mirror of
				https://github.com/LadybirdBrowser/ladybird.git
				synced 2025-10-31 21:30:58 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			216 lines
		
	
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
 | |
|  * Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/ExtraMathConstants.h>
 | |
| #include <LibWeb/HTML/Canvas/CanvasPath.h>
 | |
| 
 | |
| namespace Web::HTML {
 | |
| 
 | |
| Gfx::AffineTransform CanvasPath::active_transform() const
 | |
| {
 | |
|     if (m_canvas_state.has_value())
 | |
|         return m_canvas_state->drawing_state().transform;
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| void CanvasPath::close_path()
 | |
| {
 | |
|     m_path.close();
 | |
| }
 | |
| 
 | |
| void CanvasPath::move_to(float x, float y)
 | |
| {
 | |
|     m_path.move_to(active_transform().map(Gfx::FloatPoint { x, y }));
 | |
| }
 | |
| 
 | |
| void CanvasPath::line_to(float x, float y)
 | |
| {
 | |
|     m_path.line_to(active_transform().map(Gfx::FloatPoint { x, y }));
 | |
| }
 | |
| 
 | |
| void CanvasPath::quadratic_curve_to(float cx, float cy, float x, float y)
 | |
| {
 | |
|     auto transform = active_transform();
 | |
|     m_path.quadratic_bezier_curve_to(transform.map(Gfx::FloatPoint { cx, cy }), transform.map(Gfx::FloatPoint { x, y }));
 | |
| }
 | |
| 
 | |
| void CanvasPath::bezier_curve_to(double cp1x, double cp1y, double cp2x, double cp2y, double x, double y)
 | |
| {
 | |
|     auto transform = active_transform();
 | |
|     m_path.cubic_bezier_curve_to(
 | |
|         transform.map(Gfx::FloatPoint { cp1x, cp1y }), transform.map(Gfx::FloatPoint { cp2x, cp2y }), transform.map(Gfx::FloatPoint { x, y }));
 | |
| }
 | |
| 
 | |
| WebIDL::ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float start_angle, float end_angle, bool counter_clockwise)
 | |
| {
 | |
|     if (radius < 0)
 | |
|         return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
 | |
|     return ellipse(x, y, radius, radius, 0, start_angle, end_angle, counter_clockwise);
 | |
| }
 | |
| 
 | |
| WebIDL::ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radius_x, float radius_y, float rotation, float start_angle, float end_angle, bool counter_clockwise)
 | |
| {
 | |
|     if (radius_x < 0)
 | |
|         return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The major-axis radius provided ({}) is negative.", radius_x)));
 | |
| 
 | |
|     if (radius_y < 0)
 | |
|         return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The minor-axis radius provided ({}) is negative.", radius_y)));
 | |
| 
 | |
|     if (constexpr float tau = M_TAU; (!counter_clockwise && (end_angle - start_angle) >= tau)
 | |
|         || (counter_clockwise && (start_angle - end_angle) >= tau)) {
 | |
|         start_angle = 0;
 | |
|         // FIXME: elliptical_arc_to() incorrectly handles the case where the start/end points are very close.
 | |
|         // So we slightly fudge the numbers here to correct for that.
 | |
|         end_angle = tau * 0.9999f;
 | |
|     } else {
 | |
|         start_angle = fmodf(start_angle, tau);
 | |
|         end_angle = fmodf(end_angle, tau);
 | |
|     }
 | |
| 
 | |
|     // Then, figure out where the ends of the arc are.
 | |
|     // To do so, we can pretend that the center of this ellipse is at (0, 0),
 | |
|     // and the whole coordinate system is rotated `rotation` radians around the x axis, centered on `center`.
 | |
|     // The sign of the resulting relative positions is just whether our angle is on one of the left quadrants.
