pycryptodome/lib/Crypto/PublicKey/RSA.py

427 lines
16 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
#
# PublicKey/RSA.py : RSA public key primitive
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""RSA public-key cryptography algorithm.
:sort: generate,construct,importKey,error
:undocumented: _fastmath, __revision__, _impl
"""
__revision__ = "$Id$"
__all__ = ['generate', 'construct', 'error', 'importKey' ]
from Crypto.Util.python_compat import *
from Crypto.Util.number import getRandomRange, bytes_to_long
from Crypto.PublicKey import _RSA, _slowmath, pubkey
from Crypto import Random
from Crypto.Util.asn1 import DerObject, DerSequence
import binascii
import struct
from Crypto.Util.number import inverse
try:
from Crypto.PublicKey import _fastmath
except ImportError:
_fastmath = None
class _RSAobj(pubkey.pubkey):
"""Class defining an actual RSA key."""
#: Dictionary of RSA parameters.
#:
#: A public key will only have the following entries:
#:
#: - **n**, the modulus.
#: - **e**, the public exponent.
#:
#: A private key will also have:
#:
#: - **d**, the private exponent.
#: - **p**, the first factor of n.
#: - **q**, the second factor of n.
#: - **u**, the CRT coefficient (1/p) mod q.
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
def __init__(self, implementation, key, randfunc=None):
self.implementation = implementation
self.key = key
if randfunc is None:
randfunc = Random.new().read
self._randfunc = randfunc
def __getattr__(self, attrname):
if attrname in self.keydata:
# For backward compatibility, allow the user to get (not set) the
# RSA key parameters directly from this object.
return getattr(self.key, attrname)
else:
raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
def _encrypt(self, c, K):
return (self.key._encrypt(c),)
def _decrypt(self, c):
#(ciphertext,) = c
(ciphertext,) = c[:1] # HACK - We should use the previous line
# instead, but this is more compatible and we're
# going to replace the Crypto.PublicKey API soon
# anyway.
# Blinded RSA decryption (to prevent timing attacks):
# Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
# Step 2: Compute c' = c * r**e mod n
cp = self.key._blind(ciphertext, r)
# Step 3: Compute m' = c'**d mod n (ordinary RSA decryption)
mp = self.key._decrypt(cp)
# Step 4: Compute m = m**(r-1) mod n
return self.key._unblind(mp, r)
def _blind(self, m, r):
return self.key._blind(m, r)
def _unblind(self, m, r):
return self.key._unblind(m, r)
2008-10-18 20:20:49 -04:00
def _sign(self, m, K=None):
return (self.key._sign(m),)
def _verify(self, m, sig):
#(s,) = sig
(s,) = sig[:1] # HACK - We should use the previous line instead, but
# this is more compatible and we're going to replace
# the Crypto.PublicKey API soon anyway.
2008-10-18 20:20:49 -04:00
return self.key._verify(m, s)
def has_private(self):
return self.key.has_private()
def size(self):
return self.key.size()
def can_blind(self):
return True
def can_encrypt(self):
return True
def can_sign(self):
return True
def publickey(self):
return self.implementation.construct((self.key.n, self.key.e))
def __getstate__(self):
d = {}
for k in self.keydata:
try:
d[k] = getattr(self.key, k)
except AttributeError:
pass
return d
def __setstate__(self, d):
if not hasattr(self, 'implementation'):
self.implementation = RSAImplementation()
t = []
for k in self.keydata:
if not d.has_key(k):
break
t.append(d[k])
self.key = self.implementation._math.rsa_construct(*tuple(t))
def __repr__(self):
attrs = []
for k in self.keydata:
if k == 'n':
attrs.append("n(%d)" % (self.size()+1,))
elif hasattr(self.key, k):
attrs.append(k)
if self.has_private():
attrs.append("private")
return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
def exportKey(self, format='PEM'):
"""Export this RSA key.
:Parameter format: The encoding to use to wrap the key.
- *'DER'* for PKCS#1
- *'PEM'* for RFC1421
:Type format: string
:Return: A string with the encoded public or private half.
:Raise ValueError:
When the format is unknown.
"""
der = DerSequence()
if self.has_private():
keyType = "RSA PRIVATE"
der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
self.d % (self.p-1), self.d % (self.q-1),
inverse(self.q, self.p) ]
else:
keyType = "PUBLIC"
der.append('\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01\x05\x00')
bitmap = DerObject('BIT STRING')
derPK = DerSequence()
derPK[:] = [ self.n, self.e ]
bitmap.payload = '\x00' + derPK.encode()
der.append(bitmap.encode())
if format=='DER':
return der.encode()
if format=='PEM':
pem = "-----BEGIN %s KEY-----\n" % keyType
binaryKey = der.encode()
# Each BASE64 line can take up to 64 characters (=48 bytes of data)
chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
pem += ''.join(chunks)
pem += "-----END %s KEY-----" % keyType
return pem
return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
class RSAImplementation(object):
"""
An RSA key factory.
This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` modulule.
:sort: __init__,generate,construct,importKey
:undocumented: _g*, _i*
"""
def __init__(self, **kwargs):
"""Create a new RSA key factory.
:Keywords:
use_fast_math : bool
Specify which mathematic library to use:
- *None* (default). Use fastest math available.
- *True* . Use fast math.
- *False* . Use slow math.
default_randfunc : callable
Specify how to collect random data:
- *None* (default). Use Random.new().read().
- not *Note* . Use the specified function directly.
:Raise RuntimeError:
When **use_fast_math** =True but fast math is not available.
