2008-09-18 21:42:28 -04:00
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
#
|
|
|
|
# PublicKey/RSA.py : RSA public key primitive
|
|
|
|
#
|
2009-02-28 13:24:04 -05:00
|
|
|
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
2008-09-18 21:42:28 -04:00
|
|
|
#
|
2009-02-28 13:24:04 -05:00
|
|
|
# ===================================================================
|
|
|
|
# The contents of this file are dedicated to the public domain. To
|
|
|
|
# the extent that dedication to the public domain is not available,
|
|
|
|
# everyone is granted a worldwide, perpetual, royalty-free,
|
|
|
|
# non-exclusive license to exercise all rights associated with the
|
|
|
|
# contents of this file for any purpose whatsoever.
|
|
|
|
# No rights are reserved.
|
2008-09-18 21:42:28 -04:00
|
|
|
#
|
2009-02-28 13:24:04 -05:00
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
# SOFTWARE.
|
|
|
|
# ===================================================================
|
2008-09-18 21:42:28 -04:00
|
|
|
|
2011-01-21 18:54:53 +01:00
|
|
|
"""RSA public-key cryptography algorithm.
|
|
|
|
|
|
|
|
:sort: generate,construct,importKey,error
|
|
|
|
:undocumented: _fastmath, __revision__, _impl
|
|
|
|
"""
|
2008-09-18 21:42:28 -04:00
|
|
|
|
|
|
|
__revision__ = "$Id$"
|
|
|
|
|
2009-12-27 17:26:59 +01:00
|
|
|
__all__ = ['generate', 'construct', 'error', 'importKey' ]
|
2008-09-18 21:42:28 -04:00
|
|
|
|
|
|
|
from Crypto.Util.python_compat import *
|
2011-09-21 00:01:36 +02:00
|
|
|
from Crypto.Util.number import getRandomRange, bytes_to_long
|
2008-09-18 21:42:28 -04:00
|
|
|
|
|
|
|
from Crypto.PublicKey import _RSA, _slowmath, pubkey
|
|
|
|
from Crypto import Random
|
|
|
|
|
2009-12-27 17:26:59 +01:00
|
|
|
from Crypto.Util.asn1 import DerObject, DerSequence
|
2010-01-21 20:14:10 +01:00
|
|
|
import binascii
|
2011-09-21 00:01:36 +02:00
|
|
|
import struct
|
2009-12-27 17:26:59 +01:00
|
|
|
|
2011-01-16 21:44:10 +01:00
|
|
|
from Crypto.Util.number import inverse
|
|
|
|
|
2008-09-18 21:42:28 -04:00
|
|
|
try:
|
|
|
|
from Crypto.PublicKey import _fastmath
|
|
|
|
except ImportError:
|
|
|
|
_fastmath = None
|
|
|
|
|
|
|
|
class _RSAobj(pubkey.pubkey):
|
2011-01-21 18:54:53 +01:00
|
|
|
"""Class defining an actual RSA key."""
|
|
|
|
|
|
|
|
#: Dictionary of RSA parameters.
|
|
|
|
#:
|
|
|
|
#: A public key will only have the following entries:
|
|
|
|
#:
|
|
|
|
#: - **n**, the modulus.
|
|
|
|
#: - **e**, the public exponent.
|
|
|
|
#:
|
|
|
|
#: A private key will also have:
|
|
|
|
#:
|
|
|
|
#: - **d**, the private exponent.
|
|
|
|
#: - **p**, the first factor of n.
|
|
|
|
#: - **q**, the second factor of n.
|
|
|
|
#: - **u**, the CRT coefficient (1/p) mod q.
|
2008-09-18 21:42:28 -04:00
|
|
|
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
|
|
|
|
|
2011-02-21 21:11:21 -05:00
|
|
|
def __init__(self, implementation, key, randfunc=None):
|
2008-09-18 21:42:28 -04:00
|
|
|
self.implementation = implementation
|
|
|
|
self.key = key
|
2011-02-21 21:11:21 -05:00
|
|
|
if randfunc is None:
|
|
|
|
randfunc = Random.new().read
|
|
|
|
self._randfunc = randfunc
|
2008-09-18 21:42:28 -04:00
|
|
|
|
|
|
|
def __getattr__(self, attrname):
|
|
|
|
if attrname in self.keydata:
|
|
|
|
# For backward compatibility, allow the user to get (not set) the
|
|
|
|
# RSA key parameters directly from this object.
|
|
|
|
return getattr(self.key, attrname)
|
|
|
|
else:
|
|
|
|
raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
|
|
|
|
|
2008-10-18 20:26:01 -04:00
|
|
|
def _encrypt(self, c, K):
|
2008-09-18 21:42:28 -04:00
|
|
|
return (self.key._encrypt(c),)
|
|
|
|
|
|
|
|
def _decrypt(self, c):
|
RSA: Make .verify() accept extra garbage after the signature.
The developers of Twisted Conch (an SSH protocol implementation) apparently
think they need to add extra junk to the end of the signature tuple when
calling RSAobj.verify. In other words, they do something like this:
RSAobj.verify("foo", (sig, ''))
instead of something like this:
RSAobj.verify("foo", (sig,))
This isn't necessary, but it worked in PyCrypto 2.0.1.
The people behind Twisted Conch probably got confused by a similar requirement
in RSAobj.sign(). I could call it "user error" and rebuke them for misusing
the API, but that would be dumb. The unified Crypto.PublicKey API is
confusing, encouraging exactly this kind of mistake.
The Crypto.PublicKey API needs to be replaced with something less error-prone,
but in the meantime, I am applying this change to make the .verify() method
behave how Twisted Conch expects.
2008-11-02 10:33:52 -05:00
|
|
|
#(ciphertext,) = c
|
|
|
|
(ciphertext,) = c[:1] # HACK - We should use the previous line
|
|
|
|
# instead, but this is more compatible and we're
|
|
|
|
# going to replace the Crypto.PublicKey API soon
|
|
|
|
# anyway.
|
2011-02-21 21:11:21 -05:00
|
|
|
|
|
|
|
# Blinded RSA decryption (to prevent timing attacks):
|
|
|
|
# Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
|
|
|
|
r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
|
|
|
|
# Step 2: Compute c' = c * r**e mod n
|
|
|
|
cp = self.key._blind(ciphertext, r)
|
|
|
|
# Step 3: Compute m' = c'**d mod n (ordinary RSA decryption)
|
|
|
|
mp = self.key._decrypt(cp)
|
|
|
|
# Step 4: Compute m = m**(r-1) mod n
|
|
|
|
return self.key._unblind(mp, r)
|
2008-09-18 21:42:28 -04:00
|
|
|
|
|
|
|
def _blind(self, m, r):
|
|
|
|
return self.key._blind(m, r)
|
|
|
|
|
|
|
|
def _unblind(self, m, r):
|
|
|
|
return self.key._unblind(m, r)
|
|
|
|
|
2008-10-18 20:20:49 -04:00
|
|
|
def _sign(self, m, K=None):
|
|
|
|
return (self.key._sign(m),)
|
2008-09-18 21:42:28 -04:00
|
|
|
|
|
|
|
def _verify(self, m, sig):
|
RSA: Make .verify() accept extra garbage after the signature.
The developers of Twisted Conch (an SSH protocol implementation) apparently
think they need to add extra junk to the end of the signature tuple when
calling RSAobj.verify. In other words, they do something like this:
RSAobj.verify("foo", (sig, ''))
instead of something like this:
RSAobj.verify("foo", (sig,))
This isn't necessary, but it worked in PyCrypto 2.0.1.
The people behind Twisted Conch probably got confused by a similar requirement
in RSAobj.sign(). I could call it "user error" and rebuke them for misusing
the API, but that would be dumb. The unified Crypto.PublicKey API is
confusing, encouraging exactly this kind of mistake.
The Crypto.PublicKey API needs to be replaced with something less error-prone,
but in the meantime, I am applying this change to make the .verify() method
behave how Twisted Conch expects.
