running_execution_context().private_environment, FunctionKind::Normal, true, false, m_contains_direct_call_to_eval, false);
 | ||
|         initializer->make_method(target);
 | ||
|     }
 | ||
| 
 | ||
|     return ClassValue {
 | ||
|         ClassFieldDefinition {
 | ||
|             property_key,
 | ||
|             initializer,
 | ||
|         }
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| static Optional<FlyString> nullopt_or_private_identifier_description(Expression const& expression)
 | ||
| {
 | ||
|     if (is<PrivateIdentifier>(expression))
 | ||
|         return static_cast<PrivateIdentifier const&>(expression).string();
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| Optional<FlyString> ClassField::private_bound_identifier() const
 | ||
| {
 | ||
|     return nullopt_or_private_identifier_description(*m_key);
 | ||
| }
 | ||
| 
 | ||
| Optional<FlyString> ClassMethod::private_bound_identifier() const
 | ||
| {
 | ||
|     return nullopt_or_private_identifier_description(*m_key);
 | ||
| }
 | ||
| 
 | ||
| // 15.7.11 Runtime Semantics: ClassStaticBlockDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classstaticblockdefinitionevaluation
 | ||
| ThrowCompletionOr<ClassElement::ClassValue> StaticInitializer::class_element_evaluation(Interpreter& interpreter, GlobalObject& global_object, Object& home_object) const
 | ||
| {
 | ||
|     // 1. Let lex be the running execution context's LexicalEnvironment.
 | ||
|     auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment;
 | ||
| 
 | ||
|     // 2. Let privateScope be the running execution context's PrivateEnvironment.
 | ||
|     auto* private_scope = interpreter.vm().running_execution_context().private_environment;
 | ||
| 
 | ||
|     // 3. Let sourceText be the empty sequence of Unicode code points.
 | ||
|     // 4. Let formalParameters be an instance of the production FormalParameters : [empty] .
 | ||
|     // 5. Let bodyFunction be OrdinaryFunctionCreate(%Function.prototype%, sourceText, formalParameters, ClassStaticBlockBody, non-lexical-this, lex, privateScope).
 | ||
|     // Note: The function bodyFunction is never directly accessible to ECMAScript code.
 | ||
|     auto* body_function = ECMAScriptFunctionObject::create(global_object, "", *m_function_body, {}, 0, lexical_environment, private_scope, FunctionKind::Normal, true, false, m_contains_direct_call_to_eval, false);
 | ||
| 
 | ||
|     // 6. Perform MakeMethod(bodyFunction, homeObject).
 | ||
|     body_function->make_method(home_object);
 | ||
| 
 | ||
|     // 7. Return the ClassStaticBlockDefinition Record { [[BodyFunction]]: bodyFunction }.
 | ||
|     return ClassValue { normal_completion(body_function) };
 | ||
| }
 | ||
| 
 | ||
| // 15.7.16 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-class-definitions-runtime-semantics-evaluation
 | ||
| // ClassExpression : class BindingIdentifier ClassTail
 | ||
| Completion ClassExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let className be StringValue of BindingIdentifier.
 | ||
|     // 2. Let value be ? ClassDefinitionEvaluation of ClassTail with arguments className and className.
 | ||
|     auto value = TRY(class_definition_evaluation(interpreter, global_object, m_name, m_name.is_null() ? "" : m_name));
 | ||
| 
 | ||
|     // FIXME:
 | ||
|     // 3. Set value.[[SourceText]] to the source text matched by ClassExpression.
 | ||
| 
 | ||
|     // 4. Return value.
 | ||
|     return value;
 | ||
| }
 | ||
| 
 | ||
| // 15.7.16 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-class-definitions-runtime-semantics-evaluation
 | ||
| // ClassDeclaration : class BindingIdentifier ClassTail
 | ||
| Completion ClassDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Perform ? BindingClassDeclarationEvaluation of this ClassDeclaration.
 | ||
|     (void)TRY(binding_class_declaration_evaluation(interpreter, global_object));
 | ||
| 
 | ||
|     // 2. Return NormalCompletion(empty).
 | ||
|     return normal_completion({});
 | ||
| }
 | ||
| 
 | ||
| // 15.7.14 Runtime Semantics: ClassDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
 | ||
| ThrowCompletionOr<Value> ClassExpression::class_definition_evaluation(Interpreter& interpreter, GlobalObject& global_object, FlyString const& binding_name, FlyString const& class_name) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto* environment = vm.lexical_environment();
 | ||
|     VERIFY(environment);
 | ||
|     auto* class_scope = new_declarative_environment(*environment);
 | ||
| 
 | ||
|     // We might not set the lexical environment but we always want to restore it eventually.
 | ||
|     ArmedScopeGuard restore_environment = [&] {
 | ||
|         vm.running_execution_context().lexical_environment = environment;
 | ||
|     };
 | ||
| 
 | ||
|     if (!binding_name.is_null())
 | ||
|         MUST(class_scope->create_immutable_binding(global_object, binding_name, true));
 | ||
| 
 | ||
|     auto* outer_private_environment = vm.running_execution_context().private_environment;
 | ||
|     auto* class_private_environment = new_private_environment(vm, outer_private_environment);
 | ||
| 
 | ||
|     for (auto const& element : m_elements) {
 | ||
|         auto opt_private_name = element.private_bound_identifier();
 | ||
|         if (opt_private_name.has_value())
 | ||
|             class_private_environment->add_private_name({}, opt_private_name.release_value());
 | ||
|     }
 | ||
| 
 | ||
|     auto* proto_parent = vm.current_realm()->global_object().object_prototype();
 | ||
| 
 | ||
|     auto* constructor_parent = vm.current_realm()->global_object().function_prototype();
 | ||
| 
 | ||
|     if (!m_super_class.is_null()) {
 | ||
|         vm.running_execution_context().lexical_environment = class_scope;
 | ||
| 
 | ||
|         // Note: Since our execute does evaluation and GetValue in once we must check for a valid reference first
 | ||
| 
 | ||
|         Value super_class;
 | ||
| 
 | ||
|         auto reference = TRY(m_super_class->to_reference(interpreter, global_object));
 | ||
|         if (reference.is_valid_reference()) {
 | ||
|             super_class = TRY(reference.get_value(global_object));
 | ||
|         } else {
 | ||
|             super_class = TRY(m_super_class->execute(interpreter, global_object)).release_value();
 | ||
|         }
 | ||
|         vm.running_execution_context().lexical_environment = environment;
 | ||
| 
 | ||
|         if (super_class.is_null()) {
 | ||
|             proto_parent = nullptr;
 | ||
|         } else if (!super_class.is_constructor()) {
 | ||
|             return vm.throw_completion<TypeError>(global_object, ErrorType::ClassExtendsValueNotAConstructorOrNull, super_class.to_string_without_side_effects());
 | ||
|         } else {
 | ||
|             auto super_class_prototype = TRY(super_class.get(global_object, vm.names.prototype));
 | ||
|             if (!super_class_prototype.is_null() && !super_class_prototype.is_object())
 | ||
|                 return vm.throw_completion<TypeError>(global_object, ErrorType::ClassExtendsValueInvalidPrototype, super_class_prototype.to_string_without_side_effects());
 | ||
| 
 | ||
|             if (super_class_prototype.is_null())
 | ||
|                 proto_parent = nullptr;
 | ||
|             else
 | ||
|                 proto_parent = &super_class_prototype.as_object();
 | ||
| 
 | ||
|             constructor_parent = &super_class.as_object();
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     auto* prototype = Object::create(global_object, proto_parent);
 | ||
|     VERIFY(prototype);
 | ||
| 
 | ||
|     vm.running_execution_context().lexical_environment = class_scope;
 | ||
|     vm.running_execution_context().private_environment = class_private_environment;
 | ||
|     ScopeGuard restore_private_environment = [&] {
 | ||
|         vm.running_execution_context().private_environment = outer_private_environment;
 | ||
|     };
 | ||
| 
 | ||
|     // FIXME: Step 14.a is done in the parser. But maybe it shouldn't?
 | ||
|     auto class_constructor_value = TRY(m_constructor->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     update_function_name(class_constructor_value, class_name);
 | ||
| 
 | ||
|     VERIFY(class_constructor_value.is_function() && is<ECMAScriptFunctionObject>(class_constructor_value.as_function()));
 | ||
|     auto* class_constructor = static_cast<ECMAScriptFunctionObject*>(&class_constructor_value.as_function());
 | ||
|     class_constructor->set_home_object(prototype);
 | ||
|     class_constructor->set_is_class_constructor();
 | ||
|     class_constructor->define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
 | ||
|     TRY(class_constructor->internal_set_prototype_of(constructor_parent));
 | ||
| 
 | ||
|     if (!m_super_class.is_null())
 | ||
|         class_constructor->set_constructor_kind(ECMAScriptFunctionObject::ConstructorKind::Derived);
 | ||
| 
 | ||
|     prototype->define_direct_property(vm.names.constructor, class_constructor, Attribute::Writable | Attribute::Configurable);
 | ||
| 
 | ||
|     using StaticElement = Variant<ClassElement::ClassFieldDefinition, ECMAScriptFunctionObject*>;
 | ||
| 
 | ||
|     Vector<PrivateElement> static_private_methods;
 | ||
|     Vector<PrivateElement> instance_private_methods;
 | ||
|     Vector<ClassElement::ClassFieldDefinition> instance_fields;
 | ||
|     Vector<StaticElement> static_elements;
 | ||
| 
 | ||
|     for (auto const& element : m_elements) {
 | ||
|         // Note: All ClassElementEvaluation start with evaluating the name (or we fake it).
 | ||
|         auto element_value = TRY(element.class_element_evaluation(interpreter, global_object, element.is_static() ? *class_constructor : *prototype));
 | ||
| 
 | ||
|         if (element_value.has<PrivateElement>()) {
 | ||
|             auto& container = element.is_static() ? static_private_methods : instance_private_methods;
 | ||
| 
 | ||
|             auto& private_element = element_value.get<PrivateElement>();
 | ||
| 
 | ||
|             auto added_to_existing = false;
 | ||
|             // FIXME: We can skip this loop in most cases.
 | ||
|             for (auto& existing : container) {
 | ||
|                 if (existing.key == private_element.key) {
 | ||
|                     VERIFY(existing.kind == PrivateElement::Kind::Accessor);
 | ||
|                     VERIFY(private_element.kind == PrivateElement::Kind::Accessor);
 | ||
|                     auto& accessor = private_element.value.as_accessor();
 | ||
|                     if (!accessor.getter())
 | ||
|                         existing.value.as_accessor().set_setter(accessor.setter());
 | ||
|                     else
 | ||
|                         existing.value.as_accessor().set_getter(accessor.getter());
 | ||
|                     added_to_existing = true;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             if (!added_to_existing)
 | ||
|                 container.append(move(element_value.get<PrivateElement>()));
 | ||
|         } else if (auto* class_field_definition_ptr = element_value.get_pointer<ClassElement::ClassFieldDefinition>()) {
 | ||
|             if (element.is_static())
 | ||
|                 static_elements.append(move(*class_field_definition_ptr));
 | ||
|             else
 | ||
|                 instance_fields.append(move(*class_field_definition_ptr));
 | ||
|         } else if (element.class_element_kind() == ClassElement::ElementKind::StaticInitializer) {
 | ||
|             // We use Completion to hold the ClassStaticBlockDefinition Record.
 | ||
|             VERIFY(element_value.has<Completion>() && element_value.get<Completion>().value().has_value());
 | ||
|             auto& element_object = element_value.get<Completion>().value()->as_object();
 | ||
|             VERIFY(is<ECMAScriptFunctionObject>(element_object));
 | ||
|             static_elements.append(static_cast<ECMAScriptFunctionObject*>(&element_object));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     vm.running_execution_context().lexical_environment = environment;
 | ||
|     restore_environment.disarm();
 | ||
| 
 | ||
|     if (!binding_name.is_null())
 | ||
|         MUST(class_scope->initialize_binding(global_object, binding_name, class_constructor));
 | ||
| 
 | ||
|     for (auto& field : instance_fields)
 | ||
|         class_constructor->add_field(field.name, field.initializer);
 | ||
| 
 | ||
|     for (auto& private_method : instance_private_methods)
 | ||
|         class_constructor->add_private_method(private_method);
 | ||
| 
 | ||
|     for (auto& method : static_private_methods)
 | ||
|         class_constructor->private_method_or_accessor_add(move(method));
 | ||
| 
 | ||
|     for (auto& element : static_elements) {
 | ||
|         TRY(element.visit(
 | ||
|             [&](ClassElement::ClassFieldDefinition const& field) -> ThrowCompletionOr<void> {
 | ||
|                 return TRY(class_constructor->define_field(field.name, field.initializer));
 | ||
|             },
 | ||
|             [&](ECMAScriptFunctionObject* static_block_function) -> ThrowCompletionOr<void> {
 | ||
|                 // We discard any value returned here.
 | ||
|                 TRY(call(global_object, static_block_function, class_constructor_value));
 | ||
|                 return {};
 | ||
|             }));
 | ||
|     }
 | ||
| 
 | ||
|     return Value(class_constructor);
 | ||
| }
 | ||
| 
 | ||
| // 15.7.15 Runtime Semantics: BindingClassDeclarationEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-bindingclassdeclarationevaluation
 | ||
| ThrowCompletionOr<Value> ClassDeclaration::binding_class_declaration_evaluation(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 1. Let className be StringValue of BindingIdentifier.
 | ||
|     auto class_name = m_class_expression->name();
 | ||
|     VERIFY(!class_name.is_empty());
 | ||
| 
 | ||
|     // 2. Let value be ? ClassDefinitionEvaluation of ClassTail with arguments className and className.
 | ||
|     auto value = TRY(m_class_expression->class_definition_evaluation(interpreter, global_object, class_name, class_name));
 | ||
| 
 | ||
|     // FIXME:
 | ||
|     // 3. Set value.[[SourceText]] to the source text matched by ClassDeclaration.
 | ||
| 
 | ||
|     // 4. Let env be the running execution context's LexicalEnvironment.
 | ||
|     auto* env = interpreter.lexical_environment();
 | ||
| 
 | ||
|     // 5. Perform ? InitializeBoundName(className, value, env).
 | ||
|     TRY(initialize_bound_name(global_object, class_name, value, env));
 | ||
| 
 | ||
|     // 6. Return value.
 | ||
|     return value;
 | ||
| }
 | ||
| 
 | ||
| void ASTNode::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     if (!m_lexical_declarations.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Lexical declarations)");
 | ||
|         for (auto& declaration : m_lexical_declarations)
 | ||
|             declaration.dump(indent + 2);
 | ||
|     }
 | ||
| 
 | ||
|     if (!m_var_declarations.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Variable declarations)");
 | ||
|         for (auto& declaration : m_var_declarations)
 | ||
|             declaration.dump(indent + 2);
 | ||
|     }
 | ||
| 
 | ||
|     if (!m_functions_hoistable_with_annexB_extension.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Hoisted functions via annexB extension)");
 | ||
|         for (auto& declaration : m_functions_hoistable_with_annexB_extension)
 | ||
|             declaration.dump(indent + 2);
 | ||
|     }
 | ||
| 
 | ||
|     if (!m_children.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Children)");
 | ||
|         for (auto& child : children())
 | ||
|             child.dump(indent + 2);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void BinaryExpression::dump(int indent) const
 | ||
| {
 | ||
|     const char* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case BinaryOp::Addition:
 | ||
|         op_string = "+";
 | ||
|         break;
 | ||
|     case BinaryOp::Subtraction:
 | ||
|         op_string = "-";
 | ||
|         break;
 | ||
|     case BinaryOp::Multiplication:
 | ||
|         op_string = "*";
 | ||
|         break;
 | ||
|     case BinaryOp::Division:
 | ||
|         op_string = "/";
 | ||
|         break;
 | ||
|     case BinaryOp::Modulo:
 | ||
|         op_string = "%";
 | ||
|         break;
 | ||
|     case BinaryOp::Exponentiation:
 | ||
|         op_string = "**";
 | ||
|         break;
 | ||
|     case BinaryOp::StrictlyEquals:
 | ||
|         op_string = "===";
 | ||
|         break;
 | ||
|     case BinaryOp::StrictlyInequals:
 | ||
|         op_string = "!==";
 | ||
|         break;
 | ||
|     case BinaryOp::LooselyEquals:
 | ||
|         op_string = "==";
 | ||
|         break;
 | ||
|     case BinaryOp::LooselyInequals:
 | ||
|         op_string = "!=";
 | ||
|         break;
 | ||
|     case BinaryOp::GreaterThan:
 | ||
|         op_string = ">";
 | ||
|         break;
 | ||
|     case BinaryOp::GreaterThanEquals:
 | ||
|         op_string = ">=";
 | ||
|         break;
 | ||
|     case BinaryOp::LessThan:
 | ||
|         op_string = "<";
 | ||
|         break;
 | ||
|     case BinaryOp::LessThanEquals:
 | ||
|         op_string = "<=";
 | ||
|         break;
 | ||
|     case BinaryOp::BitwiseAnd:
 | ||
|         op_string = "&";
 | ||
|         break;
 | ||
|     case BinaryOp::BitwiseOr:
 | ||
|         op_string = "|";
 | ||
|         break;
 | ||
|     case BinaryOp::BitwiseXor:
 | ||
|         op_string = "^";
 | ||
|         break;
 | ||
|     case BinaryOp::LeftShift:
 | ||
|         op_string = "<<";
 | ||
|         break;
 | ||
|     case BinaryOp::RightShift:
 | ||
|         op_string = ">>";
 | ||
|         break;
 | ||
|     case BinaryOp::UnsignedRightShift:
 | ||
|         op_string = ">>>";
 | ||
|         break;
 | ||
|     case BinaryOp::In:
 | ||
|         op_string = "in";
 | ||
|         break;
 | ||
|     case BinaryOp::InstanceOf:
 | ||
|         op_string = "instanceof";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
|     m_lhs->dump(indent + 1);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", op_string);
 | ||
|     m_rhs->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void LogicalExpression::dump(int indent) const
 | ||
| {
 | ||
|     const char* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case LogicalOp::And:
 | ||
|         op_string = "&&";
 | ||
|         break;
 | ||
|     case LogicalOp::Or:
 | ||
|         op_string = "||";
 | ||
|         break;
 | ||
|     case LogicalOp::NullishCoalescing:
 | ||
|         op_string = "??";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
|     m_lhs->dump(indent + 1);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", op_string);
 | ||
|     m_rhs->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void UnaryExpression::dump(int indent) const
 | ||
| {
 | ||
|     const char* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case UnaryOp::BitwiseNot:
 | ||
|         op_string = "~";
 | ||
|         break;
 | ||
|     case UnaryOp::Not:
 | ||
|         op_string = "!";
 | ||
|         break;
 | ||
|     case UnaryOp::Plus:
 | ||
|         op_string = "+";
 | ||
|         break;
 | ||
|     case UnaryOp::Minus:
 | ||
|         op_string = "-";
 | ||
|         break;
 | ||
|     case UnaryOp::Typeof:
 | ||
|         op_string = "typeof ";
 | ||
|         break;
 | ||
|     case UnaryOp::Void:
 | ||
|         op_string = "void ";
 | ||
|         break;
 | ||
|     case UnaryOp::Delete:
 | ||
|         op_string = "delete ";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", op_string);
 | ||
|     m_lhs->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void CallExpression::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     if (is<NewExpression>(*this))
 | ||
|         outln("CallExpression [new]");
 | ||
|     else
 | ||
|         outln("CallExpression");
 | ||
|     m_callee->dump(indent + 1);
 | ||
|     for (auto& argument : m_arguments)
 | ||
|         argument.value->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void SuperCall::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("SuperCall");
 | ||
|     for (auto& argument : m_arguments)
 | ||
|         argument.value->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ClassDeclaration::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_class_expression->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ClassDeclaration::for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const
 | ||
| {
 | ||
|     if (!m_class_expression->name().is_empty())
 | ||
|         callback(m_class_expression->name());
 | ||
| }
 | ||
| 
 | ||
| void ClassExpression::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("ClassExpression: \"{}\"", m_name);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("(Constructor)");
 | ||
|     m_constructor->dump(indent + 1);
 | ||
| 
 | ||
|     if (!m_super_class.is_null()) {
 | ||
|         print_indent(indent);
 | ||
|         outln("(Super Class)");
 | ||
|         m_super_class->dump(indent + 1);
 | ||
|     }
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("(Elements)");
 | ||
|     for (auto& method : m_elements)
 | ||
|         method.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ClassMethod::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("(Key)");
 | ||
|     m_key->dump(indent + 1);
 | ||
| 
 | ||
|     const char* kind_string = nullptr;
 | ||
|     switch (m_kind) {
 | ||
|     case Kind::Method:
 | ||
|         kind_string = "Method";
 | ||
|         break;
 | ||
|     case Kind::Getter:
 | ||
|         kind_string = "Getter";
 | ||
|         break;
 | ||
|     case Kind::Setter:
 | ||
|         kind_string = "Setter";
 | ||
|         break;
 | ||
|     }
 | ||
|     print_indent(indent);
 | ||
|     outln("Kind: {}", kind_string);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("Static: {}", is_static());
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("(Function)");
 | ||
|     m_function->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ClassField::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent);
 | ||
|     outln("(Key)");
 | ||
|     m_key->dump(indent + 1);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("Static: {}", is_static());
 | ||
| 
 | ||
|     if (m_initializer) {
 | ||
|         print_indent(indent);
 | ||
|         outln("(Initializer)");
 | ||
|         m_initializer->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void StaticInitializer::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_function_body->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void StringLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("StringLiteral \"{}\"", m_value);
 | ||
| }
 | ||
| 
 | ||
| void SuperExpression::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("super");
 | ||
| }
 | ||
| 
 | ||
| void NumericLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("NumericLiteral {}", m_value);
 | ||
| }
 | ||
| 
 | ||
| void BigIntLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("BigIntLiteral {}", m_value);
 | ||
| }
 | ||
| 
 | ||
| void BooleanLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("BooleanLiteral {}", m_value);
 | ||
| }
 | ||
| 
 | ||
| void NullLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("null");
 | ||
| }
 | ||
| 
 | ||
| bool BindingPattern::contains_expression() const
 | ||
| {
 | ||
|     for (auto& entry : entries) {
 | ||
|         if (entry.initializer)
 | ||
|             return true;
 | ||
|         if (auto binding_ptr = entry.alias.get_pointer<NonnullRefPtr<BindingPattern>>(); binding_ptr && (*binding_ptr)->contains_expression())
 | ||
|             return true;
 | ||
|     }
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| void BindingPattern::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("BindingPattern {}", kind == Kind::Array ? "Array" : "Object");
 | ||
| 
 | ||
|     for (auto& entry : entries) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Property)");
 | ||
| 
 | ||
|         if (kind == Kind::Object) {
 | ||
|             print_indent(indent + 2);
 | ||
|             outln("(Identifier)");
 | ||
|             if (entry.name.has<NonnullRefPtr<Identifier>>()) {
 | ||
|                 entry.name.get<NonnullRefPtr<Identifier>>()->dump(indent + 3);
 | ||
|             } else {
 | ||
|                 entry.name.get<NonnullRefPtr<Expression>>()->dump(indent + 3);
 | ||
|             }
 | ||
|         } else if (entry.is_elision()) {
 | ||
|             print_indent(indent + 2);
 | ||
|             outln("(Elision)");
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         print_indent(indent + 2);
 | ||
|         outln("(Pattern{})", entry.is_rest ? " rest=true" : "");
 | ||
|         if (entry.alias.has<NonnullRefPtr<Identifier>>()) {
 | ||
|             entry.alias.get<NonnullRefPtr<Identifier>>()->dump(indent + 3);
 | ||
|         } else if (entry.alias.has<NonnullRefPtr<BindingPattern>>()) {
 | ||
|             entry.alias.get<NonnullRefPtr<BindingPattern>>()->dump(indent + 3);
 | ||
|         } else if (entry.alias.has<NonnullRefPtr<MemberExpression>>()) {
 | ||
|             entry.alias.get<NonnullRefPtr<MemberExpression>>()->dump(indent + 3);
 | ||
|         } else {
 | ||
|             print_indent(indent + 3);
 | ||
|             outln("<empty>");
 | ||
|         }
 | ||
| 
 | ||
|         if (entry.initializer) {
 | ||
|             print_indent(indent + 2);
 | ||
|             outln("(Initializer)");
 | ||
|             entry.initializer->dump(indent + 3);
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void FunctionNode::dump(int indent, String const& class_name) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     auto is_async = m_kind == FunctionKind::Async || m_kind == FunctionKind::AsyncGenerator;
 | ||
|     auto is_generator = m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator;
 | ||
|     outln("{}{}{} '{}'", class_name, is_async ? " async" : "", is_generator ? "*" : "", name());
 | ||
|     if (m_contains_direct_call_to_eval) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("\033[31;1m(direct eval)\033[0m");
 | ||
|     }
 | ||
|     if (!m_parameters.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Parameters)");
 | ||
| 
 | ||
|         for (auto& parameter : m_parameters) {
 | ||
|             print_indent(indent + 2);
 | ||
|             if (parameter.is_rest)
 | ||
|                 out("...");
 | ||
|             parameter.binding.visit(
 | ||
|                 [&](FlyString const& name) {
 | ||
|                     outln("{}", name);
 | ||
|                 },
 | ||
|                 [&](BindingPattern const& pattern) {
 | ||
|                     pattern.dump(indent + 2);
 | ||
|                 });
 | ||
|             if (parameter.default_value)
 | ||
|                 parameter.default_value->dump(indent + 3);
 | ||
|         }
 | ||
|     }
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Body)");
 | ||
|     body().dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| void FunctionDeclaration::dump(int indent) const
 | ||
| {
 | ||
|     FunctionNode::dump(indent, class_name());
 | ||
| }
 | ||
| 
 | ||
| void FunctionDeclaration::for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const
 | ||
| {
 | ||
|     if (!name().is_empty())
 | ||
|         callback(name());
 | ||
| }
 | ||
| 
 | ||
| void FunctionExpression::dump(int indent) const
 | ||
| {
 | ||
|     FunctionNode::dump(indent, class_name());
 | ||
| }
 | ||
| 
 | ||
| void YieldExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     if (argument())
 | ||
|         argument()->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void AwaitExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_argument->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ReturnStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     if (argument())
 | ||
|         argument()->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void IfStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("If");
 | ||
|     predicate().dump(indent + 1);
 | ||
|     consequent().dump(indent + 1);
 | ||
|     if (alternate()) {
 | ||
|         print_indent(indent);
 | ||
|         outln("Else");
 | ||
|         alternate()->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void WhileStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("While");
 | ||
|     test().dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void WithStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("Object");
 | ||
|     object().dump(indent + 2);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("Body");
 | ||
|     body().dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| void DoWhileStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("DoWhile");
 | ||
|     test().dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ForStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("For");
 | ||
|     if (init())
 | ||
|         init()->dump(indent + 1);
 | ||
|     if (test())
 | ||
|         test()->dump(indent + 1);
 | ||
|     if (update())
 | ||
|         update()->dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ForInStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("ForIn");
 | ||
|     lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
 | ||
|     rhs().dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ForOfStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("ForOf");
 | ||
|     lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
 | ||
|     rhs().dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ForAwaitOfStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("ForAwaitOf");
 | ||
|     m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
 | ||
|     m_rhs->dump(indent + 1);
 | ||
|     m_body->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 13.1.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-identifiers-runtime-semantics-evaluation
 | ||
| Completion Identifier::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return ? ResolveBinding(StringValue of Identifier).