"""
use_fast_math = kwargs.get('use_fast_math', None)
if use_fast_math is None: # Automatic
if _fastmath is not None:
self._math = _fastmath
else:
self._math = _slowmath
elif use_fast_math: # Explicitly select fast math
if _fastmath is not None:
self._math = _fastmath
else:
raise RuntimeError("fast math module not available")
else: # Explicitly select slow math
self._math = _slowmath
self.error = self._math.error
self._default_randfunc = kwargs.get('default_randfunc', None)
self._current_randfunc = None
def _get_randfunc(self, randfunc):
if randfunc is not None:
return randfunc
elif self._current_randfunc is None:
self._current_randfunc = Random.new().read
return self._current_randfunc
def generate(self, bits, randfunc=None, progress_func=None, e=65537):
"""Randomly generate a fresh, new RSA key object.
:Parameters:
bits : int
Key length, or size (in bits) of the RSA modulus.
It must be a multiple of 256, and no smaller than 1024.
randfunc : callable
Random number generation function; it should accept
a single integer N and return a string of random data
N bytes long.
progress_func : callable
Optional function that will be called with a short string
containing the key parameter currently being generated;
it's useful for interactive applications where a user is
waiting for a key to be generated.
e : int
Public RSA exponent. It must be an odd positive integer.
It is typically a small number with very few ones in its
binary representation.
The default value 65537 (= ``0b10000000000000001`` ) is a safe
choice: other common values are 5, 7, 17, and 257.
:attention: You should always use a cryptographically secure random number generator,
such as the one defined in the ``Crypto.Random`` module; **don't** just use the
current time and the ``random`` module.
:attention: Exponent 3 is also widely used, but it requires very special care when padding
the message.
:Raise ValueError:
When **bits** is too little or not a multiple of 256, or when
**e** is not odd or smaller than 2.
"""
if bits < 1024 or (bits & 0xff) != 0:
# pubkey.getStrongPrime doesn't like anything that's not a multiple of 128 and > 512
raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
if e%2==0 or e<3:
raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
rf = self._get_randfunc(randfunc)
obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module
key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
return _RSAobj(self, key)
def construct(self, tup):
"""Construct an RSA key object from a tuple of valid RSA components.
The modulus **n** must be the product of two primes.
The public exponent **e** must be odd and larger than 1.
In case of a private key, the following equations must apply:
- e != 1
- p*q = n
- e*d = 1 mod (p-1)(q-1)
- p*u = 1 mod q
:Parameters:
tup : tuple
A tuple of long integers, with at least 2 and no
more than 6 items. The items come in the following order:
1. RSA modulus (n).
2. Public exponent (e).
3. Private exponent (d). Only required if the key is private.
4. First factor of n (p). Optional.
5. Second factor of n (q). Optional.
6. CRT coefficient, (1/p) mod q (u). Optional.
"""
key = self._math.rsa_construct(*tup)
return _RSAobj(self, key)
def _importKeyDER(self, externKey):
"""Import an RSA key (public or private half), encoded in DER form."""
der = DerSequence()
der.decode(externKey, True)
if len(der)==9 and der.hasOnlyInts() and der[0]==0:
# ASN.1 RSAPrivateKey element
del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
del der[0] # Remove version
return self.construct(der[:])
if len(der)==2:
# The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
# an algorithm SEQUENCE (or algorithmIdentifier) and a subjectPublicKey BIT STRING.
#
# The first element is always the same. It contains the oid of
# the RSA algorithm and its parameters (none).
# 0x30 0x0D SEQUENCE, 12 bytes of payload
# 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload
# 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
# rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
# 0x05 0x00 NULL
#
# subjectPublicKey encapsulates the actual ASN.1 RSAPublicKey element.
if der[0]=='\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01\x05\x00':
bitmap = DerObject()
bitmap.decode(der[1], True)
if bitmap.typeTag=='\x03' and bitmap.payload[0]=='\x00':
der.decode(bitmap.payload[1:], True)
if len(der)==2 and der.hasOnlyInts():
return self.construct(der[:])
raise ValueError("RSA key format is not supported")
def importKey(self, externKey):
"""Import an RSA key (public or private half), encoded in standard form.
:Parameter externKey:
The RSA key to import, encoded as a string.
The key can be in DER (PKCS#1), OpenSSH or in unencrypted PEM format (RFC1421).
:Type externKey: string
:Raise ValueError/IndexError:
When the given key cannot be parsed.
"""
if externKey.startswith('-----'):
# This is probably a PEM encoded key
lines = externKey.replace(" ",'').split()
der = binascii.a2b_base64(''.join(lines[1:-1]))
return self._importKeyDER(der)
if externKey.startswith('ssh-rsa '):
# This is probably an OpenSSH key
keystring = binascii.a2b_base64(externKey.split(' ')[1])
keyparts = []
while keystring:
len = struct.unpack(">I",keystring[:4])[0]
keyparts.append(keystring[4:4+len])
keystring = keystring[4+len:]
e = bytes_to_long(keyparts[1])
n = bytes_to_long(keyparts[2])
return self.construct([n, e])
if externKey[0]=='\x30':
# This is probably a DER encoded key
return self._importKeyDER(externKey)
raise ValueError("RSA key format is not supported")
_impl = RSAImplementation()
#:
#: Randomly generate a fresh, new RSA key object.
#:
#: See `RSAImplementation.generate`.
#:
generate = _impl.generate
#:
#: Construct an RSA key object from a tuple of valid RSA components.
#:
#: See `RSAImplementation.construct`.
#:
construct = _impl.construct
#:
#: Import an RSA key (public or private half), encoded in standard form.
#:
#: See `RSAImplementation.importKey`.
#:
importKey = _impl.importKey
error = _impl.error
# vim:set ts=4 sw=4 sts=4 expandtab: