mirror of
				https://github.com/LadybirdBrowser/ladybird.git
				synced 2025-10-31 05:10:57 +00:00 
			
		
		
		
	 a9fdd819c3
			
		
	
	
		a9fdd819c3
		
	
	
	
	
		
			
			The ThreadData still has a lifetime a longer than the thread it was created for, but at least now it's not leaked at process exit.
		
			
				
	
	
		
			701 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			701 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/BinaryHeap.h>
 | |
| #include <AK/Singleton.h>
 | |
| #include <AK/TemporaryChange.h>
 | |
| #include <AK/Time.h>
 | |
| #include <AK/WeakPtr.h>
 | |
| #include <LibCore/Event.h>
 | |
| #include <LibCore/EventLoopImplementationUnix.h>
 | |
| #include <LibCore/EventReceiver.h>
 | |
| #include <LibCore/Notifier.h>
 | |
| #include <LibCore/Socket.h>
 | |
| #include <LibCore/System.h>
 | |
| #include <LibCore/ThreadEventQueue.h>
 | |
| #include <pthread.h>
 | |
| #include <sys/select.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| namespace Core {
 | |
| 
 | |
| namespace {
 | |
| struct ThreadData;
 | |
| class TimeoutSet;
 | |
| 
 | |
| HashMap<pthread_t, OwnPtr<ThreadData>> s_thread_data;
 | |
| static pthread_rwlock_t s_thread_data_lock_impl;
 | |
| static pthread_rwlock_t* s_thread_data_lock = nullptr;
 | |
| thread_local pthread_t s_thread_id;
 | |
| 
 | |
| short notification_type_to_poll_events(NotificationType type)
 | |
| {
 | |
|     short events = 0;
 | |
|     if (has_flag(type, NotificationType::Read))
 | |
|         events |= POLLIN;
 | |
|     if (has_flag(type, NotificationType::Write))
 | |
|         events |= POLLOUT;
 | |
|     return events;
 | |
| }
 | |
| 
 | |
| bool has_flag(int value, int flag)
 | |
| {
 | |
|     return (value & flag) == flag;
 | |
| }
 | |
| 
 | |
| class EventLoopTimeout {
 | |
| public:
 | |
|     static constexpr ssize_t INVALID_INDEX = NumericLimits<ssize_t>::max();
 | |
| 
 | |
|     EventLoopTimeout() { }
 | |
|     virtual ~EventLoopTimeout() = default;
 | |
| 
 | |
|     virtual void fire(TimeoutSet& timeout_set, MonotonicTime time) = 0;
 | |
| 
 | |
|     MonotonicTime fire_time() const { return m_fire_time; }
 | |
| 
 | |
|     void absolutize(Badge<TimeoutSet>, MonotonicTime current_time)
 | |
|     {
 | |
|         m_fire_time = current_time + m_duration;
 | |
|     }
 | |
| 
 | |
|     ssize_t& index(Badge<TimeoutSet>) { return m_index; }
 | |
|     void set_index(Badge<TimeoutSet>, ssize_t index) { m_index = index; }
 | |
| 
 | |
|     bool is_scheduled() const { return m_index != INVALID_INDEX; }
 | |
| 
 | |
| protected:
 | |
|     union {
 | |
|         Duration m_duration;
 | |
|         MonotonicTime m_fire_time;
 | |
|     };
 | |
| 
 | |
| private:
 | |
|     ssize_t m_index = INVALID_INDEX;
 | |
| };
 | |
| 
 | |
| class TimeoutSet {
 | |
| public:
 | |
|     TimeoutSet() = default;
 | |
| 
 | |
|     Optional<MonotonicTime> next_timer_expiration()
 | |
|     {
 | |
|         if (!m_heap.is_empty()) {
 | |
|             return m_heap.peek_min()->fire_time();
 | |
|         } else {
 | |
|             return {};
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void absolutize_relative_timeouts(MonotonicTime current_time)
 | |
|     {
 | |
|         for (auto timeout : m_scheduled_timeouts) {
 | |
|             timeout->absolutize({}, current_time);
 | |
|             m_heap.insert(timeout);
 | |
|         }
 | |
|         m_scheduled_timeouts.clear();
 | |
|     }
 | |
| 
 | |
|     size_t fire_expired(MonotonicTime current_time)
 | |
|     {
 | |
|         size_t fired_count = 0;
 | |
|         while (!m_heap.is_empty()) {
 | |
|             auto& timeout = *m_heap.peek_min();
 | |
| 
 | |
|             if (timeout.fire_time() <= current_time) {
 | |
|                 ++fired_count;
 | |
|                 m_heap.pop_min();
 | |
|                 timeout.set_index({}, EventLoopTimeout::INVALID_INDEX);
 | |
|                 timeout.fire(*this, current_time);
 | |
|             } else {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         return fired_count;
 | |
|     }
 | |
| 
 | |
|     void schedule_relative(EventLoopTimeout* timeout)
 | |
|     {
 | |
|         timeout->set_index({}, -1 - static_cast<ssize_t>(m_scheduled_timeouts.size()));
 | |
|         m_scheduled_timeouts.append(timeout);
 | |
|     }
 | |
| 
 | |
|     void schedule_absolute(EventLoopTimeout* timeout)
 | |
|     {
 | |
|         m_heap.insert(timeout);
 | |
|     }
 | |
| 
 | |
|     void unschedule(EventLoopTimeout* timeout)
 | |
|     {
 | |
|         if (timeout->index({}) < 0) {
 | |
|             size_t i = -1 - timeout->index({});
 | |
|             size_t j = m_scheduled_timeouts.size() - 1;
 | |
|             VERIFY(m_scheduled_timeouts[i] == timeout);
 | |
|             swap(m_scheduled_timeouts[i], m_scheduled_timeouts[j]);
 | |
|             swap(m_scheduled_timeouts[i]->index({}), m_scheduled_timeouts[j]->index({}));
 | |
|             (void)m_scheduled_timeouts.take_last();
 | |
|         } else {
 | |
|             m_heap.pop(timeout->index({}));
 | |
|         }
 | |
|         timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
 | |
|     }
 | |
| 
 | |
|     void clear()
 | |
|     {
 | |
|         for (auto* timeout : m_heap.nodes_in_arbitrary_order())
 | |
|             timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
 | |
|         m_heap.clear();
 | |
|         for (auto* timeout : m_scheduled_timeouts)
 | |
|             timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
 | |
|         m_scheduled_timeouts.clear();
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     IntrusiveBinaryHeap<
 | |
|         EventLoopTimeout*,
 | |
|         decltype([](EventLoopTimeout* a, EventLoopTimeout* b) {
 | |
|             return a->fire_time() < b->fire_time();
 | |
|         }),
 | |
|         decltype([](EventLoopTimeout* timeout, size_t index) {
 | |
|             timeout->set_index({}, static_cast<ssize_t>(index));
 | |
|         }),
 | |
|         8>
 | |
|         m_heap;
 | |
|     Vector<EventLoopTimeout*, 8> m_scheduled_timeouts;
 | |
| };
 | |
| 
 | |
| class EventLoopTimer final : public EventLoopTimeout {
 | |
| public:
 | |
|     EventLoopTimer() = default;
 | |
| 
 | |
|     void reload(MonotonicTime const& now) { m_fire_time = now + interval; }
 | |
| 
 | |
|     virtual void fire(TimeoutSet& timeout_set, MonotonicTime current_time) override
 | |
|     {
 | |
|         auto strong_owner = owner.strong_ref();
 | |
| 
 | |
|         if (!strong_owner)
 | |
|             return;
 | |
| 
 | |
|         if (should_reload) {
 | |
|             MonotonicTime next_fire_time = m_fire_time + interval;
 | |
|             if (next_fire_time <= current_time) {
 | |
|                 next_fire_time = current_time + interval;
 | |
|             }
 | |
|             m_fire_time = next_fire_time;
 | |
|             if (next_fire_time != current_time) {
 | |
|                 timeout_set.schedule_absolute(this);
 | |
|             } else {
 | |
|                 // NOTE: Unfortunately we need to treat timeouts with the zero interval in a
 | |
|                 //       special way. TimeoutSet::schedule_absolute for them will result in an
 | |
|                 //       infinite loop. TimeoutSet::schedule_relative, on the other hand, will do a
 | |
|                 //       correct thing of scheduling them for the next iteration of the loop.
 | |
|                 m_duration = {};
 | |
|                 timeout_set.schedule_relative(this);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // FIXME: While TimerShouldFireWhenNotVisible::Yes prevents the timer callback from being
 | |
|         //        called, it doesn't allow event loop to sleep since it needs to constantly check if
 | |
|         //        is_visible_for_timer_purposes changed. A better solution will be to unregister a
 | |
|         //        timer and register it back again when needed. This also has an added benefit of
 | |
|         //        making fire_when_not_visible and is_visible_for_timer_purposes obsolete.
 | |
|         if (fire_when_not_visible == TimerShouldFireWhenNotVisible::Yes || strong_owner->is_visible_for_timer_purposes())
 | |
|             ThreadEventQueue::current().post_event(*strong_owner, make<TimerEvent>());
 | |
|     }
 | |
| 
 | |
|     Duration interval;
 | |
|     bool should_reload { false };
 | |
|     TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
 | |
|     WeakPtr<EventReceiver> owner;
 | |
|     pthread_t owner_thread { 0 };
 | |
|     Atomic<bool> is_being_deleted { false };
 | |
| };
 | |
| 
 | |
| struct ThreadData {
 | |
|     static ThreadData& the()
 | |
|     {
 | |
|         if (!s_thread_data_lock) {
 | |
|             pthread_rwlock_init(&s_thread_data_lock_impl, nullptr);
 | |
|             s_thread_data_lock = &s_thread_data_lock_impl;
 | |
|         }
 | |
| 
 | |
|         if (s_thread_id == 0)
 | |
|             s_thread_id = pthread_self();
 | |
|         ThreadData* data = nullptr;
 | |
|         pthread_rwlock_rdlock(&*s_thread_data_lock);
 | |
|         if (!s_thread_data.contains(s_thread_id)) {
 | |
|             data = new ThreadData;
 | |
|             pthread_rwlock_unlock(&*s_thread_data_lock);
 | |
|             pthread_rwlock_wrlock(&*s_thread_data_lock);
 | |
|             s_thread_data.set(s_thread_id, adopt_own(*data));
 | |
|         } else {
 | |
|             data = s_thread_data.get(s_thread_id).value();
 | |
|         }
 | |
|         pthread_rwlock_unlock(&*s_thread_data_lock);
 | |
|         return *data;
 | |
|     }
 | |
| 
 | |
|     static ThreadData& for_thread(pthread_t thread_id)
 | |
|     {
 | |
|         pthread_rwlock_rdlock(&*s_thread_data_lock);
 | |
|         auto& result = *s_thread_data.get(thread_id).value();
 | |
|         pthread_rwlock_unlock(&*s_thread_data_lock);
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     ThreadData()
 | |
|     {
 | |
|         pid = getpid();
 | |
|         initialize_wake_pipe();
 | |
|     }
 | |
| 
 | |
|     void initialize_wake_pipe()
 | |
|     {
 | |
|         if (wake_pipe_fds[0] != -1)
 | |
|             close(wake_pipe_fds[0]);
 | |
|         if (wake_pipe_fds[1] != -1)
 | |
|             close(wake_pipe_fds[1]);
 | |
| 
 | |
|         wake_pipe_fds = MUST(Core::System::pipe2(O_CLOEXEC));
 | |
| 
 | |
|         // The wake pipe informs us of POSIX signals as well as manual calls to wake()
 | |
|         VERIFY(poll_fds.size() == 0);
 | |
|         poll_fds.append({ .fd = wake_pipe_fds[0], .events = POLLIN, .revents = 0 });
 | |
|         notifier_by_index.append(nullptr);
 | |
|     }
 | |
| 
 | |
|     // Each thread has its own timers, notifiers and a wake pipe.
 | |
|     TimeoutSet timeouts;
 | |
| 
 | |
|     Vector<pollfd> poll_fds;
 | |
|     HashMap<Notifier*, size_t> notifier_by_ptr;
 | |
|     Vector<Notifier*> notifier_by_index;
 | |
| 
 | |
|     // The wake pipe is used to notify another event loop that someone has called wake(), or a signal has been received.
 | |
|     // wake() writes 0i32 into the pipe, signals write the signal number (guaranteed non-zero).
 | |
|     Array<int, 2> wake_pipe_fds { -1, -1 };
 | |
| 
 | |
|     pid_t pid { 0 };
 | |
| };
 | |
| }
 | |
| 
 | |
| EventLoopImplementationUnix::EventLoopImplementationUnix()
 | |
|     : m_wake_pipe_fds(ThreadData::the().wake_pipe_fds)
 | |
| {
 | |
| }
 | |
| 
 | |
| EventLoopImplementationUnix::~EventLoopImplementationUnix() = default;
 | |
| 
 | |
| int EventLoopImplementationUnix::exec()
 | |
| {
 | |
|     for (;;) {
 | |
|         if (m_exit_requested)
 | |
|             return m_exit_code;
 | |
|         pump(PumpMode::WaitForEvents);
 | |
|     }
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| size_t EventLoopImplementationUnix::pump(PumpMode mode)
 | |
| {
 | |
|     static_cast<EventLoopManagerUnix&>(EventLoopManager::the()).wait_for_events(mode);
 | |
|     return ThreadEventQueue::current().process();
 | |
| }
 | |
| 
 | |
| void EventLoopImplementationUnix::quit(int code)
 | |
| {
 | |
|     m_exit_requested = true;
 | |
|     m_exit_code = code;
 | |
| }
 | |
| 
 | |
| void EventLoopImplementationUnix::unquit()
 | |
| {
 | |
|     m_exit_requested = false;
 | |
|     m_exit_code = 0;
 | |
| }
 | |
| 
 | |
| bool EventLoopImplementationUnix::was_exit_requested() const
 | |
| {
 | |
|     return m_exit_requested;
 | |
| }
 | |
| 
 | |
| void EventLoopImplementationUnix::post_event(EventReceiver& receiver, NonnullOwnPtr<Event>&& event)
 | |
| {
 | |
|     m_thread_event_queue.post_event(receiver, move(event));
 | |
|     if (&m_thread_event_queue != &ThreadEventQueue::current())
 | |
|         wake();
 | |
| }
 | |
| 
 | |
| void EventLoopImplementationUnix::wake()
 | |
| {
 | |
|     int wake_event = 0;
 | |
|     MUST(Core::System::write(m_wake_pipe_fds[1], { &wake_event, sizeof(wake_event) }));
 | |
| }
 | |
| 
 | |
| void EventLoopManagerUnix::wait_for_events(EventLoopImplementation::PumpMode mode)
 | |
| {
 | |
|     auto& thread_data = ThreadData::the();
 | |
| 
 | |
| retry:
 | |
|     bool has_pending_events = ThreadEventQueue::current().has_pending_events();
 | |
| 
 | |
|     auto time_at_iteration_start = MonotonicTime::now_coarse();
 | |
|     thread_data.timeouts.absolutize_relative_timeouts(time_at_iteration_start);
 | |
| 
 | |
|     // Figure out how long to wait at maximum.
 | |
|     // This mainly depends on the PumpMode and whether we have pending events, but also the next expiring timer.
