ladybird/Libraries/LibCore/EventLoopImplementationUnix.cpp
ayeteadoe 4fb1ba0193 LibCore: Remove unused NotifierActivationEvent fd() and type() methods
In 11b8bbe one thing that was claimed was that we now properly set the
Notifier's actual fd on the NotifierActivationEvent. It turns out that
claim was false because a crucial step was forgotten: actually set the
m_notifier_fd when registering. Despite that mistake, it ultimately was
irrelevant as the methods on NotifierActivationEvent are currently
unused code. We were posting the event to the correct Notifier receiver
so the on_activation was still getting invoked.

Given they are unused, NotifierActivationEvent can be defined the same
way as TimerEvent is, where we just pass the event type enum to the
Event base class. Additionally, NotificationType can be moved to
the Notifier header as this enum is now always used in the context of
creating or using a Notifier instance.
2025-11-22 09:47:25 +01:00

693 lines
22 KiB
C++

/*
* Copyright (c) 2023, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BinaryHeap.h>
#include <AK/Singleton.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <AK/WeakPtr.h>
#include <LibCore/Event.h>
#include <LibCore/EventLoopImplementationUnix.h>
#include <LibCore/EventReceiver.h>
#include <LibCore/Notifier.h>
#include <LibCore/Socket.h>
#include <LibCore/System.h>
#include <LibCore/ThreadEventQueue.h>
#include <LibThreading/Mutex.h>
#include <LibThreading/RWLock.h>
#include <pthread.h>
#include <sys/select.h>
#include <unistd.h>
namespace Core {
namespace {
struct ThreadData;
class TimeoutSet;
HashMap<pthread_t, ThreadData*> s_thread_data;
Threading::RWLock s_thread_data_lock;
thread_local pthread_t s_thread_id;
thread_local OwnPtr<ThreadData> s_this_thread_data;
short notification_type_to_poll_events(NotificationType type)
{
short events = 0;
if (has_flag(type, NotificationType::Read))
events |= POLLIN;
if (has_flag(type, NotificationType::Write))
events |= POLLOUT;
return events;
}
bool has_flag(int value, int flag)
{
return (value & flag) == flag;
}
class EventLoopTimeout {
public:
static constexpr ssize_t INVALID_INDEX = NumericLimits<ssize_t>::max();
EventLoopTimeout() { }
virtual ~EventLoopTimeout() = default;
virtual void fire(TimeoutSet& timeout_set, MonotonicTime time) = 0;
MonotonicTime fire_time() const { return m_fire_time; }
void absolutize(Badge<TimeoutSet>, MonotonicTime current_time)
{
m_fire_time = current_time + m_duration;
}
ssize_t& index(Badge<TimeoutSet>) { return m_index; }
void set_index(Badge<TimeoutSet>, ssize_t index) { m_index = index; }
bool is_scheduled() const { return m_index != INVALID_INDEX; }
void set_sequence_id(u64 id) { m_sequence_id = id; }
u64 sequence_id() const { return m_sequence_id; }
protected:
union {
AK::Duration m_duration;
MonotonicTime m_fire_time;
};
private:
ssize_t m_index = INVALID_INDEX;
u64 m_sequence_id { 0 };
};
class TimeoutSet {
public:
TimeoutSet() = default;
Optional<MonotonicTime> next_timer_expiration()
{
if (!m_heap.is_empty()) {
return m_heap.peek_min()->fire_time();
} else {
return {};
}
}
void absolutize_relative_timeouts(MonotonicTime current_time)
{
for (auto timeout : m_scheduled_timeouts) {
timeout->absolutize({}, current_time);
m_heap.insert(timeout);
}
m_scheduled_timeouts.clear();
}
size_t fire_expired(MonotonicTime current_time)
{
size_t fired_count = 0;
while (!m_heap.is_empty()) {
auto& timeout = *m_heap.peek_min();
if (timeout.fire_time() <= current_time) {
++fired_count;
m_heap.pop_min();
timeout.set_index({}, EventLoopTimeout::INVALID_INDEX);
timeout.fire(*this, current_time);
} else {
break;
}
}
return fired_count;
}
void schedule_relative(EventLoopTimeout* timeout)
{
timeout->set_sequence_id(m_next_sequence_id++);
timeout->set_index({}, -1 - static_cast<ssize_t>(m_scheduled_timeouts.size()));
m_scheduled_timeouts.append(timeout);
}
void schedule_absolute(EventLoopTimeout* timeout)
{
timeout->set_sequence_id(m_next_sequence_id++);
m_heap.insert(timeout);
}
void unschedule(EventLoopTimeout* timeout)
{
if (timeout->index({}) < 0) {
size_t i = -1 - timeout->index({});
size_t j = m_scheduled_timeouts.size() - 1;
VERIFY(m_scheduled_timeouts[i] == timeout);
swap(m_scheduled_timeouts[i], m_scheduled_timeouts[j]);
swap(m_scheduled_timeouts[i]->index({}), m_scheduled_timeouts[j]->index({}));
(void)m_scheduled_timeouts.take_last();
} else {
m_heap.pop(timeout->index({}));
}
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
}
void clear()
{
for (auto* timeout : m_heap.nodes_in_arbitrary_order())
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
m_heap.clear();
for (auto* timeout : m_scheduled_timeouts)
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
m_scheduled_timeouts.clear();
}
private:
IntrusiveBinaryHeap<
EventLoopTimeout*,
decltype([](EventLoopTimeout* a, EventLoopTimeout* b) {
if (a->fire_time() == b->fire_time())
return a->sequence_id() < b->sequence_id();
return a->fire_time() < b->fire_time();
}),
decltype([](EventLoopTimeout* timeout, size_t index) {
timeout->set_index({}, static_cast<ssize_t>(index));
}),
8>
m_heap;
Vector<EventLoopTimeout*, 8> m_scheduled_timeouts;
u64 m_next_sequence_id { 0 };
};
class EventLoopTimer final : public EventLoopTimeout {
public:
EventLoopTimer() = default;
void reload(MonotonicTime const& now) { m_fire_time = now + interval; }
virtual void fire(TimeoutSet& timeout_set, MonotonicTime current_time) override
{
auto strong_owner = owner.strong_ref();
if (!strong_owner)
return;
if (should_reload) {
MonotonicTime next_fire_time = m_fire_time + interval;
if (next_fire_time <= current_time) {
next_fire_time = current_time + interval;
}
m_fire_time = next_fire_time;
if (next_fire_time != current_time) {
timeout_set.schedule_absolute(this);
} else {
// NOTE: Unfortunately we need to treat timeouts with the zero interval in a
// special way. TimeoutSet::schedule_absolute for them will result in an
// infinite loop. TimeoutSet::schedule_relative, on the other hand, will do a
// correct thing of scheduling them for the next iteration of the loop.
m_duration = {};
timeout_set.schedule_relative(this);
}
}
ThreadEventQueue::current().post_event(*strong_owner, make<TimerEvent>());
}
AK::Duration interval;
bool should_reload { false };
WeakPtr<EventReceiver> owner;
pthread_t owner_thread { 0 };
Atomic<bool> is_being_deleted { false };
};
struct ThreadData {
static ThreadData& the()
{
if (s_thread_id == 0)
s_thread_id = pthread_self();
ThreadData* data = nullptr;
if (!s_this_thread_data) {
data = new ThreadData;
s_this_thread_data = adopt_own(*data);
Threading::RWLockLocker<Threading::LockMode::Write> locker(s_thread_data_lock);
s_thread_data.set(s_thread_id, s_this_thread_data.ptr());
} else {
data = s_this_thread_data.ptr();
}
return *data;
}
static ThreadData* for_thread(pthread_t thread_id)
{
// NOTE: s_thread_data_lock is supposed to be held by the caller.
return s_thread_data.get(thread_id).value_or(nullptr);
}
ThreadData()
{
pid = getpid();
auto result = Core::System::pipe2(O_CLOEXEC);
if (result.is_error()) {
warnln("\033[31;1mFailed to create event loop pipe:\033[0m {}", result.error());
VERIFY_NOT_REACHED();
}
wake_pipe_fds = result.release_value();
// The wake pipe informs us of POSIX signals as well as manual calls to wake()
poll_fds.append({ .fd = wake_pipe_fds[0], .events = POLLIN, .revents = 0 });
notifiers.append(nullptr);
}
~ThreadData()
{
Threading::RWLockLocker<Threading::LockMode::Write> locker(s_thread_data_lock);
s_thread_data.remove(s_thread_id);
}
Threading::Mutex mutex;
// Each thread has its own timers, notifiers and a wake pipe.
TimeoutSet timeouts;
HashMap<Notifier*, size_t> notifier_to_index;
Vector<Notifier*, 32> notifiers;
Vector<pollfd, 32> poll_fds;
// The wake pipe is used to notify another event loop that someone has called wake(), or a signal has been received.
// wake() writes 0i32 into the pipe, signals write the signal number (guaranteed non-zero).
Array<int, 2> wake_pipe_fds { -1, -1 };
pid_t pid { 0 };
};
}
EventLoopImplementationUnix::EventLoopImplementationUnix()
: m_wake_pipe_fds(ThreadData::the().wake_pipe_fds)
{
}
EventLoopImplementationUnix::~EventLoopImplementationUnix() = default;
int EventLoopImplementationUnix::exec()
{
for (;;) {
if (m_exit_requested)
return m_exit_code;
pump(PumpMode::WaitForEvents);
}
VERIFY_NOT_REACHED();
}
size_t EventLoopImplementationUnix::pump(PumpMode mode)
{
static_cast<EventLoopManagerUnix&>(EventLoopManager::the()).wait_for_events(mode);
return ThreadEventQueue::current().process();
}
void EventLoopImplementationUnix::quit(int code)
{
m_exit_requested = true;
m_exit_code = code;
}
void EventLoopImplementationUnix::post_event(EventReceiver& receiver, NonnullOwnPtr<Event>&& event)
{
m_thread_event_queue.post_event(receiver, move(event));
if (&m_thread_event_queue != &ThreadEventQueue::current())
wake();
}
void EventLoopImplementationUnix::wake()
{
int wake_event = 0;
MUST(Core::System::write(m_wake_pipe_fds[1], { &wake_event, sizeof(wake_event) }));
}
void EventLoopManagerUnix::wait_for_events(EventLoopImplementation::PumpMode mode)
{
auto& thread_data = ThreadData::the();
Threading::MutexLocker locker(thread_data.mutex);
retry:
bool has_pending_events = ThreadEventQueue::current().has_pending_events();
auto time_at_iteration_start = MonotonicTime::now_coarse();
thread_data.timeouts.absolutize_relative_timeouts(time_at_iteration_start);
// Figure out how long to wait at maximum.
// This mainly depends on the PumpMode and whether we have pending events, but also the next expiring timer.
int timeout = 0;
bool should_wait_forever = false;
if (mode == EventLoopImplementation::PumpMode::WaitForEvents && !has_pending_events) {
auto next_timer_expiration = thread_data.timeouts.next_timer_expiration();
if (next_timer_expiration.has_value()) {
auto computed_timeout = next_timer_expiration.value() - time_at_iteration_start;
if (computed_timeout.is_negative())
computed_timeout = AK::Duration::zero();
i64 true_timeout = computed_timeout.to_milliseconds();
timeout = static_cast<i32>(min<i64>(AK::NumericLimits<i32>::max(), true_timeout));
} else {
should_wait_forever = true;
}
}
try_select_again:
// select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
auto error_or_marked_fd_count = System::poll(thread_data.poll_fds, should_wait_forever ? -1 : timeout);
auto time_after_poll = MonotonicTime::now_coarse();
// Because POSIX, we might spuriously return from select() with EINTR; just select again.
if (error_or_marked_fd_count.is_error()) {
if (error_or_marked_fd_count.error().code() == EINTR)
goto try_select_again;
dbgln("EventLoopImplementationUnix::wait_for_events: {}", error_or_marked_fd_count.error());
VERIFY_NOT_REACHED();
}
// We woke up due to a call to wake() or a POSIX signal.
// Handle signals and see whether we need to handle events as well.
if (has_flag(thread_data.poll_fds[0].revents, POLLIN)) {
int wake_events[8];
ssize_t nread;
// We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
// but we get interrupted. Therefore, just retry while we were interrupted.
do {
errno = 0;
nread = read(thread_data.wake_pipe_fds[0], wake_events, sizeof(wake_events));
if (nread == 0)
break;
} while (nread < 0 && errno == EINTR);
if (nread < 0) {
perror("EventLoopImplementationUnix::wait_for_events: read from wake pipe");
VERIFY_NOT_REACHED();
}
VERIFY(nread > 0);
bool wake_requested = false;
int event_count = nread / sizeof(wake_events[0]);
for (int i = 0; i < event_count; i++) {
if (wake_events[i] != 0)
dispatch_signal(wake_events[i]);
else
wake_requested = true;
}
if (!wake_requested && nread == sizeof(wake_events))
goto retry;
}
if (error_or_marked_fd_count.value() != 0) {
// Handle file system notifiers by making them normal events.
for (size_t i = 1; i < thread_data.poll_fds.size(); ++i) {
auto& notifier = *thread_data.notifiers[i];
#ifdef AK_OS_ANDROID
// FIXME: Make the check work under Android, perhaps use ALooper.
ThreadEventQueue::current().post_event(notifier, make<NotifierActivationEvent>());
#else
auto revents = thread_data.poll_fds[i].revents;
NotificationType type = NotificationType::None;
if (has_flag(revents, POLLIN))
type |= NotificationType::Read;
if (has_flag(revents, POLLOUT))
type |= NotificationType::Write;
if (has_flag(revents, POLLHUP))
type |= NotificationType::Read | NotificationType::HangUp;
if (has_flag(revents, POLLERR))
type |= NotificationType::Error;
type &= notifier.type();
if (type != NotificationType::None)
ThreadEventQueue::current().post_event(notifier, make<NotifierActivationEvent>());
#endif
}
}
// Handle expired timers.
thread_data.timeouts.fire_expired(time_after_poll);
}
class SignalHandlers : public RefCounted<SignalHandlers> {
AK_MAKE_NONCOPYABLE(SignalHandlers);
AK_MAKE_NONMOVABLE(SignalHandlers);
public:
SignalHandlers(int signal_number, void (*handle_signal)(int));
~SignalHandlers();
void dispatch();
int add(Function<void(int)>&& handler);
bool remove(int handler_id);
bool is_empty() const
{
if (m_calling_handlers) {
for (auto& handler : m_handlers_pending) {
if (handler.value)
return false; // an add is pending
}
}
return m_handlers.is_empty();
}
bool have(int handler_id) const
{
if (m_calling_handlers) {
auto it = m_handlers_pending.find(handler_id);
if (it != m_handlers_pending.end()) {
if (!it->value)
return false; // a deletion is pending
}
}
return m_handlers.contains(handler_id);
}
int m_signal_number;
void (*m_original_handler)(int); // TODO: can't use sighandler_t?
HashMap<int, Function<void(int)>> m_handlers;
HashMap<int, Function<void(int)>> m_handlers_pending;
bool m_calling_handlers { false };
};
struct SignalHandlersInfo {
HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
int next_signal_id { 0 };
};
static Singleton<SignalHandlersInfo> s_signals;
template<bool create_if_null = true>
inline SignalHandlersInfo* signals_info()
{
return s_signals.ptr();
}
void EventLoopManagerUnix::dispatch_signal(int signal_number)
{
auto& info = *signals_info();
auto handlers = info.signal_handlers.find(signal_number);
if (handlers != info.signal_handlers.end()) {
// Make sure we bump the ref count while dispatching the handlers!
// This allows a handler to unregister/register while the handlers
// are being called!
auto handler = handlers->value;
handler->dispatch();
}
}
SignalHandlers::SignalHandlers(int signal_number, void (*handle_signal)(int))
: m_signal_number(signal_number)
, m_original_handler(signal(signal_number, handle_signal))
{
}
SignalHandlers::~SignalHandlers()
{
signal(m_signal_number, m_original_handler);
}
void SignalHandlers::dispatch()
{
TemporaryChange change(m_calling_handlers, true);
for (auto& handler : m_handlers)
handler.value(m_signal_number);
if (!m_handlers_pending.is_empty()) {
// Apply pending adds/removes
for (auto& handler : m_handlers_pending) {
if (handler.value) {
auto result = m_handlers.set(handler.key, move(handler.value));
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
} else {
m_handlers.remove(handler.key);
}
}
m_handlers_pending.clear();
}
}
int SignalHandlers::add(Function<void(int)>&& handler)
{
int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
if (m_calling_handlers)
m_handlers_pending.set(id, move(handler));
else
m_handlers.set(id, move(handler));
return id;
}
bool SignalHandlers::remove(int handler_id)
{
VERIFY(handler_id != 0);
if (m_calling_handlers) {
auto it = m_handlers.find(handler_id);
if (it != m_handlers.end()) {
// Mark pending remove
m_handlers_pending.set(handler_id, {});
return true;
}
it = m_handlers_pending.find(handler_id);
if (it != m_handlers_pending.end()) {
if (!it->value)
return false; // already was marked as deleted
it->value = nullptr;
return true;
}
return false;
}
return m_handlers.remove(handler_id);
}
void EventLoopManagerUnix::handle_signal(int signal_number)
{
VERIFY(signal_number != 0);
auto& thread_data = ThreadData::the();
// We MUST check if the current pid still matches, because there
// is a window between fork() and exec() where a signal delivered
// to our fork could be inadvertently routed to the parent process!
if (getpid() == thread_data.pid) {
int nwritten = write(thread_data.wake_pipe_fds[1], &signal_number, sizeof(signal_number));
if (nwritten < 0) {
perror("EventLoopImplementationUnix::register_signal: write");
VERIFY_NOT_REACHED();
}
} else {
// We're a fork who received a signal, reset thread_data.pid.
thread_data.pid = getpid();
}
}
int EventLoopManagerUnix::register_signal(int signal_number, Function<void(int)> handler)
{
VERIFY(signal_number != 0);
auto& info = *signals_info();
auto handlers = info.signal_handlers.find(signal_number);
if (handlers == info.signal_handlers.end()) {
auto signal_handlers = adopt_ref(*new SignalHandlers(signal_number, EventLoopManagerUnix::handle_signal));
auto handler_id = signal_handlers->add(move(handler));
info.signal_handlers.set(signal_number, move(signal_handlers));
return handler_id;
} else {
return handlers->value->add(move(handler));
}
}
void EventLoopManagerUnix::unregister_signal(int handler_id)
{
VERIFY(handler_id != 0);
int remove_signal_number = 0;
auto& info = *signals_info();
for (auto& h : info.signal_handlers) {
auto& handlers = *h.value;
if (handlers.remove(handler_id)) {
if (handlers.is_empty())
remove_signal_number = handlers.m_signal_number;
break;
}
}
if (remove_signal_number != 0)
info.signal_handlers.remove(remove_signal_number);
}
intptr_t EventLoopManagerUnix::register_timer(EventReceiver& object, int milliseconds, bool should_reload)
{
VERIFY(milliseconds >= 0);
auto& thread_data = ThreadData::the();
Threading::MutexLocker locker(thread_data.mutex);
auto timer = new EventLoopTimer;
timer->owner_thread = s_thread_id;
timer->owner = object;
timer->interval = AK::Duration::from_milliseconds(milliseconds);
timer->reload(MonotonicTime::now_coarse());
timer->should_reload = should_reload;
thread_data.timeouts.schedule_absolute(timer);
return bit_cast<intptr_t>(timer);
}
void EventLoopManagerUnix::unregister_timer(intptr_t timer_id)
{
auto* timer = bit_cast<EventLoopTimer*>(timer_id);
Threading::RWLockLocker<Threading::LockMode::Read> locker(s_thread_data_lock);
auto* thread_data_ptr = ThreadData::for_thread(timer->owner_thread);
if (!thread_data_ptr)
return;
Threading::MutexLocker thread_data_content_locker(thread_data_ptr->mutex);
auto& thread_data = *thread_data_ptr;
auto expected = false;
if (timer->is_being_deleted.compare_exchange_strong(expected, true, AK::MemoryOrder::memory_order_acq_rel)) {
if (timer->is_scheduled())
thread_data.timeouts.unschedule(timer);
delete timer;
}
}
void EventLoopManagerUnix::register_notifier(Notifier& notifier)
{
auto& thread_data = ThreadData::the();
Threading::MutexLocker locker(thread_data.mutex);
thread_data.notifier_to_index.set(&notifier, thread_data.poll_fds.size());
thread_data.notifiers.append(&notifier);
auto events = notification_type_to_poll_events(notifier.type());
thread_data.poll_fds.append({ .fd = notifier.fd(), .events = events, .revents = 0 });
notifier.set_owner_thread(s_thread_id);
}
void EventLoopManagerUnix::unregister_notifier(Notifier& notifier)
{
Threading::RWLockLocker<Threading::LockMode::Read> locker(s_thread_data_lock);
auto* thread_data = ThreadData::for_thread(notifier.owner_thread());
if (!thread_data)
return;
Threading::MutexLocker thread_data_content_locker(thread_data->mutex);
auto notifier_index = thread_data->notifier_to_index.take(&notifier).release_value();
if (notifier_index + 1 < thread_data->poll_fds.size()) {
swap(thread_data->notifiers[notifier_index], thread_data->notifiers.last());
swap(thread_data->poll_fds[notifier_index], thread_data->poll_fds.last());
auto* swapped_notifier = thread_data->notifiers[notifier_index];
thread_data->notifier_to_index.set(swapped_notifier, notifier_index);
}
thread_data->notifiers.take_last();
thread_data->poll_fds.take_last();
}
void EventLoopManagerUnix::did_post_event()
{
}
EventLoopManagerUnix::~EventLoopManagerUnix() = default;
NonnullOwnPtr<EventLoopImplementation> EventLoopManagerUnix::make_implementation()
{
return adopt_own(*new EventLoopImplementationUnix);
}
}