mirror of
https://github.com/Legrandin/pycryptodome.git
synced 2025-10-28 12:15:20 +00:00
157 lines
4.2 KiB
Python
157 lines
4.2 KiB
Python
|
|
#
|
||
|
|
# number.py : Number-theoretic functions
|
||
|
|
#
|
||
|
|
# Part of the Python Cryptography Toolkit, version 1.1
|
||
|
|
#
|
||
|
|
# Distribute and use freely; there are no restrictions on further
|
||
|
|
# dissemination and usage except those imposed by the laws of your
|
||
|
|
# country of residence. This software is provided "as is" without
|
||
|
|
# warranty of fitness for use or suitability for any purpose, express
|
||
|
|
# or implied. Use at your own risk or not at all.
|
||
|
|
#
|
||
|
|
|
||
|
|
|
||
|
|
bignum = long
|
||
|
|
try:
|
||
|
|
import gmp
|
||
|
|
except ImportError:
|
||
|
|
try:
|
||
|
|
import mpz
|
||
|
|
#bignum=mpz.mpz # Temporarily disabled; the 'outrageous exponent'
|
||
|
|
# error messes things up.
|
||
|
|
except ImportError:
|
||
|
|
pass
|
||
|
|
|
||
|
|
# Commented out and replaced with faster versions below
|
||
|
|
## def long2str(n):
|
||
|
|
## s=''
|
||
|
|
## while n>0:
|
||
|
|
## s=chr(n & 255)+s
|
||
|
|
## n=n>>8
|
||
|
|
## return s
|
||
|
|
|
||
|
|
## import types
|
||
|
|
## def str2long(s):
|
||
|
|
## if type(s)!=types.StringType: return s # Integers will be left alone
|
||
|
|
## return reduce(lambda x,y : x*256+ord(y), s, 0L)
|
||
|
|
|
||
|
|
def getRandomNumber(N, randfunc):
|
||
|
|
"Return an N-bit random number."
|
||
|
|
str=randfunc(N/8)
|
||
|
|
char=ord(randfunc(1))>>(8-(N%8))
|
||
|
|
return str2long(chr(char)+str)
|
||
|
|
|
||
|
|
def GCD(x,y):
|
||
|
|
"Return the GCD of x and y."
|
||
|
|
if x<0: x=-x
|
||
|
|
if y<0: y=-y
|
||
|
|
while x>0: x,y = y%x, x
|
||
|
|
return y
|
||
|
|
|
||
|
|
def inverse(u, v):
|
||
|
|
"Return the inverse of u mod v."
|
||
|
|
u3, v3 = long(u), long(v)
|
||
|
|
u1, v1 = 1L, 0L
|
||
|
|
while v3>0:
|
||
|
|
q=u3/v3
|
||
|
|
u1, v1 = v1, u1-v1*q
|
||
|
|
u3, v3 = v3, u3-v3*q
|
||
|
|
print u1,u3,v1,v3
|
||
|
|
while u1<0: u1=u1+v
|
||
|
|
return u1
|
||
|
|
|
||
|
|
# Given a number of bits to generate and a random generation function,
|
||
|
|
# find a prime number of the appropriate size.
|
||
|
|
|
||
|
|
def getPrime(N, randfunc):
|
||
|
|
"Return a random N-bit prime number."
|
||
|
|
number=getRandomNumber(N, randfunc) | 1
|
||
|
|
while (not isPrime(number)):
|
||
|
|
number=number+2
|
||
|
|
return number
|
||
|
|
|
||
|
|
def isPrime(N):
|
||
|
|
"Return true if N is prime."
|
||
|
|
if N in sieve: return 1
|
||
|
|
for i in sieve:
|
||
|
|
if (N % i)==0: return 0
|
||
|
|
|
||
|
|
# Compute the highest bit that's set in N
|
||
|
|
N1=N - 1L ; n=1L
|
||
|
|
while (n<N): n=n<<1L
|
||
|
|
n = n >> 1L
|
||
|
|
|
||
|
|
# Rabin-Miller test
|
||
|
|
for c in sieve[:7]:
|
||
|
|
a=long(c) ; d=1L ; t=n
|
||
|
|
while (t): # Iterate over the bits in N1
|
||
|
|
x=(d*d) % N
|
||
|
|
if x==1L and d!=1L and d!=N1: return 0 # Square root of 1 found
|
||
|
|
if N1 & t: d=(x*a) % N
|
||
|
|
else: d=x
|
||
|
|
t = t >> 1L
|
||
|
|
if d!=1L: return 0
|
||
|
|
return 1
|
||
|
|
|
||
|
|
# Small primes used for checking primality; these are all the primes
|
||
|
|
# less than 256. This should be enough to eliminate most of the odd
|
||
|
|
# numbers before needing to do a Rabin-Miller test at all.
|
||
|
|
|
||
|
|
sieve=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
|
||
|
|
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
|
||
|
|
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191]
|
||
|
|
|
||
|
|
|
||
|
|
# Improved conversion functions contributed by Barry Warsaw, after
|
||
|
|
# careful benchmarking
|
||
|
|
|
||
|
|
import struct
|
||
|
|
|
||
|
|
def longtobytes(n, blocksize=0):
|
||
|
|
"""Convert a long integer to a byte string
|
||
|
|
|
||
|
|
If optional blocksize is given and greater than zero, pad the front of the
|
||
|
|
byte string with binary zeros so that the length is a multiple of
|
||
|
|
blocksize.
|
||
|
|
"""
|
||
|
|
# after much testing, this algorithm was deemed to be the fastest
|
||
|
|
s = ''
|
||
|
|
pack = struct.pack
|
||
|
|
while n > 0:
|
||
|
|
s = pack('>I', n & 0xffffffffL) + s
|
||
|
|
n = n >> 32
|
||
|
|
# strip off leading zeros
|
||
|
|
for i in range(len(s)):
|
||
|
|
if s[i] <> '\000':
|
||
|
|
break
|
||
|
|
else:
|
||
|
|
# only happens when n == 0
|
||
|
|
s = '\000'
|
||
|
|
i = 0
|
||
|
|
s = s[i:]
|
||
|
|
# add back some pad bytes. this could be done more efficiently w.r.t. the
|
||
|
|
# de-padding being done above, but sigh...
|
||
|
|
if blocksize > 0 and len(s) % blocksize:
|
||
|
|
s = (blocksize - len(s) % blocksize) * '\000' + s
|
||
|
|
return s
|
||
|
|
|
||
|
|
def bytestolong(s):
|
||
|
|
"""Convert a byte string to a long integer.
|
||
|
|
|
||
|
|
This is (essentially) the inverse of longtobytes().
|
||
|
|
"""
|
||
|
|
acc = 0L
|
||
|
|
unpack = struct.unpack
|
||
|
|
length = len(s)
|
||
|
|
if length % 4:
|
||
|
|
extra = (4 - length % 4)
|
||
|
|
s = '\000' * extra + s
|
||
|
|
length = length + extra
|
||
|
|
for i in range(0, length, 4):
|
||
|
|
acc = (acc << 32) + unpack('>I', s[i:i+4])[0]
|
||
|
|
return acc
|
||
|
|
|
||
|
|
# For backwards compatibility...
|
||
|
|
long2str = longtobytes
|
||
|
|
str2long = bytestolong
|