 | |
|     int timeout = 0;
 | |
|     bool should_wait_forever = false;
 | |
|     if (mode == EventLoopImplementation::PumpMode::WaitForEvents && !has_pending_events) {
 | |
|         auto next_timer_expiration = thread_data.timeouts.next_timer_expiration();
 | |
|         if (next_timer_expiration.has_value()) {
 | |
|             auto computed_timeout = next_timer_expiration.value() - time_at_iteration_start;
 | |
|             if (computed_timeout.is_negative())
 | |
|                 computed_timeout = Duration::zero();
 | |
|             i64 true_timeout = computed_timeout.to_milliseconds();
 | |
|             timeout = static_cast<i32>(min<i64>(AK::NumericLimits<i32>::max(), true_timeout));
 | |
|         } else {
 | |
|             should_wait_forever = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| try_select_again:
 | |
|     // select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
 | |
|     ErrorOr<int> error_or_marked_fd_count = System::poll(thread_data.poll_fds, should_wait_forever ? -1 : timeout);
 | |
|     auto time_after_poll = MonotonicTime::now_coarse();
 | |
|     // Because POSIX, we might spuriously return from select() with EINTR; just select again.
 | |
|     if (error_or_marked_fd_count.is_error()) {
 | |
|         if (error_or_marked_fd_count.error().code() == EINTR)
 | |
|             goto try_select_again;
 | |
|         dbgln("EventLoopImplementationUnix::wait_for_events: {}", error_or_marked_fd_count.error());
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     // We woke up due to a call to wake() or a POSIX signal.
 | |
|     // Handle signals and see whether we need to handle events as well.
 | |
|     if (has_flag(thread_data.poll_fds[0].revents, POLLIN)) {
 | |
|         int wake_events[8];
 | |
|         ssize_t nread;
 | |
|         // We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
 | |
|         // but we get interrupted. Therefore, just retry while we were interrupted.
 | |
|         do {
 | |
|             errno = 0;
 | |
|             nread = read(thread_data.wake_pipe_fds[0], wake_events, sizeof(wake_events));
 | |
|             if (nread == 0)
 | |
|                 break;
 | |
|         } while (nread < 0 && errno == EINTR);
 | |
|         if (nread < 0) {
 | |
|             perror("EventLoopImplementationUnix::wait_for_events: read from wake pipe");
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
|         VERIFY(nread > 0);
 | |
|         bool wake_requested = false;
 | |
|         int event_count = nread / sizeof(wake_events[0]);
 | |
|         for (int i = 0; i < event_count; i++) {
 | |
|             if (wake_events[i] != 0)
 | |
|                 dispatch_signal(wake_events[i]);
 | |
|             else
 | |
|                 wake_requested = true;
 | |
|         }
 | |
| 
 | |
|         if (!wake_requested && nread == sizeof(wake_events))
 | |
|             goto retry;
 | |
|     }
 | |
| 
 | |
|     if (error_or_marked_fd_count.value() != 0) {
 | |
|         // Handle file system notifiers by making them normal events.
 | |
|         for (size_t i = 1; i < thread_data.poll_fds.size(); ++i) {
 | |
|             auto& revents = thread_data.poll_fds[i].revents;
 | |
|             auto& notifier = *thread_data.notifier_by_index[i];
 | |
| 
 | |
|             NotificationType type = NotificationType::None;
 | |
|             if (has_flag(revents, POLLIN))
 | |
|                 type |= NotificationType::Read;
 | |
|             if (has_flag(revents, POLLOUT))
 | |
|                 type |= NotificationType::Write;
 | |
|             if (has_flag(revents, POLLHUP))
 | |
|                 type |= NotificationType::HangUp;
 | |
|             if (has_flag(revents, POLLERR))
 | |
|                 type |= NotificationType::Error;
 | |
|             type &= notifier.type();
 | |
|             if (type != NotificationType::None)
 | |
|                 ThreadEventQueue::current().post_event(notifier, make<NotifierActivationEvent>(notifier.fd(), type));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Handle expired timers.
