mirror of
https://github.com/Legrandin/pycryptodome.git
synced 2025-11-07 17:12:09 +00:00
321 lines
10 KiB
Python
321 lines
10 KiB
Python
|
|
# -*- coding: utf-8 -*-
|
||
|
|
#
|
||
|
|
# Signature/PKCS1_PSS.py : PKCS#1 PPS
|
||
|
|
#
|
||
|
|
# ===================================================================
|
||
|
|
# The contents of this file are dedicated to the public domain. To
|
||
|
|
# the extent that dedication to the public domain is not available,
|
||
|
|
# everyone is granted a worldwide, perpetual, royalty-free,
|
||
|
|
# non-exclusive license to exercise all rights associated with the
|
||
|
|
# contents of this file for any purpose whatsoever.
|
||
|
|
# No rights are reserved.
|
||
|
|
#
|
||
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
|
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
|
# SOFTWARE.
|
||
|
|
# ===================================================================
|
||
|
|
|
||
|
|
"""RSA digital signature protocol with appendix according to PKCS#1 PSS
|
||
|
|
|
||
|
|
See RFC3447 or the original RSA Labs specification at
|
||
|
|
http://www.rsa.com/rsalabs/node.asp?id=2125.
|
||
|
|
|
||
|
|
This scheme is more properly called ``RSASSA-PSS``.
|
||
|
|
|
||
|
|
Example for signing and verifying a certain message:
|
||
|
|
.. python::
|
||
|
|
import Crypto.Signature.PKCS1_PSS as PKCS
|
||
|
|
import Crypto.Hash.SHA as SHA1
|
||
|
|
import Crypto.PublicKey.RSA as RSA
|
||
|
|
from Crypto import Random
|
||
|
|
|
||
|
|
message = 'To be signed'
|
||
|
|
rng = Random.new().read
|
||
|
|
key = RSA.importKey('privkey.der')
|
||
|
|
h = SHA1.new()
|
||
|
|
h.update(message)
|
||
|
|
signature = PKCS.sign(h, key, rng)
|
||
|
|
|
||
|
|
[ ... ]
|
||
|
|
|
||
|
|
key = RSA.importKey('pubkey.der')
|
||
|
|
h = SHA1.new()
|
||
|
|
h.update(message)
|
||
|
|
if PKCS.verify(h, key, signature):
|
||
|
|
print "The signature is authentic."
|
||
|
|
else:
|
||
|
|
print "The signature is not authentic."
|
||
|
|
|
||
|
|
"""
|
||
|
|
|
||
|
|
__revision__ = "$Id$"
|
||
|
|
__all__ = [ 'sign', 'verify' ]
|
||
|
|
|
||
|
|
import Crypto.Util.number
|
||
|
|
from Crypto.Util.number import ceil_shift, ceil_div, long_to_bytes
|
||
|
|
|
||
|
|
def sign(mhash, key, randfunc, mgfunc=None, saltLen=None):
|
||
|
|
"""Produce the PKCS#1 PSS signature of a message.
|
||
|
|
|
||
|
|
This function is called RSASSA-PSS-SIGN, and is described at
|
||
|
|
8.1.1 of RFC3447.
|
||
|
|
|
||
|
|
:Parameters:
|
||
|
|
mhash : hash object
|
||
|
|
The hash that was carried out over the message. This is an object
|
||
|
|
belonging to the `Crypto.Hash` module.
|
||
|
|
key : RSA key object
|
||
|
|
The key to use to sign the message. This is a `Crypto.PublicKey.RSA`
|
||
|
|
object and must have its private half.
|
||
|
|
randfunc : callable
|
||
|
|
An RNG function that accepts as only parameter an int, and returns
|
||
|
|
a string of random bytes, to be used as salt. By default, the salt
|
||
|
|
is as large as the output of the hash. This parameter is ignored
|
||
|
|
if salt length is zero.
|
||
|
|
mgfunc : callable
|
||
|
|
A mask generation function that accepts two parameters: a string to
|
||
|
|
use as seed, and the lenth of the mask to generate, in bytes.
