mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-12-08 06:09:58 +00:00
681 lines
22 KiB
C++
681 lines
22 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <andreas@ladybird.org>
|
|
* Copyright (c) 2021, Daniel Bertalan <dani@danielbertalan.dev>
|
|
* Copyright (c) 2025, Jelle Raaijmakers <jelle@ladybird.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Assertions.h>
|
|
#include <AK/Concepts.h>
|
|
#include <AK/Forward.h>
|
|
#include <AK/Noncopyable.h>
|
|
#include <AK/Platform.h>
|
|
#include <AK/StdLibExtraDetails.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/Traits.h>
|
|
#include <AK/Try.h>
|
|
#include <AK/Types.h>
|
|
#include <AK/kmalloc.h>
|
|
|
|
namespace AK {
|
|
|
|
namespace Detail {
|
|
|
|
template<auto condition, typename T>
|
|
struct ConditionallyResultType;
|
|
|
|
template<typename T>
|
|
struct ConditionallyResultType<true, T> {
|
|
using Type = typename T::ResultType;
|
|
};
|
|
|
|
template<typename T>
|
|
struct ConditionallyResultType<false, T> {
|
|
using Type = T;
|
|
};
|
|
|
|
template<typename Self, typename T>
|
|
struct AddConstIfNeeded {
|
|
using Type = Conditional<IsConst<RemoveReference<Self>> && !IsConst<T>, AddConst<T>, T>;
|
|
};
|
|
|
|
}
|
|
|
|
template<auto condition, typename T>
|
|
using ConditionallyResultType = typename Detail::ConditionallyResultType<condition, T>::Type;
|
|
template<typename Self, typename T>
|
|
using AddConstIfNeeded = typename Detail::AddConstIfNeeded<Self, T>::Type;
|
|
|
|
// NOTE: If you're here because of an internal compiler error in GCC 10.3.0+,
|
|
// it's because of the following bug:
|
|
//
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96745
|
|
//
|
|
// Make sure you didn't accidentally make your destructor private before
|
|
// you start bug hunting. :^)
|
|
|
|
template<typename>
|
|
class Optional;
|
|
|
|
struct OptionalNone {
|
|
explicit constexpr OptionalNone() = default;
|
|
};
|
|
|
|
template<typename T>
|
|
requires(!IsLvalueReference<T>)
|
|
class [[nodiscard]] OptionalBase {
|
|
public:
|
|
using ValueType = T;
|
|
|
|
template<typename Self, SameAs<OptionalNone> V>
|
|
ALWAYS_INLINE constexpr Self& operator=(this Self& self, V)
|
|
{
|
|
self.clear();
|
|
return self;
|
|
}
|
|
|
|
template<typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr AddConstIfNeeded<Self, T>* ptr(this Self& self)
|
|
{
|
|
return self.has_value() ? &self.value() : nullptr;
|
|
}
|
|
|
|
template<typename O = T, typename Fallback = O, typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr O value_or(this Self&& self, Fallback&& fallback)
|
|
{
|
|
if (self.has_value())
|
|
return forward<Self>(self).value();
|
|
return forward<Fallback>(fallback);
|
|
}
|
|
|
|
template<typename Callback, typename O = T, typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr O value_or_lazy_evaluated(this Self&& self, Callback callback)
|
|
{
|
|
if (self.has_value())
|
|
return forward<Self>(self).value();
|
|
return callback();
|
|
}
|
|
|
|
template<typename Callback, typename O = T, typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr Optional<O> value_or_lazy_evaluated_optional(this Self&& self, Callback callback)
|
|
{
|
|
if (self.has_value())
|
|
return forward<Self>(self);
|
|
return callback();
|
|
}
|
|
|
|
template<typename Callback, typename O = T, typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr ErrorOr<O> try_value_or_lazy_evaluated(this Self&& self, Callback callback)
|
|
{
|
|
if (self.has_value())
|
|
return forward<Self>(self).value();
|
|
return TRY(callback());
|
|
}
|
|
|
|
template<typename Callback, typename O = T, typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr ErrorOr<Optional<O>> try_value_or_lazy_evaluated_optional(this Self&& self, Callback callback)
|
|
{
|
|
if (self.has_value())
|
|
return forward<Self>(self);
|
|
return TRY(callback());
|
|
}
|
|
|
|
template<typename Callable, typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T& ensure(this Self& self, Callable callable)
|
|
{
|
|
if (!self.has_value())
|
|
self = callable();
|
|
return self.value();
|
|
}
|
|
|
|
template<typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr auto operator*(this Self&& self) -> decltype(forward<Self>(self).value()) { return forward<Self>(self).value(); }
|
|
template<typename Self>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr AddConstIfNeeded<Self, T>* operator->(this Self&& self) { return &self.value(); }
|
|
|
|
template<typename F,
|
|
typename MappedType = decltype(declval<F>()(declval<T&>())),
|
|
auto IsErrorOr = IsSpecializationOf<MappedType, ErrorOr>,
|
|
typename OptionalType = Optional<ConditionallyResultType<IsErrorOr, MappedType>>,
|
|
typename Self>
|
|
ALWAYS_INLINE constexpr Conditional<IsErrorOr, ErrorOr<OptionalType>, OptionalType> map(this Self&& self, F&& mapper)
|
|
{
|
|
if constexpr (IsErrorOr) {
|
|
if (self.has_value())
|
|
return OptionalType { TRY(mapper(forward<Self>(self).value())) };
|
|
return OptionalType {};
|
|
} else {
|
|
if (self.has_value())
|
|
return OptionalType { mapper(forward<Self>(self).value()) };
|
|
|
|
return OptionalType {};
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
requires(!IsLvalueReference<T>) class [[nodiscard]] Optional<T> : public OptionalBase<T> {
|
|
template<typename U>
|
|
friend class Optional;
|
|
|
|
static_assert(!IsLvalueReference<T> && !IsRvalueReference<T>);
|
|
|
|
public:
|
|
using ValueType = T;
|
|
|
|
ALWAYS_INLINE constexpr Optional()
|
|
{
|
|
construct_null_if_necessary();
|
|
}
|
|
|
|
template<SameAs<OptionalNone> V>
|
|
ALWAYS_INLINE constexpr Optional(V)
|
|
{
|
|
construct_null_if_necessary();
|
|
}
|
|
|
|
template<SameAs<OptionalNone> V>
|
|
ALWAYS_INLINE constexpr Optional& operator=(V)
|
|
{
|
|
clear();
|
|
return *this;
|
|
}
|
|
|
|
AK_MAKE_CONDITIONALLY_COPYABLE(Optional, <T>);
|
|
AK_MAKE_CONDITIONALLY_MOVABLE(Optional, <T>);
|
|
AK_MAKE_CONDITIONALLY_DESTRUCTIBLE(Optional, <T>);
|
|
|
|
ALWAYS_INLINE constexpr Optional(Optional const& other)
|
|
requires(!IsTriviallyCopyConstructible<T>)
|
|
: m_has_value(other.m_has_value)
|
|
{
|
|
if (other.has_value())
|
|
construct_at<RemoveConst<T>>(&m_storage, other.value());
|
|
else
|
|
construct_null_if_necessary();
|
|
}
|
|
|
|
ALWAYS_INLINE constexpr Optional(Optional&& other)
|
|
requires(!IsTriviallyMoveConstructible<T>)
|
|
: m_has_value(other.m_has_value)
|
|
{
|
|
if (other.has_value())
|
|
construct_at<RemoveConst<T>>(&m_storage, other.release_value());
|
|
else
|
|
construct_null_if_necessary();
|
|
}
|
|
|
|
template<typename U>
|
|
requires(IsConstructible<T, U const&> && !IsSpecializationOf<T, Optional> && !IsSpecializationOf<U, Optional> && (!IsLvalueReference<U> || IsTriviallyCopyConstructible<U>)) ALWAYS_INLINE explicit constexpr Optional(Optional<U> const& other)
|
|
: m_has_value(other.has_value())
|
|
{
|
|
if (other.has_value())
|
|
construct_at<RemoveConst<T>>(&m_storage, other.value());
|
|
else
|
|
construct_null_if_necessary();
|
|
}
|
|
|
|
template<typename U>
|
|
requires(IsConstructible<T, U &&> && !IsSpecializationOf<T, Optional> && !IsSpecializationOf<U, Optional> && (!IsLvalueReference<U> || IsTriviallyMoveConstructible<U>)) ALWAYS_INLINE explicit constexpr Optional(Optional<U>&& other)
|
|
: m_has_value(other.has_value())
|
|
{
|
|
if (other.has_value())
|
|
construct_at<RemoveConst<T>>(&m_storage, other.release_value());
|
|
else
|
|
construct_null_if_necessary();
|
|
}
|
|
|
|
template<typename U = T>
|
|
requires(!IsSame<OptionalNone, RemoveCVReference<U>>)
|
|
ALWAYS_INLINE explicit(!IsConvertible<U&&, T>) constexpr Optional(U&& value)
|
|
requires(!IsSame<RemoveCVReference<U>, Optional<T>> && IsConstructible<T, U &&>)
|
|
: m_has_value(true)
|
|
{
|
|
construct_at<RemoveConst<T>>(&m_storage, forward<U>(value));
|
|
}
|
|
|
|
ALWAYS_INLINE constexpr Optional& operator=(Optional const& other)
|
|
requires(!IsTriviallyCopyConstructible<T> || !IsTriviallyDestructible<T>)
|
|
{
|
|
if (this != &other) {
|
|
clear();
|
|
m_has_value = other.m_has_value;
|
|
if (other.has_value())
|
|
construct_at<RemoveConst<T>>(&m_storage, other.value());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Optional& operator=(Optional&& other)
|
|
requires(!IsMoveConstructible<T> || !IsDestructible<T>)
|
|
= delete;
|
|
|
|
// Note: This overload is optional. It exists purely to match the SerenityOS and `std::optional` behaviour.
|
|
// The only (observable) difference between this overload and the next one is that this one calls the move assignment operator when both `this` and `other` have a value.
|
|
// The other overload just unconditionally calls the move constructor.
|
|
ALWAYS_INLINE constexpr Optional& operator=(Optional&& other)
|
|
requires(IsMoveAssignable<T> && IsMoveConstructible<T> && (!IsTriviallyMoveAssignable<T> || !IsTriviallyMoveConstructible<T> || !IsTriviallyDestructible<T>))
|
|
{
|
|
if (this != &other) {
|
|
if (has_value() && other.has_value()) {
|
|
value() = other.release_value();
|
|
} else if (has_value()) {
|
|
value().~T();
|
|
m_has_value = false;
|
|
} else if (other.has_value()) {
|
|
m_has_value = true;
|
|
construct_at<RemoveConst<T>>(&m_storage, other.release_value());
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Allow for move constructible but non-move assignable types, such as those containing const or reference fields,
|
|
// Note: This overload can also handle move assignable types perfectly fine, but the behaviour would be slightly different.
|
|
ALWAYS_INLINE constexpr Optional& operator=(Optional&& other)
|
|
requires(!IsMoveAssignable<T> && IsMoveConstructible<T> && (!IsTriviallyMoveConstructible<T> || !IsTriviallyDestructible<T>))
|
|
{
|
|
if (this != &other) {
|
|
clear();
|
|
m_has_value = other.m_has_value;
|
|
if (other.has_value())
|
|
construct_at<RemoveConst<T>>(&m_storage, other.release_value());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class U = T>
|
|
requires(!IsOneOfIgnoringCVReference<U, Optional<T>, OptionalNone> && !(IsSame<U, T> && IsScalar<U>))
|
|
// Note: We restrict this to `!IsScalar<U>` to prevent undesired overload resolution for `= {}`.
|
|
ALWAYS_INLINE constexpr Optional<T>& operator=(U&& value)
|
|
requires(IsConstructible<T, U &&>)
|
|
{
|
|
if constexpr (IsAssignable<AddLvalueReference<T>, AddRvalueReference<U>>) {
|
|
if (m_has_value)
|
|
m_storage = forward<U>(value);
|
|
else
|
|
construct_at<RemoveConst<T>>(&m_storage, forward<U>(value));
|
|
m_has_value = true;
|
|
} else {
|
|
emplace(forward<U>(value));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
ALWAYS_INLINE constexpr ~Optional()
|
|
requires(!IsTriviallyDestructible<T> && IsDestructible<T>)
|
|
{
|
|
clear();
|
|
}
|
|
|
|
ALWAYS_INLINE constexpr void clear()
|
|
{
|
|
if (m_has_value) {
|
|
value().~T();
|
|
m_has_value = false;
|
|
}
|
|
}
|
|
|
|
template<typename... Parameters>
|
|
ALWAYS_INLINE constexpr void emplace(Parameters&&... parameters)
|
|
{
|
|
clear();
|
|
m_has_value = true;
|
|
construct_at<RemoveConst<T>>(&m_storage, forward<Parameters>(parameters)...);
|
|
}
|
|
|
|
template<typename Callable>
|
|
ALWAYS_INLINE constexpr void lazy_emplace(Callable callable)
|
|
{
|
|
clear();
|
|
m_has_value = true;
|
|
construct_at<RemoveConst<T>>(&m_storage, callable());
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr bool has_value() const { return m_has_value; }
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T& value() &
|
|
{
|
|
VERIFY(m_has_value);
|
|
return m_storage;
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T const& value() const&
|
|
{
|
|
VERIFY(m_has_value);
|
|
return m_storage;
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T value() &&
|
|
{
|
|
return release_value();
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T release_value()
|
|
{
|
|
VERIFY(m_has_value);
|
|
T released_value = move(value());
|
|
value().~T();
|
|
m_has_value = false;
|
|
return released_value;
|
|
}
|
|
|
|
private:
|
|
ALWAYS_INLINE constexpr void construct_null_if_necessary(bool should_construct = is_constant_evaluated())
|
|
{
|
|
// OPTIMIZATION: Only construct the `m_null` member when we are constant-evaluating.