 | |
|     thread_data.timeouts.fire_expired(time_after_poll);
 | |
| }
 | |
| 
 | |
| class SignalHandlers : public RefCounted<SignalHandlers> {
 | |
|     AK_MAKE_NONCOPYABLE(SignalHandlers);
 | |
|     AK_MAKE_NONMOVABLE(SignalHandlers);
 | |
| 
 | |
| public:
 | |
|     SignalHandlers(int signal_number, void (*handle_signal)(int));
 | |
|     ~SignalHandlers();
 | |
| 
 | |
|     void dispatch();
 | |
|     int add(Function<void(int)>&& handler);
 | |
|     bool remove(int handler_id);
 | |
| 
 | |
|     bool is_empty() const
 | |
|     {
 | |
|         if (m_calling_handlers) {
 | |
|             for (auto& handler : m_handlers_pending) {
 | |
|                 if (handler.value)
 | |
|                     return false; // an add is pending
 | |
|             }
 | |
|         }
 | |
|         return m_handlers.is_empty();
 | |
|     }
 | |
| 
 | |
|     bool have(int handler_id) const
 | |
|     {
 | |
|         if (m_calling_handlers) {
 | |
|             auto it = m_handlers_pending.find(handler_id);
 | |
|             if (it != m_handlers_pending.end()) {
 | |
|                 if (!it->value)
 | |
|                     return false; // a deletion is pending
 | |
|             }
 | |
|         }
 | |
|         return m_handlers.contains(handler_id);
 | |
|     }
 | |
| 
 | |
|     int m_signal_number;
 | |
|     void (*m_original_handler)(int); // TODO: can't use sighandler_t?
 | |
|     HashMap<int, Function<void(int)>> m_handlers;
 | |
|     HashMap<int, Function<void(int)>> m_handlers_pending;
 | |
|     bool m_calling_handlers { false };
 | |
| };
 | |
| 
 | |
| struct SignalHandlersInfo {
 | |
|     HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
 | |
|     int next_signal_id { 0 };
 | |
| };
 | |
| 
 | |
| static Singleton<SignalHandlersInfo> s_signals;
 | |
| template<bool create_if_null = true>
 | |
| inline SignalHandlersInfo* signals_info()
 | |
| {
 | |
|     return s_signals.ptr();
 | |
| }
 | |
| 
 | |
| void EventLoopManagerUnix::dispatch_signal(int signal_number)
 | |
| {
 | |
|     auto& info = *signals_info();
 | |
|     auto handlers = info.signal_handlers.find(signal_number);
 | |
|     if (handlers != info.signal_handlers.end()) {
 | |
|         // Make sure we bump the ref count while dispatching the handlers!
 | |
|         // This allows a handler to unregister/register while the handlers
 | |
|         // are being called!
 | |
|         auto handler = handlers->value;
 | |
|         handler->dispatch();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void EventLoopImplementationUnix::notify_forked_and_in_child()
 | |
| {
 | |
|     auto& thread_data = ThreadData::the();
 | |
|     thread_data.timeouts.clear();
 | |
|     thread_data.poll_fds.clear();
 | |
|     thread_data.notifier_by_ptr.clear();
 | |
|     thread_data.notifier_by_index.clear();
 | |
|     thread_data.initialize_wake_pipe();
 | |
|     if (auto* info = signals_info<false>()) {
 | |
|         info->signal_handlers.clear();
 | |
|         info->next_signal_id = 0;
 | |
|     }
 | |
|     thread_data.pid = getpid();
 | |
| }
 | |
| 
 | |
| SignalHandlers::SignalHandlers(int signal_number, void (*handle_signal)(int))
 | |
|     : m_signal_number(signal_number)
 | |
|     , m_original_handler(signal(signal_number, handle_signal))
 | |
| {
 | |
| }
 | |
| 
 | |
| SignalHandlers::~SignalHandlers()
 | |
| {
 | |
|     signal(m_signal_number, m_original_handler);
 | |
| }
 | |
| 
 | |
| void SignalHandlers::dispatch()
 | |
| {
 | |
|     TemporaryChange change(m_calling_handlers, true);
 | |
|     for (auto& handler : m_handlers)
 | |
|         handler.value(m_signal_number);
 | |
|     if (!m_handlers_pending.is_empty()) {
 | |
|         // Apply pending adds/removes
 | |
|         for (auto& handler : m_handlers_pending) {
 | |
|             if (handler.value) {
 | |
|                 auto result = m_handlers.set(handler.key, move(handler.value));
 | |
|                 VERIFY(result == AK::HashSetResult::InsertedNewEntry);
 | |
|             } else {
 | |
|                 m_handlers.remove(handler.key);
 | |
|             }
 | |
|         }
 | |
|         m_handlers_pending.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| int SignalHandlers::add(Function<void(int)>&& handler)
 | |
| {
 | |
|     int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
 | |
|     if (m_calling_handlers)
 | |
|         m_handlers_pending.set(id, move(handler));
 | |
|     else
 | |
|         m_handlers.set(id, move(handler));
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| bool SignalHandlers::remove(int handler_id)
 | |
| {
 | |
|     VERIFY(handler_id != 0);
 | |
|     if (m_calling_handlers) {
 | |
|         auto it = m_handlers.find(handler_id);
 | |
|         if (it != m_handlers.end()) {
 | |
|             // Mark pending remove
 | |
|             m_handlers_pending.set(handler_id, {});
 | |
|             return true;
 | |
|         }
 | |
|         it = m_handlers_pending.find(handler_id);
 | |
|         if (it != m_handlers_pending.end()) {
 | |
|             if (!it->value)
 | |
|                 return false; // already was marked as deleted
 | |
|             it->value = nullptr;
 | |
|             return true;
 | |
|         }
 | |
|         return false;
 | |
|     }
 | |
|     return m_handlers.remove(handler_id);
 | |
| }
 | |
| 
 | |
| void EventLoopManagerUnix::handle_signal(int signal_number)
 | |
| {
 | |
|     VERIFY(signal_number != 0);
 | |
|     auto& thread_data = ThreadData::the();
 | |
|     // We MUST check if the current pid still matches, because there
 | |
|     // is a window between fork() and exec() where a signal delivered
 | |
|     // to our fork could be inadvertently routed to the parent process!
 | |
|     if (getpid() == thread_data.pid) {
 | |
|         int nwritten = write(thread_data.wake_pipe_fds[1], &signal_number, sizeof(signal_number));
 | |
|         if (nwritten < 0) {
 | |
|             perror("EventLoopImplementationUnix::register_signal: write");
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
|     } else {
 | |
|         // We're a fork who received a signal, reset thread_data.pid.
 | |
|         thread_data.pid = getpid();
 | |
|     }
 | |
| }
 | |
| 
 | |
| int EventLoopManagerUnix::register_signal(int signal_number, Function<void(int)> handler)
 | |
| {
 | |
|     VERIFY(signal_number != 0);
 | |
|     auto& info = *signals_info();
 | |
|     auto handlers = info.signal_handlers.find(signal_number);
 | |
|     if (handlers == info.signal_handlers.end()) {
 | |
|         auto signal_handlers = adopt_ref(*new SignalHandlers(signal_number, EventLoopManagerUnix::handle_signal));
 | |
|         auto handler_id = signal_handlers->add(move(handler));
 | |
|         info.signal_handlers.set(signal_number, move(signal_handlers));
 | |
|         return handler_id;
 | |
|     } else {
 | |
|         return handlers->value->add(move(handler));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void EventLoopManagerUnix::unregister_signal(int handler_id)
 | |
| {
 | |
|     VERIFY(handler_id != 0);
 | |
