mirror of
				https://github.com/LadybirdBrowser/ladybird.git
				synced 2025-11-04 07:10:57 +00:00 
			
		
		
		
	This commit adds support in AK/Random for a high quality RNG on windows. This requires moving the code into a cpp file not to spread windows headers around.
		
			
				
	
	
		
			100 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2021, the SerenityOS developers.
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: BSD-2-Clause
 | 
						|
 */
 | 
						|
 | 
						|
#include <AK/Platform.h>
 | 
						|
#include <AK/Random.h>
 | 
						|
#include <AK/UFixedBigInt.h>
 | 
						|
#include <AK/UFixedBigIntDivision.h>
 | 
						|
 | 
						|
#if defined(AK_OS_WINDOWS)
 | 
						|
#    include <AK/NumericLimits.h>
 | 
						|
#    include <AK/Windows.h>
 | 
						|
#    include <bcrypt.h>
 | 
						|
#    include <ntstatus.h>
 | 
						|
#endif
 | 
						|
 | 
						|
namespace AK {
 | 
						|
 | 
						|
// NOTE: This function is supposed to always give a random number. If possible it is of good quality, but it can fall
 | 
						|
//       back to rand() if it fails on some systems. For high speed you should probably use a different generator.
 | 
						|
//       See MathObject::random() from LibJS. Where cryptographic security is needed use LibCrypto/SecureRandom.h.
 | 
						|
void fill_with_random([[maybe_unused]] Bytes bytes)
 | 
						|
{
 | 
						|
#if defined(AK_OS_SERENITY) || defined(AK_OS_ANDROID) || defined(AK_OS_BSD_GENERIC) || defined(AK_OS_HAIKU) || AK_LIBC_GLIBC_PREREQ(2, 36)
 | 
						|
    arc4random_buf(bytes.data(), bytes.size());
 | 
						|
#elif defined(OSS_FUZZ)
 | 
						|
#else
 | 
						|
    auto fill_with_random_fallback = [&]() {
 | 
						|
        for (auto& byte : bytes)
 | 
						|
            byte = rand();
 | 
						|
    };
 | 
						|
 | 
						|
#    if defined(__unix__)
 | 
						|
    // The maximum permitted value for the getentropy length argument.
 | 
						|
    static constexpr size_t getentropy_length_limit = 256;
 | 
						|
    auto iterations = bytes.size() / getentropy_length_limit;
 | 
						|
 | 
						|
    for (size_t i = 0; i < iterations; ++i) {
 | 
						|
        if (getentropy(bytes.data(), getentropy_length_limit) != 0) {
 | 
						|
            fill_with_random_fallback();
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        bytes = bytes.slice(getentropy_length_limit);
 | 
						|
    }
 | 
						|
 | 
						|
    if (bytes.is_empty() || getentropy(bytes.data(), bytes.size()) == 0)
 | 
						|
        return;
 | 
						|
#    elif defined(AK_OS_WINDOWS)
 | 
						|
 | 
						|
    if (bytes.size() > NumericLimits<u32>::max()) [[unlikely]] {
 | 
						|
        fill_with_random_fallback();
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // NOTE: This is more secure than needed. But on modern hardware it be should more than fast enough.
 | 
						|
    NTSTATUS result = ::BCryptGenRandom(NULL, bytes.data(), bytes.size(), BCRYPT_USE_SYSTEM_PREFERRED_RNG);
 | 
						|
    if (result == STATUS_SUCCESS)
 | 
						|
        return;
 | 
						|
#    endif
 | 
						|
 | 
						|
    fill_with_random_fallback();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
u32 get_random_uniform(u32 max_bounds)
 | 
						|
{
 | 
						|
    // If we try to divide all 2**32 numbers into groups of "max_bounds" numbers, we may end up
 | 
						|
    // with a group around 2**32-1 that is a bit too small. For this reason, the implementation
 | 
						|
    // `arc4random() % max_bounds` would be insufficient. Here we compute the last number of the
 | 
						|
    // last "full group". Note that if max_bounds is a divisor of UINT32_MAX,
 | 
						|
    // then we end up with UINT32_MAX:
 | 
						|
    u32 const max_usable = UINT32_MAX - (static_cast<u64>(UINT32_MAX) + 1) % max_bounds;
 | 
						|
    auto random_value = get_random<u32>();
 | 
						|
    for (int i = 0; i < 20 && random_value > max_usable; ++i) {
 | 
						|
        // By chance we picked a value from the incomplete group. Note that this group has size at
 | 
						|
        // most 2**31-1, so picking this group has a chance of less than 50%.
 | 
						|
        // In practice, this means that for the worst possible input, there is still only a
 | 
						|
        // once-in-a-million chance to get to iteration 20. In theory we should be able to loop
 | 
						|
        // forever. Here we prefer marginally imperfect random numbers over weird runtime behavior.
 | 
						|
        random_value = get_random<u32>();
 | 
						|
    }
 | 
						|
    return random_value % max_bounds;
 | 
						|
}
 | 
						|
 | 
						|
u64 get_random_uniform_64(u64 max_bounds)
 | 
						|
{
 | 
						|
    // Uses the same algorithm as `get_random_uniform`,
 | 
						|
    // by replacing u64 with u128 and u32 with u64.
 | 
						|
    u64 const max_usable = UINT64_MAX - static_cast<u64>((static_cast<u128>(UINT64_MAX) + 1) % max_bounds);
 | 
						|
    auto random_value = get_random<u64>();
 | 
						|
    for (int i = 0; i < 20 && random_value > max_usable; ++i) {
 | 
						|
        random_value = get_random<u64>();
 | 
						|
    }
 | 
						|
    return random_value % max_bounds;
 | 
						|
}
 | 
						|
 | 
						|
}
 |