|
||
|
|
By default, MGF1 is used. This parameter is ignored if salt length
|
||
|
|
is zero.
|
||
|
|
saltLen : int
|
||
|
|
Length of the salt, in bytes. By default, it matches the output
|
||
|
|
size of `mhash`.
|
||
|
|
|
||
|
|
:Return: The signature encodeds as a string.
|
||
|
|
:Raise ValueError:
|
||
|
|
If the RSA key length is not sufficiently long to deal with the given
|
||
|
|
hash algorithm.
|
||
|
|
:Raise TypeError:
|
||
|
|
If the RSA key has no private half.
|
||
|
|
|
||
|
|
:attention: Modify the salt length and the mask generation function only
|
||
|
|
if you know what you are doing. The receiver must use the same parameters too.
|
||
|
|
"""
|
||
|
|
# TODO: Verify the key is RSA
|
||
|
|
|
||
|
|
# Set defaults for salt length and mask generation function
|
||
|
|
if saltLen == None:
|
||
|
|
sLen = mhash.digest_size
|
||
|
|
else:
|
||
|
|
sLen = saltLen
|
||
|
|
if mgfunc:
|
||
|
|
mgf = mgfunc
|
||
|
|
else:
|
||
|
|
mgf = lambda x,y: MGF1(x,y,mhash)
|
||
|
|
|
||
|
|
modBits = Crypto.Util.number.size(key.n)
|
||
|
|
|
||
|
|
# See 8.1.1 in RFC3447
|
||
|
|
k = ceil_div(modBits,8) # Convert from bits to bytes
|
||
|
|
# Step 1
|
||
|
|
em = EMSA_PSS_ENCODE(mhash, modBits-1, randfunc, mgf, sLen)
|
||
|
|
# Step 2a (OS2IP) and 2b (RSASP1)
|
||
|
|
m = key.decrypt(em)
|
||
|
|
# Step 2c (I2OSP)
|
||
|
|
S = '\x00'*(k-len(m)) + m
|
||
|
|
return S
|
||
|
|
|
||
|
|
def verify(mhash, key, S, mgfunc=None, saltLen=None):
|
||
|
|
"""Verify that a PKCS#1 signature is authentic.
|
||
|
|
|
||
|
|
This function verifies if the party holding the private half of the key
|
||
|
|
really signed the message with the given hash.
|
||
|
|
|
||
|
|
This function is called RSASSA-PSS-VERIFY, and is described at
|
||
|
|
8.1.2 of RFC3447.
|
||
|
|
|
||
|
|
:Parameters:
|
||
|
|
mhash : hash object
|
||
|
|
The hash that was carried out over the message. This is an object
|
||
|
|
belonging to the `Crypto.Hash` module.
|
||
|
|
key : RSA key object
|
||
|
|
The key to use to verify the message. This is a `Crypto.PublicKey.RSA`
|
||
|
|
object.
|
||
|
|
S : string
|
||
|
|
The signature that needs to be validated.
|
||
|
|
|
||
|
|
:Return: True if verification is correct. False otherwise.
|
||
|
|
"""
|
||
|
|
# TODO: Verify the key is RSA
|
||
|
|
|
||
|
|
# Set defaults for salt length and mask generation function
|
||
|
|
if saltLen == None:
|
||
|
|
sLen = mhash.digest_size
|
||
|
|
else:
|
||
|
|
sLen = saltLen
|
||
|
|
if mgfunc:
|
||
|
|
mgf = mgfunc
|
||
|
|
else:
|
||
|
|
mgf = lambda x,y: MGF1(x,y,mhash)
|
||
|
|
|
||
|
|
modBits = Crypto.Util.number.size(key.n)
|
||
|
|
|
||
|
|
# See 8.1.2 in RFC3447
|
||
|
|
k = ceil_div(modBits,8) # Convert from bits to bytes
|
||
|
|
# Step 1
|
||
|
|
if len(S) != k:
|
||
|
|
return 0
|
||
|
|
# Step 2a (O2SIP), 2b (RSAVP1), and partially 2c (I2OSP)
|
||
|
|
# Note that signature must be smaller than the module
|
||
|
|
# but RSA.py won't complain about it.
|
||
|
|
# TODO: Fix RSA object; don't do it here.
|
||
|
|
em = key.encrypt(S, 0)[0]
|
||
|
|
# Step 2c
|
||
|
|
emLen = ceil_div(modBits-1,8)
|
||
|
|
em = '\x00'*(emLen-len(em)) + em
|
||
|
|
# Step 3
|
||
|
|
try:
|
||
|
|
result = EMSA_PSS_VERIFY(mhash, em, modBits-1, mgf, sLen)
|
||
|
|
except ValueError:
|
||
|
|
return 0
|
||
|
|
# Step 4
|
||
|
|
return result
|
||
|
|
|
||
|
|
def strxor(s1,s2):
|
||
|
|
return ''.join([chr(ord(a) ^ ord(b)) for a,b in zip(s1,s2)])
|
||
|
|
|
||
|
|
def MGF1(mgfSeed, maskLen, hash):
|
||
|
|
"""Mask Generation Function, described in B.2.1"""
|
||
|
|
T = ""
|
||
|
|
for counter in xrange(ceil_div(maskLen, hash.digest_size)):
|
||
|
|
c = long_to_bytes(counter, 4)
|
||
|
|
T = T + hash.new(mgfSeed + c).digest()
|
||
|
|
assert(len(T)>=maskLen)
|
||
|
|
return T[:maskLen]
|
||
|
|
|
||
|
|
def EMSA_PSS_ENCODE(mhash, emBits, randFunc, mgf, sLen):
|
||
|
|
"""
|
||
|
|
Implement the EMSA-PSS-ENCODE function, as defined
|
||
|
|
in PKCS#1 v2.1 (RFC3447, 9.1.1).
|
||
|
|
|
||
|
|
The original EMSA-PSS-ENCODE actually accepts the message M as input,
|
||
|
|
and hash it internally. Here, we expect that the message has already
|
||
|
|
been hashed instead.
|
||
|
|
|
||
|
|
:Parameters:
|
||
|
|
mhash : hash object
|
||
|
|
The hash object that holds the digest of the message being signed.
|
||
|
|
emBits : int
|
||
|
|
Maximum length of the final encoding, in bits.
|
||
|
|
randFunc : callable
|
||
|
|
An RNG function that accepts as only parameter an int, and returns
|
||
|
|
a string of random bytes, to be used as salt.
|
||
|
|
mfg : callable
|
||
|
|
A mask generation function that accepts two parameters: a string to
|
||
|
|
use as seed, and the lenth of the mask to generate, in bytes.
|
||
|
|
sLen : int
|
||
|
|
Length of the salt, in bytes.
|
||
|
|
|
||
|
|
:Return: An emLen byte long string that encodes the hash
|
||
|
|
(with emLen = \ceil(emBits/8)).
|
||
|
|
|
||
|
|
:Raise ValueError:
|
||
|
|
When digest or salt length are too big.
|
||
|
|
"""
|
||
|
|
|
||
|
|
emLen = ceil_div(emBits,8)
|
||
|
|
|
||
|
|
# Bitmask of digits that fill up
|
||
|
|
lmask = 0
|
||
|
|
for i in xrange(8*emLen-emBits):
|
||
|
|
lmask = lmask>>1 | 0x80
|
||
|
|
|
||
|
|
# Step 1 and 2 have been already done
|
||
|
|
# Step 3
|
||
|
|
if emLen < mhash.digest_size+sLen+2:
|
||
|
|
raise ValueError("Digest or salt length are too long for given key size.")