|
|
// Otherwise, this generates an unnecessary zero-fill.
|
|
#if defined(AK_COMPILER_GCC)
|
|
// NOTE: GCCs -Wuninitialized warning ends up checking this as well.
|
|
should_construct = true;
|
|
#endif
|
|
if (should_construct)
|
|
construct_at(&m_null);
|
|
}
|
|
|
|
union {
|
|
// FIXME: GCC seems to have an issue with uninitialized unions and non trivial types,
|
|
// which forces us to have an equally sized trivial null member in the union
|
|
// to pseudo-initialize the union.
|
|
struct {
|
|
u8 _[sizeof(T)];
|
|
} m_null;
|
|
RemoveConst<T> m_storage;
|
|
};
|
|
bool m_has_value { false };
|
|
};
|
|
|
|
template<typename T>
|
|
requires(IsLvalueReference<T>) class [[nodiscard]] Optional<T> {
|
|
AK_MAKE_DEFAULT_COPYABLE(Optional);
|
|
AK_MAKE_DEFAULT_MOVABLE(Optional);
|
|
|
|
template<typename>
|
|
friend class Optional;
|
|
|
|
template<typename U>
|
|
constexpr static bool CanBePlacedInOptional = IsSame<RemoveReference<T>, RemoveReference<AddConstToReferencedType<U>>> && (IsBaseOf<RemoveReference<T>, RemoveReference<U>> || IsSame<RemoveCVReference<T>, RemoveCVReference<U>>);
|
|
|
|
public:
|
|
using ValueType = T;
|
|
|
|
ALWAYS_INLINE constexpr Optional() = default;
|
|
|
|
template<SameAs<OptionalNone> V>
|
|
ALWAYS_INLINE constexpr Optional(V) { }
|
|
|
|
template<SameAs<OptionalNone> V>
|
|
ALWAYS_INLINE constexpr Optional& operator=(V)
|
|
{
|
|
clear();
|
|
return *this;
|
|
}
|
|
|
|
template<typename U = T>
|
|
ALWAYS_INLINE constexpr Optional(U& value)
|
|
requires(CanBePlacedInOptional<U&>)
|
|
: m_pointer(&value)
|
|
{
|
|
}
|
|
|
|
ALWAYS_INLINE constexpr Optional(RemoveReference<T>& value)
|
|
: m_pointer(&value)
|
|
{
|
|
}
|
|
|
|
template<typename U>
|
|
ALWAYS_INLINE constexpr Optional(Optional<U>& other)
|
|
requires(CanBePlacedInOptional<U>)
|
|
: m_pointer(other.ptr())
|
|
{
|
|
}
|
|
|
|
template<typename U>
|
|
ALWAYS_INLINE constexpr Optional(Optional<U> const& other)
|
|
requires(CanBePlacedInOptional<U const>)
|
|
: m_pointer(other.ptr())
|
|
{
|
|
}
|
|
|
|
template<typename U>
|
|
ALWAYS_INLINE constexpr Optional(Optional<U>&& other)
|
|
requires(CanBePlacedInOptional<U>)
|
|
: m_pointer(other.ptr())
|
|
{
|
|
other.m_pointer = nullptr;
|
|
}
|
|
|
|
template<typename U>
|
|
ALWAYS_INLINE constexpr Optional& operator=(Optional<U>& other)
|
|
requires(CanBePlacedInOptional<U>)
|
|
{
|
|
m_pointer = other.ptr();
|
|
return *this;
|
|
}
|
|
|
|
template<typename U>
|
|
ALWAYS_INLINE constexpr Optional& operator=(Optional<U> const& other)
|
|
requires(CanBePlacedInOptional<U const>)
|
|
{
|
|
m_pointer = other.ptr();
|
|
return *this;
|
|
}
|
|
|
|
template<typename U>
|
|
ALWAYS_INLINE constexpr Optional& operator=(Optional<U>&& other)
|
|
requires(CanBePlacedInOptional<U> && IsLvalueReference<U>)
|
|
{
|
|
m_pointer = other.m_pointer;
|
|
other.m_pointer = nullptr;
|
|
return *this;
|
|
}
|
|
|
|
template<typename U>
|
|
requires(!IsSame<OptionalNone, RemoveCVReference<U>>)
|
|
ALWAYS_INLINE constexpr Optional& operator=(U& value)
|
|
requires(CanBePlacedInOptional<U>)
|
|
{
|
|
m_pointer = &value;
|
|
return *this;
|
|
}
|
|
|
|
// Note: Disallows assignment from a temporary as this does not do any lifetime extension.
|
|
template<typename U>
|
|
requires(!IsSame<OptionalNone, RemoveCVReference<U>>)
|
|
ALWAYS_INLINE consteval Optional& operator=(RemoveReference<U> const&& value)
|
|
requires(CanBePlacedInOptional<U>)
|
|
= delete;
|
|
|
|
ALWAYS_INLINE constexpr void clear()
|
|
{
|
|
m_pointer = nullptr;
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr bool has_value() const { return m_pointer != nullptr; }
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr RemoveReference<T>* ptr()
|
|
{
|
|
return m_pointer;
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr RemoveReference<T> const* ptr() const
|
|
{
|
|
return m_pointer;
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T value()
|
|
{
|
|
VERIFY(m_pointer);
|
|
return *m_pointer;
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr AddConstToReferencedType<T> value() const
|
|
{
|
|
VERIFY(m_pointer);
|
|
return *m_pointer;
|
|
}
|
|
|
|
template<typename U>
|
|
requires(IsBaseOf<RemoveCVReference<T>, U>) [[nodiscard]] ALWAYS_INLINE constexpr AddConstToReferencedType<T> value_or(U& fallback) const
|
|
{
|
|
if (m_pointer)
|
|
return value();
|
|
return fallback;
|
|
}
|
|
|
|
// Note that this ends up copying the value.
|
|
[[nodiscard]] ALWAYS_INLINE constexpr RemoveCVReference<T> value_or(RemoveCVReference<T> fallback) const
|
|
{
|
|
if (m_pointer)
|
|
return value();
|
|
return fallback;
|
|
}
|
|
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T release_value()
|
|
{
|
|
return *exchange(m_pointer, nullptr);
|
|
}
|
|
|
|
ALWAYS_INLINE constexpr AddConstToReferencedType<T> operator*() const { return value(); }
|
|
ALWAYS_INLINE constexpr T operator*() { return value(); }
|
|
|
|
ALWAYS_INLINE constexpr RawPtr<AddConst<RemoveReference<T>>> operator->() const { return &value(); }
|
|
ALWAYS_INLINE constexpr RawPtr<RemoveReference<T>> operator->() { return &value(); }
|
|
|
|
// Conversion operators from Optional<T&> -> Optional<T>, implicit when T is trivially copyable.
|
|
ALWAYS_INLINE constexpr operator Optional<RemoveCVReference<T>>() const
|
|
requires(IsTriviallyCopyable<RemoveCVReference<T>>)
|
|
{
|
|
if (has_value())
|
|
return Optional<RemoveCVReference<T>>(value());
|
|
return {};
|
|
}
|
|
|
|
// Conversion operators from Optional<T&> -> Optional<T>, explicit when T is not trivially copyable, since this is usually a mistake.
