pycryptodome/lib/Crypto/PublicKey/ECC.py

197 lines
6.4 KiB
Python
Raw Normal View History

2015-12-28 23:22:56 +01:00
# ===================================================================
#
# Copyright (c) 2015, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
from Crypto.Math.Numbers import Integer
class _Curve(object):
pass
_curve = _Curve()
_curve.p = Integer(115792089210356248762697446949407573530086143415290314195533631308867097853951)
_curve.n = Integer(115792089210356248762697446949407573529996955224135760342422259061068512044369)
_curve.Gx = Integer(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296)
_curve.Gy = Integer(0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
# https://www.nsa.gov/ia/_files/nist-routines.pdf
# http://point-at-infinity.org/ecc/nisttv
# http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
# https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
# https://eprint.iacr.org/2013/816.pdf
class ECPoint(object):
def __init__(self, x, y):
self._x = Integer(x)
self._y = Integer(y)
def __eq__(self, point):
return self._x == point._x and self._y == point._y
def __neg__(self):
if self.is_point_at_infinity():
return self.point_at_infinity()
return ECPoint(self._x, _curve.p - self._y)
def copy(self):
return ECPoint(self._x, self._y)
def is_point_at_infinity(self):
return self._x == 0 and self._y == 0
@staticmethod
def point_at_infinity():
return ECPoint(0, 0)
@property
def x(self):
if self.is_point_at_infinity():
raise ValueError("Point at infinity")
return self._x
@property
def y(self):
if self.is_point_at_infinity():
raise ValueError("Point at infinity")
return self._y
def double(self):
"""Return a new point, doubling this one"""
if self._y == 0:
return self.point_at_infinity()
2016-01-01 09:28:00 -05:00
#common = (pow(self._x, 2, _curve.p) * 3 - 3) * (self._y << 1).inverse(_curve.p) % _curve.p
common = pow(self._x, 2, _curve.p)
common *= 3
common -= 3
common *= (self._y << 1).inverse(_curve.p)
common %= _curve.p
x3 = pow(common, 2, _curve.p)
x3 -= self._x
x3 -= self._x
2015-12-28 23:22:56 +01:00
while x3 < 0:
x3 += _curve.p
2016-01-01 09:28:00 -05:00
# y3 = ((self._x - x3) * common - self._y) % _curve.p
y3 = self._x - x3
y3 *= common
y3 -= self._y
y3 %= _curve.p
2015-12-28 23:22:56 +01:00
return ECPoint(x3, y3)
def add(self, point):
"""Return a new point, the addition of this one and another"""
if self.is_point_at_infinity():
return point.copy()
if point.is_point_at_infinity():
return self.copy()
if self == point:
return self.double()
if self._x == point._x:
return self.point_at_infinity()
2016-01-01 09:28:00 -05:00
# common = (point._y - self._y) * (point._x - self._x).inverse(_curve.p) % _curve.p
common = point._y - self._y
common *= (point._x - self._x).inverse(_curve.p)
common %= _curve.p
x3 = pow(common, 2, _curve.p)
x3 -= self._x
x3 -= point._x
2015-12-28 23:22:56 +01:00
while x3 < 0:
x3 += _curve.p
2016-01-01 09:28:00 -05:00
# y3 = ((self._x - x3) * common - self._y) % _curve.p
y3 = (self._x - x3)
y3 *= common
y3 -= self._y
y3 %= _curve.p
2015-12-28 23:22:56 +01:00
return ECPoint(x3, y3)
def multiply(self, scalar):
"""Return a new point, the scalar product of this one"""
assert(scalar >= 0)
# Trivial results
if scalar == 0 or self.is_point_at_infinity():
return self.point_at_infinity()
elif scalar == 1:
return self.copy()
2016-01-01 08:25:52 -05:00
# Convert to NAF
2016-01-01 08:37:43 -05:00
WINDOW_BITS = 4
2016-01-01 08:25:52 -05:00
window_high = 1 << WINDOW_BITS
2015-12-31 09:28:40 -05:00
window_low = 1 << (WINDOW_BITS - 1)
2016-01-01 08:25:52 -05:00
window_mask = window_high - 1
scalar_int = int(scalar)
naf = []
while scalar_int > 0:
if scalar_int & 1:
di = scalar_int & window_mask
if di >= window_low:
di -= window_high
scalar_int -= di
2015-12-31 09:28:40 -05:00
else:
2016-01-01 08:25:52 -05:00
di = 0
naf.append(di)
scalar_int >>= 1
naf.reverse()
2015-12-31 09:28:40 -05:00
2016-01-01 08:25:52 -05:00
# naf contains d_(i-1), d_(i-2), .. d_1, d_0
2015-12-31 09:28:40 -05:00
2016-01-01 09:28:00 -05:00
if hasattr(self, "_precomp"):
precomp = self._precomp
else:
# Precompute 1P, 3P, 5P, .. (2**(W-1) - 1)P
# which is 1P..7P for W=4 (we also add negatives)
precomp = [0, self, self.double()] # 0, 1P, 2P
precomp += [precomp[2].add(precomp[1])] # 3P
precomp += [0] # 4P
precomp += [precomp[2].add(precomp[3])] # 5P
precomp += [0] # 6P
precomp += [precomp[2].add(precomp[5])] # 7P
precomp += [ -x for x in precomp[:0:-1]]
self._precomp = precomp
2016-01-01 08:25:52 -05:00
result = self.point_at_infinity()
for x in naf:
result = result.double()
if x != 0:
result = result.add(precomp[x])
2015-12-28 23:22:56 +01:00
return result