 | |
|     float sin_rotation;
 | |
|     float cos_rotation;
 | |
|     AK::sincos(rotation, sin_rotation, cos_rotation);
 | |
| 
 | |
|     auto resolve_point_with_angle = [&](float angle) {
 | |
|         auto tan_relative = tanf(angle);
 | |
|         auto tan2 = tan_relative * tan_relative;
 | |
| 
 | |
|         auto ab = radius_x * radius_y;
 | |
|         auto a2 = radius_x * radius_x;
 | |
|         auto b2 = radius_y * radius_y;
 | |
|         auto sqrt = sqrtf(b2 + a2 * tan2);
 | |
| 
 | |
|         auto relative_x_position = ab / sqrt;
 | |
|         auto relative_y_position = ab * tan_relative / sqrt;
 | |
| 
 | |
|         // Make sure to set the correct sign
 | |
|         // -1 if 0 ≤ θ < 90° or 270°< θ ≤ 360°
 | |
|         //  1 if 90° < θ< 270°
 | |
|         float sn = cosf(angle) >= 0 ? 1 : -1;
 | |
|         relative_x_position *= sn;
 | |
|         relative_y_position *= sn;
 | |
| 
 | |
|         // Now rotate it (back) around the center point by 'rotation' radians, then move it back to our actual origin.
 | |
|         auto relative_rotated_x_position = relative_x_position * cos_rotation - relative_y_position * sin_rotation;
 | |
|         auto relative_rotated_y_position = relative_x_position * sin_rotation + relative_y_position * cos_rotation;
 | |
|         return Gfx::FloatPoint { relative_rotated_x_position + x, relative_rotated_y_position + y };
 | |
|     };
 | |
| 
 | |
|     auto start_point = resolve_point_with_angle(start_angle);
 | |
|     auto end_point = resolve_point_with_angle(end_angle);
 | |
| 
 | |
|     auto delta_theta = end_angle - start_angle;
 | |
| 
 | |
|     auto transform = active_transform();
 | |
|     m_path.move_to(transform.map(start_point));
 | |
|     m_path.elliptical_arc_to(
 | |
|         transform.map(Gfx::FloatPoint { end_point }),
 | |
|         transform.map(Gfx::FloatSize { radius_x, radius_y }),
 | |
|         rotation + transform.rotation(),
 | |
|         delta_theta > AK::Pi<float>, !counter_clockwise);
 | |
| 
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto
 | |
| WebIDL::ExceptionOr<void> CanvasPath::arc_to(double x1, double y1, double x2, double y2, double radius)
 | |
| {
 | |
|     // 1. If any of the arguments are infinite or NaN, then return.
 | |
|     if (!isfinite(x1) || !isfinite(y1) || !isfinite(x2) || !isfinite(y2) || !isfinite(radius))
 | |
|         return {};
 | |
| 
 | |
|     // 2. Ensure there is a subpath for (x1, y1).
 | |
|     auto transform = active_transform();
 | |
|     m_path.ensure_subpath(transform.map(Gfx::FloatPoint { x1, y1 }));
 | |
| 
 | |
|     // 3. If radius is negative, then throw an "IndexSizeError" DOMException.
 | |
|     if (radius < 0)
 | |
|         return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
 | |
| 
 | |
|     // 4. Let the point (x0, y0) be the last point in the subpath,
 | |
|     //    transformed by the inverse of the current transformation matrix
 | |
|     //    (so that it is in the same coordinate system as the points passed to the method).
 | |
|     // Point (x0, y0)
 | |
|     auto p0 = m_path.last_point();
 | |
|     // Point (x1, y1)
 | |
|     auto p1 = transform.map(Gfx::FloatPoint { x1, y1 });
 | |
|     // Point (x2, y2)
 | |
|     auto p2 = transform.map(Gfx::FloatPoint { x2, y2 });
 | |
| 
 | |
|     // 5. If the point (x0, y0) is equal to the point (x1, y1),
 | |
|     //    or if the point (x1, y1) is equal to the point (x2, y2),
 | |
|     //    or if radius is zero, then add the point (x1, y1) to the subpath,
 | |
|     //    and connect that point to the previous point (x0, y0) by a straight line.