 | ||
|     auto reference = TRY(interpreter.vm().resolve_binding(m_string));
 | ||
| 
 | ||
|     // NOTE: The spec wants us to return the reference directly; this is not possible with ASTNode::execute() (short of letting it return a variant).
 | ||
|     // So, instead of calling GetValue at the call site, we do it here.
 | ||
|     return TRY(reference.get_value(global_object));
 | ||
| }
 | ||
| 
 | ||
| void Identifier::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("Identifier \"{}\"", m_string);
 | ||
| }
 | ||
| 
 | ||
| Completion PrivateIdentifier::execute(Interpreter&, GlobalObject&) const
 | ||
| {
 | ||
|     // Note: This should be handled by either the member expression this is part of
 | ||
|     //       or the binary expression in the case of `#foo in bar`.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| void PrivateIdentifier::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("PrivateIdentifier \"{}\"", m_string);
 | ||
| }
 | ||
| 
 | ||
| void SpreadExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_target->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| Completion SpreadExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     return m_target->execute(interpreter, global_object);
 | ||
| }
 | ||
| 
 | ||
| // 13.2.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-this-keyword-runtime-semantics-evaluation
 | ||
| Completion ThisExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return ? ResolveThisBinding().
 | ||
|     return interpreter.vm().resolve_this_binding(global_object);
 | ||
| }
 | ||
| 
 | ||
| void ThisExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| }
 | ||
| 
 | ||
| // 13.15.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-assignment-operators-runtime-semantics-evaluation
 | ||
| Completion AssignmentExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     if (m_op == AssignmentOp::Assignment) {
 | ||
|         // AssignmentExpression : LeftHandSideExpression = AssignmentExpression
 | ||
|         return m_lhs.visit(
 | ||
|             // 1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, then
 | ||
|             [&](NonnullRefPtr<Expression> const& lhs) -> ThrowCompletionOr<Value> {
 | ||
|                 // a. Let lref be the result of evaluating LeftHandSideExpression.
 | ||
|                 // b. ReturnIfAbrupt(lref).
 | ||
|                 auto reference = TRY(lhs->to_reference(interpreter, global_object));
 | ||
| 
 | ||
|                 Value rhs_result;
 | ||
| 
 | ||
|                 // c. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef of LeftHandSideExpression are both true, then
 | ||
|                 if (lhs->is_identifier()) {
 | ||
|                     // i. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].
 | ||
|                     auto& identifier_name = static_cast<Identifier const&>(*lhs).string();
 | ||
|                     rhs_result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_rhs, identifier_name));
 | ||
|                 }
 | ||
|                 // d. Else,
 | ||
|                 else {
 | ||
|                     // i. Let rref be the result of evaluating AssignmentExpression.
 | ||
|                     // ii. Let rval be ? GetValue(rref).
 | ||
|                     rhs_result = TRY(m_rhs->execute(interpreter, global_object)).release_value();
 | ||
|                 }
 | ||
| 
 | ||
|                 // e. Perform ? PutValue(lref, rval).
 | ||
|                 TRY(reference.put_value(global_object, rhs_result));
 | ||
| 
 | ||
|                 // f. Return rval.
 | ||
|                 return rhs_result;
 | ||
|             },
 | ||
|             // 2. Let assignmentPattern be the AssignmentPattern that is covered by LeftHandSideExpression.
 | ||
|             [&](NonnullRefPtr<BindingPattern> const& pattern) -> ThrowCompletionOr<Value> {
 | ||
|                 // 3. Let rref be the result of evaluating AssignmentExpression.
 | ||
|                 // 4. Let rval be ? GetValue(rref).
 | ||
|                 auto rhs_result = TRY(m_rhs->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|                 // 5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.
 | ||
|                 TRY(interpreter.vm().destructuring_assignment_evaluation(pattern, rhs_result, global_object));
 | ||
| 
 | ||
|                 // 6. Return rval.
 | ||
|                 return rhs_result;
 | ||
|             });
 | ||
|     }
 | ||
|     VERIFY(m_lhs.has<NonnullRefPtr<Expression>>());
 | ||
| 
 | ||
|     // 1. Let lref be the result of evaluating LeftHandSideExpression.
 | ||
|     auto& lhs_expression = *m_lhs.get<NonnullRefPtr<Expression>>();
 | ||
|     auto reference = TRY(lhs_expression.to_reference(interpreter, global_object));
 | ||
| 
 | ||
|     // 2. Let lval be ? GetValue(lref).
 | ||
|     auto lhs_result = TRY(reference.get_value(global_object));
 | ||
| 
 | ||
|     //  AssignmentExpression : LeftHandSideExpression {&&=, ||=, ??=} AssignmentExpression
 | ||
|     if (m_op == AssignmentOp::AndAssignment || m_op == AssignmentOp::OrAssignment || m_op == AssignmentOp::NullishAssignment) {
 | ||
|         switch (m_op) {
 | ||
|         // AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression
 | ||
|         case AssignmentOp::AndAssignment:
 | ||
|             // 3. Let lbool be ! ToBoolean(lval).
 | ||
|             // 4. If lbool is false, return lval.
 | ||
|             if (!lhs_result.to_boolean())
 | ||
|                 return lhs_result;
 | ||
|             break;
 | ||
| 
 | ||
|         // AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression
 | ||
|         case AssignmentOp::OrAssignment:
 | ||
|             // 3. Let lbool be ! ToBoolean(lval).
 | ||
|             // 4. If lbool is true, return lval.
 | ||
|             if (lhs_result.to_boolean())
 | ||
|                 return lhs_result;
 | ||
|             break;
 | ||
| 
 | ||
|         // AssignmentExpression : LeftHandSideExpression ??= AssignmentExpression
 | ||
|         case AssignmentOp::NullishAssignment:
 | ||
|             // 3. If lval is neither undefined nor null, return lval.
 | ||
|             if (!lhs_result.is_nullish())
 | ||
|                 return lhs_result;
 | ||
|             break;
 | ||
| 
 | ||
|         default:
 | ||
|             VERIFY_NOT_REACHED();
 | ||
|         }
 | ||
| 
 | ||
|         Value rhs_result;
 | ||
| 
 | ||
|         // 5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true, then
 | ||
|         if (lhs_expression.is_identifier()) {
 | ||
|             // a. Let rval be NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].
 | ||
|             auto& identifier_name = static_cast<Identifier const&>(lhs_expression).string();
 | ||
|             rhs_result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(global_object, m_rhs, identifier_name));
 | ||
|         }
 | ||
|         // 6. Else,
 | ||
|         else {
 | ||
|             // a. Let rref be the result of evaluating AssignmentExpression.
 | ||
|             // b. Let rval be ? GetValue(rref).
 | ||
|             rhs_result = TRY(m_rhs->execute(interpreter, global_object)).release_value();
 | ||
|         }
 | ||
| 
 | ||
|         // 7. Perform ? PutValue(lref, rval).
 | ||
|         TRY(reference.put_value(global_object, rhs_result));
 | ||
| 
 | ||
|         // 8. Return rval.
 | ||
|         return rhs_result;
 | ||
|     }
 | ||
| 
 | ||
|     // AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression
 | ||
| 
 | ||
|     // 3. Let rref be the result of evaluating AssignmentExpression.
 | ||
|     // 4. Let rval be ? GetValue(rref).
 | ||
|     auto rhs_result = TRY(m_rhs->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     // 5. Let assignmentOpText be the source text matched by AssignmentOperator.
 | ||
|     // 6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:
 | ||
|     // 7. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
 | ||
|     switch (m_op) {
 | ||
|     case AssignmentOp::AdditionAssignment:
 | ||
|         rhs_result = TRY(add(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::SubtractionAssignment:
 | ||
|         rhs_result = TRY(sub(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::MultiplicationAssignment:
 | ||
|         rhs_result = TRY(mul(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::DivisionAssignment:
 | ||
|         rhs_result = TRY(div(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::ModuloAssignment:
 | ||
|         rhs_result = TRY(mod(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::ExponentiationAssignment:
 | ||
|         rhs_result = TRY(exp(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseAndAssignment:
 | ||
|         rhs_result = TRY(bitwise_and(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseOrAssignment:
 | ||
|         rhs_result = TRY(bitwise_or(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseXorAssignment:
 | ||
|         rhs_result = TRY(bitwise_xor(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::LeftShiftAssignment:
 | ||
|         rhs_result = TRY(left_shift(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::RightShiftAssignment:
 | ||
|         rhs_result = TRY(right_shift(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::UnsignedRightShiftAssignment:
 | ||
|         rhs_result = TRY(unsigned_right_shift(global_object, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::Assignment:
 | ||
|     case AssignmentOp::AndAssignment:
 | ||
|     case AssignmentOp::OrAssignment:
 | ||
|     case AssignmentOp::NullishAssignment:
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
| 
 | ||
|     // 8. Perform ? PutValue(lref, r).
 | ||
|     TRY(reference.put_value(global_object, rhs_result));
 | ||
| 
 | ||
|     // 9. Return r.
 | ||
|     return rhs_result;
 | ||
| }
 | ||
| 
 | ||
| // 13.4.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-postfix-increment-operator-runtime-semantics-evaluation
 | ||
| // 13.4.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-postfix-decrement-operator-runtime-semantics-evaluation
 | ||
| // 13.4.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-prefix-increment-operator-runtime-semantics-evaluation
 | ||
| // 13.4.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-prefix-decrement-operator-runtime-semantics-evaluation
 | ||
| Completion UpdateExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let expr be the result of evaluating <Expression>.
 | ||
|     auto reference = TRY(m_argument->to_reference(interpreter, global_object));
 | ||
| 
 | ||
|     // 2. Let oldValue be ? ToNumeric(? GetValue(expr)).