|
||
|
|
# Step 4
|
||
|
|
salt = ""
|
||
|
|
if randFunc and sLen>0:
|
||
|
|
salt = randFunc(sLen)
|
||
|
|
# Step 5 and 6
|
||
|
|
h = mhash.new('\x00'*8 + mhash.digest() + salt)
|
||
|
|
# Step 7 and 8
|
||
|
|
db = '\x00'*(emLen-sLen-mhash.digest_size-2) + '\x01' + salt
|
||
|
|
# Step 9
|
||
|
|
dbMask = mgf(h.digest(), emLen-mhash.digest_size-1)
|
||
|
|
# Step 10
|
||
|
|
maskedDB = strxor(db,dbMask)
|
||
|
|
# Step 11
|
||
|
|
maskedDB = chr(ord(maskedDB[0]) & ~lmask) + maskedDB[1:]
|
||
|
|
# Step 12
|
||
|
|
em = maskedDB + h.digest() + '\xBC'
|
||
|
|
return em
|
||
|
|
|
||
|
|
def EMSA_PSS_VERIFY(mhash, em, emBits, mgf, sLen):
|
||
|
|
"""
|
||
|
|
Implement the EMSA-PSS-VERIFY function, as defined
|
||
|
|
in PKCS#1 v2.1 (RFC3447, 9.1.2).
|
||
|
|
|
||
|
|
EMSA-PSS-VERIFY actually accepts the message M as input,
|
||
|
|
and hash it internally. Here, we expect that the message has already
|
||
|
|
been hashed instead.
|
||
|
|
|
||
|
|
:Parameters:
|
||
|
|
mhash : hash object
|
||
|
|
The hash object that holds the digest of the message to be verified.
|
||
|
|
em : string
|
||
|
|
The signature to verify, therefore proving that the sender really signed
|
||
|
|
the message that was received.
|
||
|
|
emBits : int
|
||
|
|
Length of the final encoding (em), in bits.
|
||
|
|
randfunc : callable
|
||
|
|
An RNG function that accepts as only parameter an int, and returns
|
||
|
|
a string of random bytes, to be used as salt.
|
||
|
|
mfg : callable
|
||
|
|
A mask generation function that accepts two parameters: a string to
|
||
|
|
use as seed, and the lenth of the mask to generate, in bytes.
|
||
|
|
sLen : int
|
||
|
|
Length of the salt, in bytes.
|
||
|
|
|
||
|
|
:Return: 0 if the encoding is consistent, 1 if it is inconsistent.
|
||
|
|
|
||
|
|
:Raise ValueError:
|
||
|
|
When digest or salt length are too big.
|
||
|
|
"""
|
||
|
|
|
||
|
|
emLen = ceil_div(emBits,8)
|
||
|
|
|
||
|
|
# Bitmask of digits that fill up
|
||
|
|
lmask = 0
|
||
|
|
for i in xrange(8*emLen-emBits):
|
||
|
|
lmask = lmask>>1 | 0x80
|
||
|
|
|
||
|
|
# Step 1 and 2 have been already done
|
||
|
|
# Step 3
|
||
|
|
if emLen < mhash.digest_size+sLen+2:
|
||
|
|
return 0
|
||
|
|
# Step 4
|
||
|
|
if em[-1:]!='\xBC':
|
||
|
|
return 0
|
||
|
|
# Step 5
|
||
|
|
maskedDB = em[:emLen-mhash.digest_size-1]
|
||
|
|
h = em[emLen-mhash.digest_size-1:-1]
|
||
|
|
# Step 6
|
||
|
|
if lmask & ord(em[0]):
|
||
|
|
return 0
|
||
|
|
# Step 7
|
||
|
|
dbMask = mgf(h, emLen-mhash.digest_size-1)
|
||
|
|
# Step 8
|
||
|
|
db = strxor(maskedDB, dbMask)
|
||
|
|
# Step 9
|
||
|
|
db = chr(ord(db[0]) & ~lmask) + db[1:]
|
||
|
|
# Step 10
|
||
|
|
if not db.startswith('\x00'*(emLen-mhash.digest_size-sLen-2) + '\x01'):
|
||
|
|
return 0
|
||
|
|
# Step 11
|
||
|
|
salt = ""
|
||
|
|
if sLen: salt = db[-sLen:]
|
||
|
|
# Step 12 and 13
|
||
|
|
hp = mhash.new('\x00'*8 + mhash.digest() + salt).digest()
|
||
|
|
# Step 14
|
||
|
|
if h!=hp:
|
||
|
|
return 0
|
||
|
|
return 1
|
||
|
|
|