 | |
|     if (p0 == p1 || p1 == p2 || radius == 0) {
 | |
|         m_path.line_to(p1);
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     auto v1 = Gfx::FloatVector2 { p0.x() - p1.x(), p0.y() - p1.y() };
 | |
|     auto v2 = Gfx::FloatVector2 { p2.x() - p1.x(), p2.y() - p1.y() };
 | |
|     auto cos_theta = v1.dot(v2) / (v1.length() * v2.length());
 | |
|     // 6. Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line,
 | |
|     //    then add the point (x1, y1) to the subpath,
 | |
|     //    and connect that point to the previous point (x0, y0) by a straight line.
 | |
|     if (-1 == cos_theta || 1 == cos_theta) {
 | |
|         m_path.line_to(p1);
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     // 7. Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius,
 | |
|     // and that has one point tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1),
 | |
|     // and that has a different point tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2).
 | |
|     // The points at which this circle touches these two lines are called the start and end tangent points respectively.
 | |
|     auto adjacent = radius / static_cast<double>(tan(acos(cos_theta) / 2));
 | |
|     auto factor1 = adjacent / static_cast<double>(v1.length());
 | |
|     auto x3 = static_cast<double>(p1.x()) + factor1 * static_cast<double>(p0.x() - p1.x());
 | |
|     auto y3 = static_cast<double>(p1.y()) + factor1 * static_cast<double>(p0.y() - p1.y());
 | |
|     auto start_tangent = Gfx::FloatPoint { x3, y3 };
 | |
| 
 | |
|     auto factor2 = adjacent / static_cast<double>(v2.length());
 | |
|     auto x4 = static_cast<double>(p1.x()) + factor2 * static_cast<double>(p2.x() - p1.x());
 | |
|     auto y4 = static_cast<double>(p1.y()) + factor2 * static_cast<double>(p2.y() - p1.y());
 | |
|     auto end_tangent = Gfx::FloatPoint { x4, y4 };
 | |
| 
 | |
|     // Connect the point (x0, y0) to the start tangent point by a straight line, adding the start tangent point to the subpath.
 | |
|     m_path.line_to(start_tangent);
 | |
| 
 | |
|     bool const large_arc = false; // always small since tangent points define arc endpoints and lines meet at (x1, y1)
 | |
|     auto cross_product = v1.x() * v2.y() - v1.y() * v2.x();
 | |
|     bool const sweep = cross_product < 0; // right-hand rule, true means clockwise
 | |
| 
 | |
|     // and then connect the start tangent point to the end tangent point by The Arc, adding the end tangent point to the subpath.
 | |
|     m_path.arc_to(end_tangent, radius, large_arc, sweep);
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| // https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-rect
 | |
| void CanvasPath::rect(double x, double y, double w, double h)
 | |
| {
 | |
|     // 1. If any of the arguments are infinite or NaN, then return.
 | |
|     if (!isfinite(x) || !isfinite(y) || !isfinite(w) || !isfinite(h))
 | |
|         return;
 | |
| 
 | |
|     // 2. Create a new subpath containing just the four points (x, y), (x+w, y), (x+w, y+h), (x, y+h), in that order, with those four points connected by straight lines.
 | |
|     auto transform = active_transform();
 | |
|     m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
 | |
|     m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y }));
 | |
|     m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y + h }));
 | |
|     m_path.line_to(transform.map(Gfx::FloatPoint { x, y + h }));
 | |
| 
 | |
|     // 3. Mark the subpath as closed.
 | |
|     m_path.close();
 | |
| 
 | |
|     // 4. Create a new subpath with the point (x, y) as the only point in the subpath.
 | |
|     m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
 | |
| }
 | |
| 
 | |
| }
 | 