|
|
ALWAYS_INLINE explicit constexpr operator Optional<RemoveCVReference<T>>() const
|
|
requires(!IsTriviallyCopyable<RemoveCVReference<T>>)
|
|
{
|
|
if (has_value())
|
|
return Optional<RemoveCVReference<T>>(value());
|
|
return {};
|
|
}
|
|
|
|
ALWAYS_INLINE constexpr Optional<RemoveCVReference<T>> copy() const
|
|
{
|
|
return static_cast<Optional<RemoveCVReference<T>>>(*this);
|
|
}
|
|
|
|
template<typename Callback>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T value_or_lazy_evaluated(Callback callback) const
|
|
{
|
|
if (m_pointer != nullptr)
|
|
return value();
|
|
return callback();
|
|
}
|
|
|
|
template<typename Callback>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr Optional<T> value_or_lazy_evaluated_optional(Callback callback) const
|
|
{
|
|
if (m_pointer != nullptr)
|
|
return value();
|
|
return callback();
|
|
}
|
|
|
|
template<typename Callback>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr ErrorOr<T> try_value_or_lazy_evaluated(Callback callback) const
|
|
{
|
|
if (m_pointer != nullptr)
|
|
return value();
|
|
return TRY(callback());
|
|
}
|
|
|
|
template<typename Callback>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr ErrorOr<Optional<T>> try_value_or_lazy_evaluated_optional(Callback callback) const
|
|
{
|
|
if (m_pointer != nullptr)
|
|
return value();
|
|
return TRY(callback());
|
|
}
|
|
|
|
template<typename Callback>
|
|
[[nodiscard]] ALWAYS_INLINE constexpr T ensure(Callback callback) &
|
|
{
|
|
if (m_pointer == nullptr)
|
|
m_pointer = &callback();
|
|
return *m_pointer;
|
|
}
|
|
|
|
template<typename F, typename MappedType = decltype(declval<F>()(declval<T&>())), auto IsErrorOr = IsSpecializationOf<MappedType, ErrorOr>, typename OptionalType = Optional<ConditionallyResultType<IsErrorOr, MappedType>>>
|
|
ALWAYS_INLINE constexpr Conditional<IsErrorOr, ErrorOr<OptionalType>, OptionalType> map(F&& mapper)
|
|
{
|
|
if constexpr (IsErrorOr) {
|
|
if (m_pointer != nullptr)
|
|
return OptionalType { TRY(mapper(value())) };
|
|
return OptionalType {};
|
|
} else {
|
|
if (m_pointer != nullptr)
|
|
return OptionalType { mapper(value()) };
|
|
|
|
return OptionalType {};
|
|
}
|
|
}
|
|
|
|
template<typename F, typename MappedType = decltype(declval<F>()(declval<T&>())), auto IsErrorOr = IsSpecializationOf<MappedType, ErrorOr>, typename OptionalType = Optional<ConditionallyResultType<IsErrorOr, MappedType>>>
|
|
ALWAYS_INLINE constexpr Conditional<IsErrorOr, ErrorOr<OptionalType>, OptionalType> map(F&& mapper) const
|
|
{
|
|
if constexpr (IsErrorOr) {
|
|
if (m_pointer != nullptr)
|
|
return OptionalType { TRY(mapper(value())) };
|
|
return OptionalType {};
|
|
} else {
|
|
if (m_pointer != nullptr)
|
|
return OptionalType { mapper(value()) };
|
|
|
|
return OptionalType {};
|
|
}
|
|
}
|
|
|
|
private:
|
|
RemoveReference<T>* m_pointer { nullptr };
|
|
};
|
|
|
|
template<typename T1, typename T2>
|
|
ALWAYS_INLINE constexpr bool operator==(Optional<T1> const& first, Optional<T2> const& second)
|
|
{
|
|
return first.has_value() == second.has_value()
|
|
&& (!first.has_value() || first.value() == second.value());
|
|
}
|
|
|
|
template<typename T1, typename T2>
|
|
ALWAYS_INLINE constexpr bool operator==(Optional<T1> const& first, T2 const& second)
|
|
{
|
|
return first.has_value() && first.value() == second;
|
|
}
|
|
|
|
template<typename T>
|
|
ALWAYS_INLINE constexpr bool operator==(Optional<T> const& first, OptionalNone)
|
|
{
|
|
return !first.has_value();
|
|
}
|
|
|
|
template<typename T>
|
|
struct Traits<Optional<T>> : public DefaultTraits<Optional<T>> {
|
|
static unsigned hash(Optional<T> const& optional)
|
|
{
|
|
// Arbitrary-ish value for an empty optional, but not 0 as that is a common 'hash' for many T's.
|
|
if (!optional.has_value())
|
|
return 13;
|
|
|
|
return Traits<T>::hash(optional.value());
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
#if USING_AK_GLOBALLY
|
|
using AK::Optional;
|
|
using AK::OptionalNone;
|
|
#endif
|