|     int remove_signal_number = 0;
 | |
|     auto& info = *signals_info();
 | |
|     for (auto& h : info.signal_handlers) {
 | |
|         auto& handlers = *h.value;
 | |
|         if (handlers.remove(handler_id)) {
 | |
|             if (handlers.is_empty())
 | |
|                 remove_signal_number = handlers.m_signal_number;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (remove_signal_number != 0)
 | |
|         info.signal_handlers.remove(remove_signal_number);
 | |
| }
 | |
| 
 | |
| intptr_t EventLoopManagerUnix::register_timer(EventReceiver& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
 | |
| {
 | |
|     VERIFY(milliseconds >= 0);
 | |
|     auto& thread_data = ThreadData::the();
 | |
|     auto timer = new EventLoopTimer;
 | |
|     timer->owner_thread = s_thread_id;
 | |
|     timer->owner = object;
 | |
|     timer->interval = Duration::from_milliseconds(milliseconds);
 | |
|     timer->reload(MonotonicTime::now_coarse());
 | |
|     timer->should_reload = should_reload;
 | |
|     timer->fire_when_not_visible = fire_when_not_visible;
 | |
|     thread_data.timeouts.schedule_absolute(timer);
 | |
|     return bit_cast<intptr_t>(timer);
 | |
| }
 | |
| 
 | |
| void EventLoopManagerUnix::unregister_timer(intptr_t timer_id)
 | |
| {
 | |
|     auto* timer = bit_cast<EventLoopTimer*>(timer_id);
 | |
|     auto& thread_data = ThreadData::for_thread(timer->owner_thread);
 | |
|     auto expected = false;
 | |
|     if (timer->is_being_deleted.compare_exchange_strong(expected, true, AK::MemoryOrder::memory_order_acq_rel)) {
 | |
|         if (timer->is_scheduled())
 | |
|             thread_data.timeouts.unschedule(timer);
 | |
|         delete timer;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void EventLoopManagerUnix::register_notifier(Notifier& notifier)
 | |
| {
 | |
|     auto& thread_data = ThreadData::the();
 | |
| 
 | |
|     thread_data.notifier_by_ptr.set(¬ifier, thread_data.poll_fds.size());
 | |
|     thread_data.notifier_by_index.append(¬ifier);
 | |
|     thread_data.poll_fds.append({
 | |
|         .fd = notifier.fd(),
 | |
|         .events = notification_type_to_poll_events(notifier.type()),
 | |
|         .revents = 0,
 | |
|     });
 | |
| 
 | |
|     notifier.set_owner_thread(s_thread_id);
 | |
| }
 | |
| 
 | |
| void EventLoopManagerUnix::unregister_notifier(Notifier& notifier)
 | |
| {
 | |
|     auto& thread_data = ThreadData::for_thread(notifier.owner_thread());
 | |
| 
 | |
|     auto it = thread_data.notifier_by_ptr.find(¬ifier);
 | |
|     VERIFY(it != thread_data.notifier_by_ptr.end());
 | |
| 
 | |
|     size_t notifier_index = it->value;
 | |
|     thread_data.notifier_by_ptr.remove(it);
 | |
| 
 | |
|     if (notifier_index + 1 != thread_data.poll_fds.size()) {
 | |
|         swap(thread_data.poll_fds[notifier_index], thread_data.poll_fds.last());
 | |
|         swap(thread_data.notifier_by_index[notifier_index], thread_data.notifier_by_index.last());
 | |
|         thread_data.notifier_by_ptr.set(thread_data.notifier_by_index[notifier_index], notifier_index);
 | |
|     }
 | |
|     thread_data.poll_fds.take_last();
 | |
|     thread_data.notifier_by_index.take_last();
 | |
| }
 | |
| 
 | |
| void EventLoopManagerUnix::did_post_event()
 | |
| {
 | |
| }
 | |
| 
 | |
| EventLoopManagerUnix::~EventLoopManagerUnix() = default;
 | |
| 
 | |
| NonnullOwnPtr<EventLoopImplementation> EventLoopManagerUnix::make_implementation()
 | |
| {
 | |
|     return adopt_own(*new EventLoopImplementationUnix);
 | |
| }
 | |
| 
 | |
| }
 |