 | ||
|     auto old_value = TRY(reference.get_value(global_object));
 | ||
|     old_value = TRY(old_value.to_numeric(global_object));
 | ||
| 
 | ||
|     Value new_value;
 | ||
|     switch (m_op) {
 | ||
|     case UpdateOp::Increment:
 | ||
|         // 3. If Type(oldValue) is Number, then
 | ||
|         if (old_value.is_number()) {
 | ||
|             // a. Let newValue be ! Number::add(oldValue, 1𝔽).
 | ||
|             new_value = Value(old_value.as_double() + 1);
 | ||
|         }
 | ||
|         // 4. Else,
 | ||
|         else {
 | ||
|             // a. Assert: Type(oldValue) is BigInt.
 | ||
|             // b. Let newValue be ! BigInt::add(oldValue, 1ℤ).
 | ||
|             new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
 | ||
|         }
 | ||
|         break;
 | ||
|     case UpdateOp::Decrement:
 | ||
|         // 3. If Type(oldValue) is Number, then
 | ||
|         if (old_value.is_number()) {
 | ||
|             // a. Let newValue be ! Number::subtract(oldValue, 1𝔽).
 | ||
|             new_value = Value(old_value.as_double() - 1);
 | ||
|         }
 | ||
|         // 4. Else,
 | ||
|         else {
 | ||
|             // a. Assert: Type(oldValue) is BigInt.
 | ||
|             // b. Let newValue be ! BigInt::subtract(oldValue, 1ℤ).
 | ||
|             new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
 | ||
|         }
 | ||
|         break;
 | ||
|     default:
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
| 
 | ||
|     // 5. Perform ? PutValue(expr, newValue).
 | ||
|     TRY(reference.put_value(global_object, new_value));
 | ||
| 
 | ||
|     // 6. Return newValue.
 | ||
|     // 6. Return oldValue.
 | ||
|     return m_prefixed ? new_value : old_value;
 | ||
| }
 | ||
| 
 | ||
| void AssignmentExpression::dump(int indent) const
 | ||
| {
 | ||
|     const char* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case AssignmentOp::Assignment:
 | ||
|         op_string = "=";
 | ||
|         break;
 | ||
|     case AssignmentOp::AdditionAssignment:
 | ||
|         op_string = "+=";
 | ||
|         break;
 | ||
|     case AssignmentOp::SubtractionAssignment:
 | ||
|         op_string = "-=";
 | ||
|         break;
 | ||
|     case AssignmentOp::MultiplicationAssignment:
 | ||
|         op_string = "*=";
 | ||
|         break;
 | ||
|     case AssignmentOp::DivisionAssignment:
 | ||
|         op_string = "/=";
 | ||
|         break;
 | ||
|     case AssignmentOp::ModuloAssignment:
 | ||
|         op_string = "%=";
 | ||
|         break;
 | ||
|     case AssignmentOp::ExponentiationAssignment:
 | ||
|         op_string = "**=";
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseAndAssignment:
 | ||
|         op_string = "&=";
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseOrAssignment:
 | ||
|         op_string = "|=";
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseXorAssignment:
 | ||
|         op_string = "^=";
 | ||
|         break;
 | ||
|     case AssignmentOp::LeftShiftAssignment:
 | ||
|         op_string = "<<=";
 | ||
|         break;
 | ||
|     case AssignmentOp::RightShiftAssignment:
 | ||
|         op_string = ">>=";
 | ||
|         break;
 | ||
|     case AssignmentOp::UnsignedRightShiftAssignment:
 | ||
|         op_string = ">>>=";
 | ||
|         break;
 | ||
|     case AssignmentOp::AndAssignment:
 | ||
|         op_string = "&&=";
 | ||
|         break;
 | ||
|     case AssignmentOp::OrAssignment:
 | ||
|         op_string = "||=";
 | ||
|         break;
 | ||
|     case AssignmentOp::NullishAssignment:
 | ||
|         op_string = "\?\?=";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", op_string);
 | ||
|     m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
 | ||
|     m_rhs->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void UpdateExpression::dump(int indent) const
 | ||
| {
 | ||
|     const char* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case UpdateOp::Increment:
 | ||
|         op_string = "++";
 | ||
|         break;
 | ||
|     case UpdateOp::Decrement:
 | ||
|         op_string = "--";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     ASTNode::dump(indent);
 | ||
|     if (m_prefixed) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("{}", op_string);
 | ||
|     }
 | ||
|     m_argument->dump(indent + 1);
 | ||
|     if (!m_prefixed) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("{}", op_string);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // 14.3.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-let-and-const-declarations-runtime-semantics-evaluation
 | ||
| // 14.3.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-variable-statement-runtime-semantics-evaluation
 | ||
| Completion VariableDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     for (auto& declarator : m_declarations) {
 | ||
|         if (auto* init = declarator.init()) {
 | ||
|             TRY(declarator.target().visit(
 | ||
|                 [&](NonnullRefPtr<Identifier> const& id) -> ThrowCompletionOr<void> {
 | ||
|                     auto reference = TRY(id->to_reference(interpreter, global_object));
 | ||
|                     auto initializer_result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(global_object, *init, id->string()));
 | ||
|                     VERIFY(!initializer_result.is_empty());
 | ||
| 
 | ||
|                     if (m_declaration_kind == DeclarationKind::Var)
 | ||
|                         return reference.put_value(global_object, initializer_result);
 | ||
|                     else
 | ||
|                         return reference.initialize_referenced_binding(global_object, initializer_result);
 | ||
|                 },
 | ||
|                 [&](NonnullRefPtr<BindingPattern> const& pattern) -> ThrowCompletionOr<void> {
 | ||
|                     auto initializer_result = TRY(init->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|                     Environment* environment = m_declaration_kind == DeclarationKind::Var ? nullptr : interpreter.lexical_environment();
 | ||
| 
 | ||
|                     return interpreter.vm().binding_initialization(pattern, initializer_result, environment, global_object);
 | ||
|                 }));
 | ||
|         } else if (m_declaration_kind != DeclarationKind::Var) {
 | ||
|             VERIFY(declarator.target().has<NonnullRefPtr<Identifier>>());
 | ||
|             auto& identifier = declarator.target().get<NonnullRefPtr<Identifier>>();
 | ||
|             auto reference = TRY(identifier->to_reference(interpreter, global_object));
 | ||
|             TRY(reference.initialize_referenced_binding(global_object, js_undefined()));
 | ||
|         }
 | ||
|     }
 | ||
|     return normal_completion({});
 | ||
| }
 | ||
| 
 | ||
| Completion VariableDeclarator::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: VariableDeclarator execution is handled by VariableDeclaration.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| void VariableDeclaration::for_each_bound_name(IteratorOrVoidFunction<FlyString const&> callback) const
 | ||
| {
 | ||
|     for (auto& entry : declarations()) {
 | ||
|         entry.target().template visit(
 | ||
|             [&](const NonnullRefPtr<Identifier>& id) {
 | ||
|                 callback(id->string());
 | ||
|             },
 | ||
|             [&](const NonnullRefPtr<BindingPattern>& binding) {
 | ||
|                 binding->for_each_bound_name([&](const auto& name) {
 | ||
|                     callback(name);
 | ||
|                 });
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void VariableDeclaration::dump(int indent) const
 | ||
| {
 | ||
|     const char* declaration_kind_string = nullptr;
 | ||
|     switch (m_declaration_kind) {
 | ||
|     case DeclarationKind::Let:
 | ||
|         declaration_kind_string = "Let";
 | ||
|         break;
 | ||
|     case DeclarationKind::Var:
 | ||
|         declaration_kind_string = "Var";
 | ||
|         break;
 | ||
|     case DeclarationKind::Const:
 | ||
|         declaration_kind_string = "Const";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", declaration_kind_string);
 | ||
| 
 | ||
|     for (auto& declarator : m_declarations)
 | ||
|         declarator.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void VariableDeclarator::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_target.visit([indent](const auto& value) { value->dump(indent + 1); });
 | ||
|     if (m_init)
 | ||
|         m_init->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ObjectProperty::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     if (m_property_type == Type::Spread) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("...Spreading");
 | ||
|         m_key->dump(indent + 1);
 | ||
|     } else {
 | ||
|         m_key->dump(indent + 1);
 | ||
|         m_value->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ObjectExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     for (auto& property : m_properties) {
 | ||
|         property.dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ExpressionStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_expression->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| Completion ObjectProperty::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: ObjectProperty execution is handled by ObjectExpression.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 13.2.5.4 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-object-initializer-runtime-semantics-evaluation
 | ||
| Completion ObjectExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let obj be ! OrdinaryObjectCreate(%Object.prototype%).
 | ||
|     auto* object = Object::create(global_object, global_object.object_prototype());
 | ||
| 
 | ||
|     // 2. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with argument obj.
 | ||
|     for (auto& property : m_properties) {
 | ||
|         auto key = TRY(property.key().execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|         if (property.type() == ObjectProperty::Type::Spread) {
 | ||
|             if (key.is_object() && is<Array>(key.as_object())) {
 | ||
|                 auto& array_to_spread = static_cast<Array&>(key.as_object());
 | ||
|                 for (auto& entry : array_to_spread.indexed_properties()) {
 | ||
|                     auto value = TRY(array_to_spread.get(entry.index()));
 | ||
|                     object->indexed_properties().put(entry.index(), value);
 | ||
|                 }
 | ||
|             } else if (key.is_object()) {
 | ||
|                 auto& obj_to_spread = key.as_object();
 | ||
| 
 | ||
|                 for (auto& it : obj_to_spread.shape().property_table_ordered()) {
 | ||
|                     if (it.value.attributes.is_enumerable()) {
 | ||
|                         auto value = TRY(obj_to_spread.get(it.key));
 | ||
|                         object->define_direct_property(it.key, value, JS::default_attributes);
 | ||
|                     }
 | ||
|                 }
 | ||
|             } else if (key.is_string()) {
 | ||
|                 auto& str_to_spread = key.as_string().string();
 | ||
| 
 | ||
|                 for (size_t i = 0; i < str_to_spread.length(); i++)
 | ||
|                     object->define_direct_property(i, js_string(interpreter.heap(), str_to_spread.substring(i, 1)), JS::default_attributes);
 | ||
|             }
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         auto value = TRY(property.value().execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|         if (value.is_function() && property.is_method())
 | ||
|             static_cast<ECMAScriptFunctionObject&>(value.as_function()).set_home_object(object);
 | ||
| 
 | ||
|         auto name = TRY(get_function_name(global_object, key));
 | ||
|         if (property.type() == ObjectProperty::Type::Getter) {
 | ||
|             name = String::formatted("get {}", name);
 | ||
|         } else if (property.type() == ObjectProperty::Type::Setter) {
 | ||
|             name = String::formatted("set {}", name);
 | ||
|         }
 | ||
| 
 | ||
|         update_function_name(value, name);
 | ||
| 
 | ||
|         switch (property.type()) {
 | ||
|         case ObjectProperty::Type::Getter:
 | ||
|             VERIFY(value.is_function());
 | ||
|             object->define_direct_accessor(TRY(PropertyKey::from_value(global_object, key)), &value.as_function(), nullptr, Attribute::Configurable | Attribute::Enumerable);
 | ||
|             break;
 | ||
|         case ObjectProperty::Type::Setter:
 | ||
|             VERIFY(value.is_function());
 | ||
|             object->define_direct_accessor(TRY(PropertyKey::from_value(global_object, key)), nullptr, &value.as_function(), Attribute::Configurable | Attribute::Enumerable);
 | ||
|             break;
 | ||
|         case ObjectProperty::Type::KeyValue:
 | ||
|             object->define_direct_property(TRY(PropertyKey::from_value(global_object, key)), value, JS::default_attributes);
 | ||
|             break;
 | ||
|         case ObjectProperty::Type::Spread:
 | ||
|         default:
 | ||
|             VERIFY_NOT_REACHED();
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return obj.
 | ||
|     return Value { object };
 | ||
| }
 | ||
| 
 | ||
| void MemberExpression::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("{}(computed={})", class_name(), is_computed());
 | ||
|     m_object->dump(indent + 1);
 | ||
|     m_property->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| String MemberExpression::to_string_approximation() const
 | ||
| {
 | ||
|     String object_string = "<object>";
 | ||
|     if (is<Identifier>(*m_object))
 | ||
|         object_string = static_cast<Identifier const&>(*m_object).string();
 | ||
|     if (is_computed())
 | ||
|         return String::formatted("{}[<computed>]", object_string);
 | ||
|     return String::formatted("{}.{}", object_string, verify_cast<Identifier>(*m_property).string());
 | ||
| }
 | ||
| 
 | ||
| // 13.3.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-property-accessors-runtime-semantics-evaluation
 | ||
| Completion MemberExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto reference = TRY(to_reference(interpreter, global_object));
 | ||
|     return TRY(reference.get_value(global_object));
 | ||
| }
 | ||
| 
 | ||
| bool MemberExpression::ends_in_private_name() const
 | ||
| {
 | ||
|     if (is_computed())
 | ||
|         return false;
 | ||
|     if (is<PrivateIdentifier>(*m_property))
 | ||
|         return true;
 | ||
|     if (is<MemberExpression>(*m_property))
 | ||
|         return static_cast<MemberExpression const&>(*m_property).ends_in_private_name();
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| void OptionalChain::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
|     m_base->dump(indent + 1);
 | ||
|     for (auto& reference : m_references) {
 | ||
|         reference.visit(
 | ||
|             [&](Call const& call) {
 | ||
|                 print_indent(indent + 1);
 | ||
|                 outln("Call({})", call.mode == Mode::Optional ? "Optional" : "Not Optional");
 | ||
|                 for (auto& argument : call.arguments)
 | ||
|                     argument.value->dump(indent + 2);
 | ||
|             },
 | ||
|             [&](ComputedReference const& ref) {
 | ||
|                 print_indent(indent + 1);
 | ||
|                 outln("ComputedReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
 | ||
|                 ref.expression->dump(indent + 2);
 | ||
|             },
 | ||
|             [&](MemberReference const& ref) {
 | ||
|                 print_indent(indent + 1);
 | ||
|                 outln("MemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
 | ||
|                 ref.identifier->dump(indent + 2);
 | ||
|             },
 | ||
|             [&](PrivateMemberReference const& ref) {
 | ||
|                 print_indent(indent + 1);
 | ||
|                 outln("PrivateMemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
 | ||
|                 ref.private_identifier->dump(indent + 2);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<OptionalChain::ReferenceAndValue> OptionalChain::to_reference_and_value(JS::Interpreter& interpreter, JS::GlobalObject& global_object) const
 | ||
| {
 | ||
|     auto base_reference = TRY(m_base->to_reference(interpreter, global_object));
 | ||
|     auto base = base_reference.is_unresolvable()
 | ||
|         ? TRY(m_base->execute(interpreter, global_object)).release_value()
 | ||
|         : TRY(base_reference.get_value(global_object));
 | ||
| 
 | ||
|     for (auto& reference : m_references) {
 | ||
|         auto is_optional = reference.visit([](auto& ref) { return ref.mode; }) == Mode::Optional;
 | ||
|         if (is_optional && base.is_nullish())
 | ||
|             return ReferenceAndValue { {}, js_undefined() };
 | ||
| 
 | ||
|         auto expression = reference.visit(
 | ||
|             [&](Call const& call) -> NonnullRefPtr<Expression> {
 | ||
|                 return create_ast_node<CallExpression>(source_range(),
 | ||
|                     create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
 | ||
|                     call.arguments);
 | ||
|             },
 | ||
|             [&](ComputedReference const& ref) -> NonnullRefPtr<Expression> {
 | ||
|                 return create_ast_node<MemberExpression>(source_range(),
 | ||
|                     create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
 | ||
|                     ref.expression,
 | ||
|                     true);
 | ||
|             },
 | ||
|             [&](MemberReference const& ref) -> NonnullRefPtr<Expression> {
 | ||
|                 return create_ast_node<MemberExpression>(source_range(),
 | ||
|                     create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
 | ||
|                     ref.identifier,
 | ||
|                     false);
 | ||
|             },
 | ||
|             [&](PrivateMemberReference const& ref) -> NonnullRefPtr<Expression> {
 | ||
|                 return create_ast_node<MemberExpression>(source_range(),
 | ||
|                     create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
 | ||
|                     ref.private_identifier,
 | ||
|                     false);
 | ||
|             });
 | ||
|         if (is<CallExpression>(*expression)) {
 | ||
|             base_reference = JS::Reference {};
 | ||
|             base = TRY(expression->execute(interpreter, global_object)).release_value();
 | ||
|         } else {
 | ||
|             base_reference = TRY(expression->to_reference(interpreter, global_object));
 | ||
|             base = TRY(base_reference.get_value(global_object));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return ReferenceAndValue { move(base_reference), base };
 | ||
| }
 | ||
| 
 | ||
| // 13.3.9.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-optional-chaining-evaluation
 | ||
| Completion OptionalChain::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     return TRY(to_reference_and_value(interpreter, global_object)).value;
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<JS::Reference> OptionalChain::to_reference(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     return TRY(to_reference_and_value(interpreter, global_object)).reference;
 | ||
| }
 | ||
| 
 | ||
| void MetaProperty::dump(int indent) const
 | ||
| {
 | ||
|     String name;
 | ||
|     if (m_type == MetaProperty::Type::NewTarget)
 | ||
|         name = "new.target";
 | ||
|     else if (m_type == MetaProperty::Type::ImportMeta)
 | ||
|         name = "import.meta";
 | ||
|     else
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     print_indent(indent);
 | ||
|     outln("{} {}", class_name(), name);
 | ||
| }
 | ||
| 
 | ||
| // 13.3.12.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-meta-properties-runtime-semantics-evaluation
 | ||
| Completion MetaProperty::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NewTarget : new . target
 | ||
|     if (m_type == MetaProperty::Type::NewTarget) {
 | ||
|         // 1. Return GetNewTarget().
 | ||
|         return interpreter.vm().get_new_target();
 | ||
|     }
 | ||
| 
 | ||
|     // ImportMeta : import . meta
 | ||
|     if (m_type == MetaProperty::Type::ImportMeta) {
 | ||
|         // TODO: Implement me :^)
 | ||
|         return interpreter.vm().throw_completion<InternalError>(global_object, ErrorType::NotImplemented, "'import.meta' in modules");
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| void ImportCall::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent);
 | ||
|     outln("(Specifier)");
 | ||
|     m_specifier->dump(indent + 1);
 | ||
|     if (m_options) {
 | ||
|         outln("(Options)");
 | ||
|         m_options->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // 13.3.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-import-call-runtime-semantics-evaluation
 | ||
| Completion ImportCall::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     return interpreter.vm().throw_completion<InternalError>(global_object, ErrorType::NotImplemented, "'import(...)' in modules");
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion StringLiteral::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return the SV of StringLiteral as defined in 12.8.4.2.
 | ||
|     return Value { js_string(interpreter.heap(), m_value) };
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion NumericLiteral::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return the NumericValue of NumericLiteral as defined in 12.8.3.
 | ||
|     return Value(m_value);
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion BigIntLiteral::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return the NumericValue of NumericLiteral as defined in 12.8.3.
 | ||
|     Crypto::SignedBigInteger integer;
 | ||
|     if (m_value[0] == '0' && m_value.length() >= 3) {
 | ||
|         if (m_value[1] == 'x' || m_value[1] == 'X') {
 | ||
|             return Value { js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(16, m_value.substring(2, m_value.length() - 3))) };
 | ||
|         } else if (m_value[1] == 'o' || m_value[1] == 'O') {
 | ||
|             return Value { js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(8, m_value.substring(2, m_value.length() - 3))) };
 | ||
|         } else if (m_value[1] == 'b' || m_value[1] == 'B') {
 | ||
|             return Value { js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(2, m_value.substring(2, m_value.length() - 3))) };
 | ||
|         }
 | ||
|     }
 | ||
|     return Value { js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base(10, m_value.substring(0, m_value.length() - 1))) };
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion BooleanLiteral::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. If BooleanLiteral is the token false, return false.
 | ||
|     // 2. If BooleanLiteral is the token true, return true.
 | ||
|     return Value(m_value);
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion NullLiteral::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return null.
 | ||
|     return js_null();
 | ||
| }
 | ||
| 
 | ||
| void RegExpLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("{} (/{}/{})", class_name(), pattern(), flags());
 | ||
| }
 | ||
| 
 | ||
| // 13.2.7.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-regular-expression-literals-runtime-semantics-evaluation
 | ||
| Completion RegExpLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let pattern be ! CodePointsToString(BodyText of RegularExpressionLiteral).
 | ||
|     auto pattern = this->pattern();
 | ||
| 
 | ||
|     // 2. Let flags be ! CodePointsToString(FlagText of RegularExpressionLiteral).
 | ||
|     auto flags = this->flags();
 | ||
| 
 | ||
|     // 3. Return RegExpCreate(pattern, flags).
 | ||
|     Regex<ECMA262> regex(parsed_regex(), parsed_pattern(), parsed_flags());
 | ||
|     return Value { RegExpObject::create(global_object, move(regex), move(pattern), move(flags)) };
 | ||
| }
 | ||
| 
 | ||
| void ArrayExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     for (auto& element : m_elements) {
 | ||
|         if (element) {
 | ||
|             element->dump(indent + 1);
 | ||
|         } else {
 | ||
|             print_indent(indent + 1);
 | ||
|             outln("<empty>");
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // 13.2.4.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-array-initializer-runtime-semantics-evaluation
 | ||
| Completion ArrayExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let array be ! ArrayCreate(0).
 | ||
|     auto* array = MUST(Array::create(global_object, 0));
 | ||
| 
 | ||
|     // 2. Let len be the result of performing ArrayAccumulation of ElementList with arguments array and 0.
 | ||
|     // 3. ReturnIfAbrupt(len).
 | ||
| 
 | ||
|     array->indexed_properties();
 | ||
|     size_t index = 0;
 | ||
|     for (auto& element : m_elements) {
 | ||
|         auto value = Value();
 | ||
|         if (element) {
 | ||
|             value = TRY(element->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|             if (is<SpreadExpression>(*element)) {
 | ||
|                 (void)TRY(get_iterator_values(global_object, value, [&](Value iterator_value) -> Optional<Completion> {
 | ||
|                     array->indexed_properties().put(index++, iterator_value, default_attributes);
 | ||
|                     return {};
 | ||
|                 }));
 | ||
|                 continue;
 | ||
|             }
 | ||
|         }
 | ||
|         array->indexed_properties().put(index++, value, default_attributes);
 | ||
|     }
 | ||
| 
 | ||
|     // 4. Return array.
 | ||
|     return Value { array };
 | ||
| }
 | ||
| 
 | ||
| void TemplateLiteral::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     for (auto& expression : m_expressions)
 | ||
|         expression.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 13.2.8.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-template-literals-runtime-semantics-evaluation
 | ||
| Completion TemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     StringBuilder string_builder;
 | ||
| 
 | ||
|     for (auto& expression : m_expressions) {
 | ||
|         // 1. Let head be the TV of TemplateHead as defined in 12.8.6.
 | ||
| 
 | ||
|         // 2. Let subRef be the result of evaluating Expression.
 | ||
|         // 3. Let sub be ? GetValue(subRef).
 | ||
|         auto sub = TRY(expression.execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|         // 4. Let middle be ? ToString(sub).
 | ||
|         auto string = TRY(sub.to_string(global_object));
 | ||
|         string_builder.append(string);
 | ||
| 
 | ||
|         // 5. Let tail be the result of evaluating TemplateSpans.
 | ||
|         // 6. ReturnIfAbrupt(tail).
 | ||
|     }
 | ||
| 
 | ||
|     // 7. Return the string-concatenation of head, middle, and tail.
 | ||
|     return Value { js_string(interpreter.heap(), string_builder.build()) };
 | ||
| }
 | ||
| 
 | ||
| void TaggedTemplateLiteral::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Tag)");
 | ||
|     m_tag->dump(indent + 2);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Template Literal)");
 | ||
|     m_template_literal->dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| // 13.3.11.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-tagged-templates-runtime-semantics-evaluation
 | ||
| Completion TaggedTemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto tag = TRY(m_tag->execute(interpreter, global_object)).release_value();
 | ||
|     auto& expressions = m_template_literal->expressions();
 | ||
|     auto* strings = MUST(Array::create(global_object, 0));
 | ||
|     MarkedValueList arguments(vm.heap());
 | ||
|     arguments.append(strings);
 | ||
|     for (size_t i = 0; i < expressions.size(); ++i) {
 | ||
|         auto value = TRY(expressions[i].execute(interpreter, global_object)).release_value();
 | ||
|         // tag`${foo}`             -> "", foo, ""                -> tag(["", ""], foo)
 | ||
|         // tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux)
 | ||
|         if (i % 2 == 0) {
 | ||
|             strings->indexed_properties().append(value);
 | ||
|         } else {
 | ||
|             arguments.append(value);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     auto* raw_strings = MUST(Array::create(global_object, 0));
 | ||
|     for (auto& raw_string : m_template_literal->raw_strings()) {
 | ||
|         auto value = TRY(raw_string.execute(interpreter, global_object)).release_value();
 | ||
|         raw_strings->indexed_properties().append(value);
 | ||
|     }
 | ||
|     strings->define_direct_property(vm.names.raw, raw_strings, 0);
 | ||
|     return call(global_object, tag, js_undefined(), move(arguments));
 | ||
| }
 | ||
| 
 | ||
| void TryStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent);
 | ||
|     outln("(Block)");
 | ||
|     block().dump(indent + 1);
 | ||
| 
 | ||
|     if (handler()) {
 | ||
|         print_indent(indent);
 | ||
|         outln("(Handler)");
 | ||
|         handler()->dump(indent + 1);
 | ||
|     }
 | ||
| 
 | ||
|     if (finalizer()) {
 | ||
|         print_indent(indent);
 | ||
|         outln("(Finalizer)");
 | ||
|         finalizer()->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void CatchClause::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     m_parameter.visit(
 | ||
|         [&](FlyString const& parameter) {
 | ||
|             if (parameter.is_null())
 | ||
|                 outln("CatchClause");
 | ||
|             else
 | ||
|                 outln("CatchClause ({})", parameter);
 | ||
|         },
 | ||
|         [&](NonnullRefPtr<BindingPattern> const& pattern) {
 | ||
|             outln("CatchClause");
 | ||
|             print_indent(indent);
 | ||
|             outln("(Parameter)");
 | ||
|             pattern->dump(indent + 2);
 | ||
|         });
 | ||
| 
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ThrowStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     argument().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 14.15.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-try-statement-runtime-semantics-evaluation
 | ||
| Completion TryStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 14.15.2 Runtime Semantics: CatchClauseEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-catchclauseevaluation
 | ||
|     auto catch_clause_evaluation = [&](Value thrown_value) {
 | ||
|         // 1. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|         auto* old_environment = vm.running_execution_context().lexical_environment;
 | ||
| 
 | ||
|         // 2. Let catchEnv be NewDeclarativeEnvironment(oldEnv).
 | ||
|         auto* catch_environment = new_declarative_environment(*old_environment);
 | ||
| 
 | ||
|         m_handler->parameter().visit(
 | ||
|             [&](FlyString const& parameter) {
 | ||
|                 // 3. For each element argName of the BoundNames of CatchParameter, do
 | ||
|                 // a. Perform ! catchEnv.CreateMutableBinding(argName, false).
 | ||
|                 MUST(catch_environment->create_mutable_binding(global_object, parameter, false));
 | ||
|             },
 | ||
|             [&](NonnullRefPtr<BindingPattern> const& pattern) {
 | ||
|                 // 3. For each element argName of the BoundNames of CatchParameter, do
 | ||
|                 pattern->for_each_bound_name([&](auto& name) {
 | ||
|                     // a. Perform ! catchEnv.CreateMutableBinding(argName, false).
 | ||
|                     MUST(catch_environment->create_mutable_binding(global_object, name, false));
 | ||
|                 });
 | ||
|             });
 | ||
| 
 | ||
|         // 4. Set the running execution context's LexicalEnvironment to catchEnv.
 | ||
|         vm.running_execution_context().lexical_environment = catch_environment;
 | ||
| 
 | ||
|         // 5. Let status be BindingInitialization of CatchParameter with arguments thrownValue and catchEnv.
 | ||
|         auto status = m_handler->parameter().visit(
 | ||
|             [&](FlyString const& parameter) {
 | ||
|                 return catch_environment->initialize_binding(global_object, parameter, thrown_value);
 | ||
|             },
 | ||
|             [&](NonnullRefPtr<BindingPattern> const& pattern) {
 | ||
|                 return vm.binding_initialization(pattern, thrown_value, catch_environment, global_object);
 | ||
|             });
 | ||
| 
 | ||
|         // 6. If status is an abrupt completion, then
 | ||
|         if (status.is_error()) {
 | ||
|             // a. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|             vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|             // b. Return Completion(status).
 | ||
|             return status.release_error();
 | ||
|         }
 | ||
| 
 | ||
|         // 7. Let B be the result of evaluating Block.
 | ||
|         auto handler_result = m_handler->body().execute(interpreter, global_object);
 | ||
| 
 | ||
|         // 8. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|         // 9. Return Completion(B).
 | ||
|         return handler_result;
 | ||
|     };
 | ||
| 
 | ||
|     Completion result;
 | ||
| 
 | ||
|     // 1. Let B be the result of evaluating Block.
 | ||
|     auto block_result = m_block->execute(interpreter, global_object);
 | ||
| 
 | ||
|     // TryStatement : try Block Catch
 | ||
|     // TryStatement : try Block Catch Finally
 | ||
|     if (m_handler) {
 | ||
|         vm.clear_exception();
 | ||
|         // 2. If B.[[Type]] is throw, let C be CatchClauseEvaluation of Catch with argument B.[[Value]].
 | ||
|         if (block_result.type() == Completion::Type::Throw)
 | ||
|             result = catch_clause_evaluation(*block_result.value());
 | ||
|         // 3. Else, let C be B.
 | ||
|         else
 | ||
|             result = move(block_result);
 | ||
|     } else {
 | ||
|         // TryStatement : try Block Finally
 | ||
|         // This variant doesn't have C & uses B in the finalizer step.
 | ||
|         result = move(block_result);
 | ||
|     }
 | ||
| 
 | ||
|     // TryStatement : try Block Finally
 | ||
|     // TryStatement : try Block Catch Finally
 | ||
|     if (m_finalizer) {
 | ||
|         // NOTE: Temporary until VM::exception() is removed
 | ||
|         // Keep, if any, and then clear the current exception so we can
 | ||
|         // execute() the finalizer without an exception in our way.
 | ||
|         auto* previous_exception = vm.exception();
 | ||
|         vm.clear_exception();
 | ||
| 
 | ||
|         // 4. Let F be the result of evaluating Finally.
 | ||
|         auto finalizer_result = m_finalizer->execute(interpreter, global_object);
 | ||
| 
 | ||
|         // 5. If F.[[Type]] is normal, set F to C.
 | ||
|         if (finalizer_result.type() == Completion::Type::Normal)
 | ||
|             finalizer_result = move(result);
 | ||
| 
 | ||
|         // NOTE: Temporary until VM::exception() is removed
 | ||
|         // If we previously had an exception and we're carrying over
 | ||
|         // the catch block completion, restore it.
 | ||
|         if (finalizer_result.type() == Completion::Type::Normal && previous_exception)
 | ||
|             vm.set_exception(*previous_exception);
 | ||
| 
 | ||
|         // 6. Return Completion(UpdateEmpty(F, undefined)).
 | ||
|         return finalizer_result.update_empty(js_undefined());
 | ||
|     }
 | ||
| 
 | ||
|     // 4. Return Completion(UpdateEmpty(C, undefined)).
 | ||
|     return result.update_empty(js_undefined());
 | ||
| }
 | ||
| 
 | ||
| Completion CatchClause::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: CatchClause execution is handled by TryStatement.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| // 14.14.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-throw-statement-runtime-semantics-evaluation
 | ||
| Completion ThrowStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Let exprValue be ? GetValue(exprRef).
 | ||
|     auto value = TRY(m_argument->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     // 3. Return ThrowCompletion(exprValue).
 | ||
|     // TODO: Remove this once we get rid of VM::exception()
 | ||
|     interpreter.vm().throw_exception(global_object, value);
 | ||
|     return throw_completion(value);
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : SwitchStatement
 | ||
| Completion SwitchStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, global_object, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // NOTE: Since we don't have the 'BreakableStatement' from the spec as a separate ASTNode that wraps IterationStatement / SwitchStatement,
 | ||
| // execute() needs to take care of LabelledEvaluation, which in turn calls execute_impl().
 | ||
| // 14.12.4 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-switch-statement-runtime-semantics-evaluation
 | ||
| Completion SwitchStatement::execute_impl(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 14.12.3 CaseClauseIsSelected ( C, input ), https://tc39.es/ecma262/#sec-runtime-semantics-caseclauseisselected
 | ||
|     auto case_clause_is_selected = [&](auto const& case_clause, auto input) -> ThrowCompletionOr<bool> {
 | ||
|         // 1. Assert: C is an instance of the production CaseClause : case Expression : StatementList[opt] .
 | ||
|         VERIFY(case_clause.test());
 | ||
| 
 | ||
|         // 2. Let exprRef be the result of evaluating the Expression of C.
 | ||
|         // 3. Let clauseSelector be ? GetValue(exprRef).
 | ||
|         auto clause_selector = TRY(case_clause.test()->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|         // 4. Return IsStrictlyEqual(input, clauseSelector).
 | ||
|         return is_strictly_equal(input, clause_selector);
 | ||
|     };
 | ||
| 
 | ||
|     // 14.12.2 Runtime Semantics: CaseBlockEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-caseblockevaluation
 | ||
|     auto case_block_evaluation = [&](auto input) {
 | ||
|         // CaseBlock : { }
 | ||
|         if (m_cases.is_empty()) {
 | ||
|             // 1. Return NormalCompletion(undefined).
 | ||
|             return normal_completion(js_undefined());
 | ||
|         }
 | ||
| 
 | ||
|         NonnullRefPtrVector<SwitchCase> case_clauses_1;
 | ||
|         NonnullRefPtrVector<SwitchCase> case_clauses_2;
 | ||
|         RefPtr<SwitchCase> default_clause;
 | ||
|         for (auto const& switch_case : m_cases) {
 | ||
|             if (!switch_case.test())
 | ||
|                 default_clause = switch_case;
 | ||
|             else if (!default_clause)
 | ||
|                 case_clauses_1.append(switch_case);
 | ||
|             else
 | ||
|                 case_clauses_2.append(switch_case);
 | ||
|         }
 | ||
| 
 | ||
|         // CaseBlock : { CaseClauses }
 | ||
|         if (!default_clause) {
 | ||
|             VERIFY(!case_clauses_1.is_empty());
 | ||
|             VERIFY(case_clauses_2.is_empty());
 | ||
| 
 | ||
|             // 1. Let V be undefined.
 | ||
|             auto last_value = js_undefined();
 | ||
| 
 | ||
|             // 2. Let A be the List of CaseClause items in CaseClauses, in source text order.
 | ||
|             // NOTE: A is case_clauses_1.
 | ||
| 
 | ||
|             // 3. Let found be false.
 | ||
|             auto found = false;
 | ||
| 
 | ||
|             // 4. For each CaseClause C of A, do
 | ||
|             for (auto const& case_clause : case_clauses_1) {
 | ||
|                 // a. If found is false, then
 | ||
|                 if (!found) {
 | ||
|                     // i. Set found to ? CaseClauseIsSelected(C, input).
 | ||
|                     found = TRY(case_clause_is_selected(case_clause, input));
 | ||
|                 }
 | ||
| 
 | ||
|                 // b. If found is true, then
 | ||
|                 if (found) {
 | ||
|                     // i. Let R be the result of evaluating C.
 | ||
|                     auto result = case_clause.evaluate_statements(interpreter, global_object);
 | ||
| 
 | ||
|                     // ii. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|                     if (result.value().has_value())
 | ||
|                         last_value = *result.value();
 | ||
| 
 | ||
|                     // iii. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
 | ||
|                     if (result.is_abrupt())
 | ||
|                         return result.update_empty(last_value);
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             // 5. Return NormalCompletion(V).
 | ||
|             return normal_completion(last_value);
 | ||
|         }
 | ||
|         // CaseBlock : { CaseClauses[opt] DefaultClause CaseClauses[opt] }
 | ||
|         else {
 | ||
|             // 1. Let V be undefined.
 | ||
|             auto last_value = js_undefined();
 | ||
| 
 | ||
|             // 2. If the first CaseClauses is present, then
 | ||
|             //    a. Let A be the List of CaseClause items in the first CaseClauses, in source text order.
 | ||
|             // 3. Else,
 | ||
|             //    a. Let A be « ».
 | ||
|             // NOTE: A is case_clauses_1.
 | ||
| 
 | ||
|             // 4. Let found be false.
 | ||
|             auto found = false;
 | ||
| 
 | ||
|             // 5. For each CaseClause C of A, do
 | ||
|             for (auto const& case_clause : case_clauses_1) {
 | ||
|                 // a. If found is false, then
 | ||
|                 if (!found) {
 | ||
|                     // i. Set found to ? CaseClauseIsSelected(C, input).
 | ||
|                     found = TRY(case_clause_is_selected(case_clause, input));
 | ||
|                 }
 | ||
| 
 | ||
|                 // b. If found is true, then
 | ||
|                 if (found) {
 | ||
|                     // i. Let R be the result of evaluating C.
 | ||
|                     auto result = case_clause.evaluate_statements(interpreter, global_object);
 | ||
| 
 | ||
|                     // ii. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|                     if (result.value().has_value())
 | ||
|                         last_value = *result.value();
 | ||
| 
 | ||
|                     // iii. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
 | ||
|                     if (result.is_abrupt())
 | ||
|                         return result.update_empty(last_value);
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             // 6. Let foundInB be false.
 | ||
|             auto found_in_b = false;
 | ||
| 
 | ||
|             // 7. If the second CaseClauses is present, then
 | ||
|             //    a. Let B be the List of CaseClause items in the second CaseClauses, in source text order.
 | ||
|             // 8. Else,
 | ||
|             //    a. Let B be « ».
 | ||
|             // NOTE: B is case_clauses_2.
 | ||
| 
 | ||
|             // 9. If found is false, then
 | ||
|             if (!found) {
 | ||
|                 // a. For each CaseClause C of B, do
 | ||
|                 for (auto const& case_clause : case_clauses_2) {
 | ||
|                     // i. If foundInB is false, then
 | ||
|                     if (!found_in_b) {
 | ||
|                         // 1. Set foundInB to ? CaseClauseIsSelected(C, input).
 | ||
|                         found_in_b = TRY(case_clause_is_selected(case_clause, input));
 | ||
|                     }
 | ||
| 
 | ||
|                     // ii. If foundInB is true, then
 | ||
|                     if (found_in_b) {
 | ||
|                         // 1. Let R be the result of evaluating CaseClause C.
 | ||
|                         auto result = case_clause.evaluate_statements(interpreter, global_object);
 | ||
| 
 | ||
|                         // 2. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|                         if (result.value().has_value())
 | ||
|                             last_value = *result.value();
 | ||
| 
 | ||
|                         // 3. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
 | ||
|                         if (result.is_abrupt())
 | ||
|                             return result.update_empty(last_value);
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             // 10. If foundInB is true, return NormalCompletion(V).
 | ||
|             if (found_in_b)
 | ||
|                 return normal_completion(last_value);
 | ||
| 
 | ||
|             // 11. Let R be the result of evaluating DefaultClause.
 | ||
|             auto result = default_clause->evaluate_statements(interpreter, global_object);
 | ||
| 
 | ||
|             // 12. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|             if (result.value().has_value())
 | ||
|                 last_value = *result.value();
 | ||
| 
 | ||
|             // 13. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
 | ||
|             if (result.is_abrupt())
 | ||
|                 return result.update_empty(last_value);
 | ||
| 
 | ||
|             // 14. NOTE: The following is another complete iteration of the second CaseClauses.
 | ||
|             // 15. For each CaseClause C of B, do
 | ||
|             for (auto const& case_clause : case_clauses_2) {
 | ||
|                 // a. Let R be the result of evaluating CaseClause C.
 | ||
|                 result = case_clause.evaluate_statements(interpreter, global_object);
 | ||
| 
 | ||
|                 // b. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|                 if (result.value().has_value())
 | ||
|                     last_value = *result.value();
 | ||
| 
 | ||
|                 // c. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
 | ||
|                 if (result.is_abrupt())
 | ||
|                     return result.update_empty(last_value);
 | ||
|             }
 | ||
| 
 | ||
|             // 16. Return NormalCompletion(V).
 | ||
|             return normal_completion(last_value);
 | ||
|         }
 | ||
| 
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     };
 | ||
| 
 | ||
|     // SwitchStatement : switch ( Expression ) CaseBlock
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Let switchValue be ? GetValue(exprRef).
 | ||
|     auto switch_value = TRY(m_discriminant->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     // 3. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     auto* old_environment = interpreter.lexical_environment();
 | ||
| 
 | ||
|     // Optimization: Avoid creating a lexical environment if there are no lexical declarations.
 | ||
|     if (has_lexical_declarations()) {
 | ||
|         // 4. Let blockEnv be NewDeclarativeEnvironment(oldEnv).
 | ||
|         auto* block_environment = new_declarative_environment(*old_environment);
 | ||
| 
 | ||
|         // 5. Perform BlockDeclarationInstantiation(CaseBlock, blockEnv).
 | ||
|         block_declaration_instantiation(global_object, block_environment);
 | ||
| 
 | ||
|         // 6. Set the running execution context's LexicalEnvironment to blockEnv.
 | ||
|         vm.running_execution_context().lexical_environment = block_environment;
 | ||
|     }
 | ||
| 
 | ||
|     // 7. Let R be CaseBlockEvaluation of CaseBlock with argument switchValue.
 | ||
|     auto result = case_block_evaluation(switch_value);
 | ||
| 
 | ||
|     // 8. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|     vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|     // 9. Return R.
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| Completion SwitchCase::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: SwitchCase execution is handled by SwitchStatement.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| // 14.9.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-break-statement-runtime-semantics-evaluation
 | ||
| Completion BreakStatement::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // BreakStatement : break ;
 | ||
|     if (m_target_label.is_null()) {
 | ||
|         // 1. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Break, {}, {} };
 | ||
|     }
 | ||
| 
 | ||
|     // BreakStatement : break LabelIdentifier ;
 | ||
|     // 1. Let label be the StringValue of LabelIdentifier.
 | ||
|     // 2. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: label }.
 | ||
|     return { Completion::Type::Break, {}, m_target_label };
 | ||
| }
 | ||
| 
 | ||
| // 14.8.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-continue-statement-runtime-semantics-evaluation
 | ||
| Completion ContinueStatement::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // ContinueStatement : continue ;
 | ||
|     if (m_target_label.is_null()) {
 | ||
|         // 1. Return Completion { [[Type]]: continue, [[Value]]: empty, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Continue, {}, {} };
 | ||
|     }
 | ||
| 
 | ||
|     // ContinueStatement : continue LabelIdentifier ;
 | ||
|     // 1. Let label be the StringValue of LabelIdentifier.
 | ||
|     // 2. Return Completion { [[Type]]: continue, [[Value]]: empty, [[Target]]: label }.
 | ||
|     return { Completion::Type::Continue, {}, m_target_label };
 | ||
| }
 | ||
| 
 | ||
| void SwitchStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_discriminant->dump(indent + 1);
 | ||
|     for (auto& switch_case : m_cases) {
 | ||
|         switch_case.dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void SwitchCase::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent + 1);
 | ||
|     if (m_test) {
 | ||
|         outln("(Test)");
 | ||
|         m_test->dump(indent + 2);
 | ||
|     } else {
 | ||
|         outln("(Default)");
 | ||
|     }
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Consequent)");
 | ||
|     ScopeNode::dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| // 13.14.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-conditional-operator-runtime-semantics-evaluation
 | ||
| Completion ConditionalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let lref be the result of evaluating ShortCircuitExpression.
 | ||
|     // 2. Let lval be ! ToBoolean(? GetValue(lref)).
 | ||
|     auto test_result = TRY(m_test->execute(interpreter, global_object)).release_value();
 | ||
| 
 | ||
|     // 3. If lval is true, then
 | ||
|     if (test_result.to_boolean()) {
 | ||
|         // a. Let trueRef be the result of evaluating the first AssignmentExpression.
 | ||
|         // b. Return ? GetValue(trueRef).
 | ||
|         return m_consequent->execute(interpreter, global_object);
 | ||
|     }
 | ||
|     // 4. Else,
 | ||
|     else {
 | ||
|         // a. Let falseRef be the result of evaluating the second AssignmentExpression.
 | ||
|         // b. Return ? GetValue(falseRef).
 | ||
|         return m_alternate->execute(interpreter, global_object);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ConditionalExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Test)");
 | ||
|     m_test->dump(indent + 2);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Consequent)");
 | ||
|     m_consequent->dump(indent + 2);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Alternate)");
 | ||
|     m_alternate->dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| void SequenceExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     for (auto& expression : m_expressions)
 | ||
|         expression.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 13.16.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-comma-operator-runtime-semantics-evaluation
 | ||
| Completion SequenceExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: Not sure why the last node is an AssignmentExpression in the spec :yakfused:
 | ||
|     // 1. Let lref be the result of evaluating Expression.
 | ||
|     // 2. Perform ? GetValue(lref).
 | ||
|     // 3. Let rref be the result of evaluating AssignmentExpression.
 | ||
|     // 4. Return ? GetValue(rref).
 | ||
|     Value last_value;
 | ||
|     for (auto const& expression : m_expressions)
 | ||
|         last_value = TRY(expression.execute(interpreter, global_object)).release_value();
 | ||
|     return { move(last_value) };
 | ||
| }
 | ||
| 
 | ||
| // 14.16.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-debugger-statement-runtime-semantics-evaluation
 | ||
| Completion DebuggerStatement::execute(Interpreter& interpreter, GlobalObject&) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     Completion result;
 | ||
| 
 | ||
|     // 1. If an implementation-defined debugging facility is available and enabled, then
 | ||
|     if (false) {
 | ||
|         // a. Perform an implementation-defined debugging action.
 | ||
|         // b. Let result be an implementation-defined Completion value.
 | ||
|     }
 | ||
|     // 2. Else,
 | ||
|     else {
 | ||
|         // a. Let result be NormalCompletion(empty).
 | ||
|         result = normal_completion({});
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return result.
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::for_each_lexically_scoped_declaration(IteratorOrVoidFunction<Declaration const&>&& callback) const
 | ||
| {
 | ||
|     for (auto& declaration : m_lexical_declarations) {
 | ||
|         if (callback(declaration) == IterationDecision::Break)
 | ||
|             break;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::for_each_lexically_declared_name(IteratorOrVoidFunction<FlyString const&>&& callback) const
 | ||
| {
 | ||
|     auto running = true;
 | ||
|     for (auto& declaration : m_lexical_declarations) {
 | ||
|         declaration.for_each_bound_name([&](auto const& name) {
 | ||
|             if (callback(name) == IterationDecision::Break) {
 | ||
|                 running = false;
 | ||
|                 return IterationDecision::Break;
 | ||
|             }
 | ||
|             return IterationDecision::Continue;
 | ||
|         });
 | ||
|         if (!running)
 | ||
|             break;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::for_each_var_declared_name(IteratorOrVoidFunction<FlyString const&>&& callback) const
 | ||
| {
 | ||
|     auto running = true;
 | ||
|     for (auto& declaration : m_var_declarations) {
 | ||
|         declaration.for_each_bound_name([&](auto const& name) {
 | ||
|             if (callback(name) == IterationDecision::Break) {
 | ||
|                 running = false;
 | ||
|                 return IterationDecision::Break;
 | ||
|             }
 | ||
|             return IterationDecision::Continue;
 | ||
|         });
 | ||
|         if (!running)
 | ||
|             break;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::for_each_var_function_declaration_in_reverse_order(IteratorOrVoidFunction<FunctionDeclaration const&>&& callback) const
 | ||
| {
 | ||
|     for (ssize_t i = m_var_declarations.size() - 1; i >= 0; i--) {
 | ||
|         auto& declaration = m_var_declarations[i];
 | ||
|         if (is<FunctionDeclaration>(declaration)) {
 | ||
|             if (callback(static_cast<FunctionDeclaration const&>(declaration)) == IterationDecision::Break)
 | ||
|                 break;
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::for_each_var_scoped_variable_declaration(IteratorOrVoidFunction<VariableDeclaration const&>&& callback) const
 | ||
| {
 | ||
|     for (auto& declaration : m_var_declarations) {
 | ||
|         if (!is<FunctionDeclaration>(declaration)) {
 | ||
|             VERIFY(is<VariableDeclaration>(declaration));
 | ||
|             if (callback(static_cast<VariableDeclaration const&>(declaration)) == IterationDecision::Break)
 | ||
|                 break;
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::for_each_function_hoistable_with_annexB_extension(IteratorOrVoidFunction<FunctionDeclaration&>&& callback) const
 | ||
| {
 | ||
|     for (auto& function : m_functions_hoistable_with_annexB_extension) {
 | ||
|         // We need const_cast here since it might have to set a property on function declaration.
 | ||
|         if (callback(const_cast<FunctionDeclaration&>(function)) == IterationDecision::Break)
 | ||
|             break;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::add_lexical_declaration(NonnullRefPtr<Declaration> declaration)
 | ||
| {
 | ||
|     m_lexical_declarations.append(move(declaration));
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::add_var_scoped_declaration(NonnullRefPtr<Declaration> declaration)
 | ||
| {
 | ||
|     m_var_declarations.append(move(declaration));
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::add_hoisted_function(NonnullRefPtr<FunctionDeclaration> declaration)
 | ||
| {
 | ||
|     m_functions_hoistable_with_annexB_extension.append(move(declaration));
 | ||
| }
 | ||
| 
 | ||
| // 16.2.1.11 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-module-semantics-runtime-semantics-evaluation
 | ||
| Completion ImportStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     dbgln("Modules are not fully supported yet!");
 | ||
|     return interpreter.vm().throw_completion<InternalError>(global_object, ErrorType::NotImplemented, "'import' in modules");
 | ||
| }
 | ||
| 
 | ||
| // 16.2.3.7 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-exports-runtime-semantics-evaluation
 | ||
| Completion ExportStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     if (m_statement) {
 | ||
|         // 1. Return the result of evaluating <Thing>.
 | ||
|         return m_statement->execute(interpreter, global_object);
 | ||
|     }
 | ||
| 
 | ||
|     // 1. Return NormalCompletion(empty).
 | ||
|     return normal_completion({});
 | ||
| }
 | ||
| 
 | ||
| static void dump_assert_clauses(ModuleRequest const& request)
 | ||
| {
 | ||
|     if (!request.assertions.is_empty()) {
 | ||
|         out("[ ");
 | ||
|         for (auto& assertion : request.assertions)
 | ||
|             out("{}: {}, ", assertion.key, assertion.value);
 | ||
|         out(" ]");
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ExportStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(ExportEntries)");
 | ||
| 
 | ||
|     auto string_or_null = [](String const& string) -> String {
 | ||
|         if (string.is_empty()) {
 | ||
|             return "null";
 | ||
|         }
 | ||
|         return String::formatted("\"{}\"", string);
 | ||
|     };
 | ||
| 
 | ||
|     for (auto& entry : m_entries) {
 | ||
|         print_indent(indent + 2);
 | ||
|         out("ModuleRequest: {}", entry.module_request.module_specifier);
 | ||
|         dump_assert_clauses(entry.module_request);
 | ||
|         outln(", ImportName: {}, LocalName: {}, ExportName: {}",
 | ||
|             entry.kind == ExportEntry::Kind::ModuleRequest ? string_or_null(entry.local_or_import_name) : "null",
 | ||
|             entry.kind != ExportEntry::Kind::ModuleRequest ? string_or_null(entry.local_or_import_name) : "null",
 | ||
|             string_or_null(entry.export_name));
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ImportStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     if (m_entries.is_empty()) {
 | ||
|         // direct from "module" import
 | ||
|         outln("Entire module '{}'", m_module_request.module_specifier);
 | ||
|         dump_assert_clauses(m_module_request);
 | ||
|     } else {
 | ||
|         outln("(ExportEntries) from {}", m_module_request.module_specifier);
 | ||
|         dump_assert_clauses(m_module_request);
 | ||
| 
 | ||
|         for (auto& entry : m_entries) {
 | ||
|             print_indent(indent + 2);
 | ||
|             outln("ImportName: {}, LocalName: {}", entry.import_name, entry.local_name);
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| bool ExportStatement::has_export(StringView export_name) const
 | ||
| {
 | ||
|     return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
 | ||
|         return entry.export_name == export_name;
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| bool ImportStatement::has_bound_name(StringView name) const
 | ||
| {
 | ||
|     return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
 | ||
|         return entry.local_name == name;
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| // 14.2.3 BlockDeclarationInstantiation ( code, env ), https://tc39.es/ecma262/#sec-blockdeclarationinstantiation
 | ||
| void ScopeNode::block_declaration_instantiation(GlobalObject& global_object, Environment* environment) const
 | ||
| {
 | ||
|     // See also B.3.2.6 Changes to BlockDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-blockdeclarationinstantiation
 | ||
|     VERIFY(environment);
 | ||
|     auto* private_environment = global_object.vm().running_execution_context().private_environment;
 | ||
|     for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
 | ||
|         auto is_constant_declaration = declaration.is_constant_declaration();
 | ||
|         declaration.for_each_bound_name([&](auto const& name) {
 | ||
|             if (is_constant_declaration) {
 | ||
|                 MUST(environment->create_immutable_binding(global_object, name, true));
 | ||
|             } else {
 | ||
|                 if (!MUST(environment->has_binding(name)))
 | ||
|                     MUST(environment->create_mutable_binding(global_object, name, false));
 | ||
|             }
 | ||
|         });
 | ||
| 
 | ||
|         if (is<FunctionDeclaration>(declaration)) {
 | ||
|             auto& function_declaration = static_cast<FunctionDeclaration const&>(declaration);
 | ||
|             auto* function = ECMAScriptFunctionObject::create(global_object, function_declaration.name(), function_declaration.body(), function_declaration.parameters(), function_declaration.function_length(), environment, private_environment, function_declaration.kind(), function_declaration.is_strict_mode(), function_declaration.might_need_arguments_object(), function_declaration.contains_direct_call_to_eval());
 | ||
|             VERIFY(is<DeclarativeEnvironment>(*environment));
 | ||
|             static_cast<DeclarativeEnvironment&>(*environment).initialize_or_set_mutable_binding({}, global_object, function_declaration.name(), function);
 | ||
|         }
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| // 16.1.7 GlobalDeclarationInstantiation ( script, env ), https://tc39.es/ecma262/#sec-globaldeclarationinstantiation
 | ||
| ThrowCompletionOr<void> Program::global_declaration_instantiation(Interpreter& interpreter, GlobalObject& global_object, GlobalEnvironment& global_environment) const
 | ||
| {
 | ||
|     for_each_lexically_declared_name([&](FlyString const& name) {
 | ||
|         if (global_environment.has_var_declaration(name) || global_environment.has_lexical_declaration(name)) {
 | ||
|             interpreter.vm().throw_exception<SyntaxError>(global_object, ErrorType::TopLevelVariableAlreadyDeclared, name);
 | ||
|             return IterationDecision::Break;
 | ||
|         }
 | ||
| 
 | ||
|         auto restricted_global_or_error = global_environment.has_restricted_global_property(name);
 | ||
|         if (restricted_global_or_error.is_error())
 | ||
|             return IterationDecision::Break;
 | ||
|         auto restricted_global = restricted_global_or_error.release_value();
 | ||
| 
 | ||
|         if (restricted_global)
 | ||
|             interpreter.vm().throw_exception<SyntaxError>(global_object, ErrorType::RestrictedGlobalProperty, name);
 | ||
| 
 | ||
|         return IterationDecision::Continue;
 | ||
|     });
 | ||
| 
 | ||
|     if (auto* exception = interpreter.exception())
 | ||
|         return throw_completion(exception->value());
 | ||
| 
 | ||
|     for_each_var_declared_name([&](auto const& name) {
 | ||
|         if (global_environment.has_lexical_declaration(name)) {
 | ||
|             interpreter.vm().throw_exception<SyntaxError>(global_object, ErrorType::TopLevelVariableAlreadyDeclared, name);
 | ||
|             return IterationDecision::Break;
 | ||
|         }
 | ||
| 
 | ||
|         return IterationDecision::Continue;
 | ||
|     });
 | ||
| 
 | ||
|     if (auto* exception = interpreter.exception())
 | ||
|         return throw_completion(exception->value());
 | ||
| 
 | ||
|     HashTable<FlyString> declared_function_names;
 | ||
|     Vector<FunctionDeclaration const&> functions_to_initialize;
 | ||
| 
 | ||
|     for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) {
 | ||
|         if (declared_function_names.set(function.name()) != AK::HashSetResult::InsertedNewEntry)
 | ||
|             return IterationDecision::Continue;
 | ||
| 
 | ||
|         auto function_definable_or_error = global_environment.can_declare_global_function(function.name());
 | ||
|         if (function_definable_or_error.is_error())
 | ||
|             return IterationDecision::Break;
 | ||
|         auto function_definable = function_definable_or_error.release_value();
 | ||
| 
 | ||
|         if (!function_definable) {
 | ||
|             interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::CannotDeclareGlobalFunction, function.name());
 | ||
|             return IterationDecision::Break;
 | ||
|         }
 | ||
| 
 | ||
|         functions_to_initialize.append(function);
 | ||
|         return IterationDecision::Continue;
 | ||
|     });
 | ||
| 
 | ||
|     if (auto* exception = interpreter.exception())
 | ||
|         return throw_completion(exception->value());
 | ||
| 
 | ||
|     HashTable<FlyString> declared_var_names;
 | ||
| 
 | ||
|     for_each_var_scoped_variable_declaration([&](Declaration const& declaration) {
 | ||
|         declaration.for_each_bound_name([&](auto const& name) {
 | ||
|             if (declared_function_names.contains(name))
 | ||
|                 return IterationDecision::Continue;
 | ||
| 
 | ||
|             auto var_definable_or_error = global_environment.can_declare_global_var(name);
 | ||
|             if (var_definable_or_error.is_error())
 | ||
|                 return IterationDecision::Break;
 | ||
|             auto var_definable = var_definable_or_error.release_value();
 | ||
| 
 | ||
|             if (!var_definable) {
 | ||
|                 interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::CannotDeclareGlobalVariable, name);
 | ||
|                 return IterationDecision::Break;
 | ||
|             }
 | ||
| 
 | ||
|             declared_var_names.set(name);
 | ||
|             return IterationDecision::Continue;
 | ||
|         });
 | ||
|         if (interpreter.exception())
 | ||
|             return IterationDecision::Break;
 | ||
|         return IterationDecision::Continue;
 | ||
|     });
 | ||
| 
 | ||
|     if (auto* exception = interpreter.exception())
 | ||
|         return throw_completion(exception->value());
 | ||
| 
 | ||
|     if (!m_is_strict_mode) {
 | ||
|         for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) {
 | ||
|             auto& function_name = function_declaration.name();
 | ||
|             if (global_environment.has_lexical_declaration(function_name))
 | ||
|                 return IterationDecision::Continue;
 | ||
| 
 | ||
|             auto function_definable_or_error = global_environment.can_declare_global_function(function_name);
 | ||
|             if (function_definable_or_error.is_error())
 | ||
|                 return IterationDecision::Break;
 | ||
|             auto function_definable = function_definable_or_error.release_value();
 | ||
| 
 | ||
|             if (!function_definable) {
 | ||
|                 interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::CannotDeclareGlobalFunction, function_name);
 | ||
|                 return IterationDecision::Break;
 | ||
|             }
 | ||
| 
 | ||
|             if (!declared_function_names.contains(function_name) && !declared_var_names.contains(function_name)) {
 | ||
|                 auto result = global_environment.create_global_var_binding(function_name, false);
 | ||
|                 if (result.is_error())
 | ||
|                     return IterationDecision::Break;
 | ||
|                 declared_function_names.set(function_name);
 | ||
|             }
 | ||
| 
 | ||
|             function_declaration.set_should_do_additional_annexB_steps();
 | ||
| 
 | ||
|             return IterationDecision::Continue;
 | ||
|         });
 | ||
| 
 | ||
|         if (auto* exception = interpreter.exception())
 | ||
|             return throw_completion(exception->value());
 | ||
| 
 | ||
|         // We should not use declared function names below here anymore since these functions are not in there in the spec.
 | ||
|         declared_function_names.clear();
 | ||
|     }
 | ||
| 
 | ||
|     PrivateEnvironment* private_environment = nullptr;
 | ||
| 
 | ||
|     for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
 | ||
|         declaration.for_each_bound_name([&](auto const& name) {
 | ||
|             if (declaration.is_constant_declaration())
 | ||
|                 (void)global_environment.create_immutable_binding(global_object, name, true);
 | ||
|             else
 | ||
|                 (void)global_environment.create_mutable_binding(global_object, name, false);
 | ||
|             if (interpreter.exception())
 | ||
|                 return IterationDecision::Break;
 | ||
|             return IterationDecision::Continue;
 | ||
|         });
 | ||
|         if (interpreter.exception())
 | ||
|             return IterationDecision::Break;
 | ||
|         return IterationDecision::Continue;
 | ||
|     });
 | ||
| 
 | ||
|     for (auto& declaration : functions_to_initialize) {
 | ||
|         auto* function = ECMAScriptFunctionObject::create(global_object, declaration.name(), declaration.body(), declaration.parameters(), declaration.function_length(), &global_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval());
 | ||
|         TRY(global_environment.create_global_function_binding(declaration.name(), function, false));
 | ||
|     }
 | ||
| 
 | ||
|     for (auto& var_name : declared_var_names)
 | ||
|         TRY(global_environment.create_global_var_binding(var_name, false));
 | ||
| 
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| }
 | 