2008-11-02 10:33:52 -05:00
|
|
|
#(s,) = sig
|
|
|
|
(s,) = sig[:1] # HACK - We should use the previous line instead, but
|
|
|
|
# this is more compatible and we're going to replace
|
|
|
|
# the Crypto.PublicKey API soon anyway.
|
2008-10-18 20:20:49 -04:00
|
|
|
return self.key._verify(m, s)
|
2008-09-18 21:42:28 -04:00
|
|
|
|
|
|
|
def has_private(self):
|
|
|
|
return self.key.has_private()
|
|
|
|
|
|
|
|
def size(self):
|
|
|
|
return self.key.size()
|
|
|
|
|
|
|
|
def can_blind(self):
|
|
|
|
return True
|
|
|
|
|
|
|
|
def can_encrypt(self):
|
|
|
|
return True
|
|
|
|
|
|
|
|
def can_sign(self):
|
|
|
|
return True
|
|
|
|
|
|
|
|
def publickey(self):
|
|
|
|
return self.implementation.construct((self.key.n, self.key.e))
|
|
|
|
|
|
|
|
def __getstate__(self):
|
|
|
|
d = {}
|
|
|
|
for k in self.keydata:
|
|
|
|
try:
|
|
|
|
d[k] = getattr(self.key, k)
|
|
|
|
except AttributeError:
|
|
|
|
pass
|
|
|
|
return d
|
|
|
|
|
|
|
|
def __setstate__(self, d):
|
|
|
|
if not hasattr(self, 'implementation'):
|
|
|
|
self.implementation = RSAImplementation()
|
|
|
|
t = []
|
|
|
|
for k in self.keydata:
|
|
|
|
if not d.has_key(k):
|
|
|
|
break
|
|
|
|
t.append(d[k])
|
|
|
|
self.key = self.implementation._math.rsa_construct(*tuple(t))
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
attrs = []
|
|
|
|
for k in self.keydata:
|
|
|
|
if k == 'n':
|
|
|
|
attrs.append("n(%d)" % (self.size()+1,))
|
|
|
|
elif hasattr(self.key, k):
|
|
|
|
attrs.append(k)
|
|
|
|
if self.has_private():
|
|
|
|
attrs.append("private")
|
|
|
|
return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
|
|
|
|
|
2009-12-27 17:26:59 +01:00
|
|
|
def exportKey(self, format='PEM'):
|
2011-01-21 18:54:53 +01:00
|
|
|
"""Export this RSA key.
|
|
|
|
|
|
|
|
:Parameter format: The encoding to use to wrap the key.
|
2011-01-16 22:05:54 +01:00
|
|
|
|
2011-01-21 18:54:53 +01:00
|
|
|
- *'DER'* for PKCS#1
|
|
|
|
- *'PEM'* for RFC1421
|
|
|
|
:Type format: string
|
|
|
|
|
|
|
|
:Return: A string with the encoded public or private half.
|
|
|
|
:Raise ValueError:
|
|
|
|
When the format is unknown.
|
2011-01-16 22:05:54 +01:00
|
|
|
"""
|
|
|
|
der = DerSequence()
|
|
|
|
if self.has_private():
|
|
|
|
keyType = "RSA PRIVATE"
|
|
|
|
der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
|
|
|
|
self.d % (self.p-1), self.d % (self.q-1),
|
|
|
|
inverse(self.q, self.p) ]
|
|
|
|
else:
|
|
|
|
keyType = "PUBLIC"
|
|
|
|
der.append('\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01\x05\x00')
|
|
|
|
bitmap = DerObject('BIT STRING')
|
|
|
|
derPK = DerSequence()
|
|
|
|
derPK[:] = [ self.n, self.e ]
|
|
|
|
bitmap.payload = '\x00' + derPK.encode()
|
|
|
|
der.append(bitmap.encode())
|
|
|
|
if format=='DER':
|
|
|
|
return der.encode()
|
|
|
|
if format=='PEM':
|
|
|
|
pem = "-----BEGIN %s KEY-----\n" % keyType
|
|
|
|
binaryKey = der.encode()
|
|
|
|
# Each BASE64 line can take up to 64 characters (=48 bytes of data)
|
|
|
|
chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
|
|
|
|
pem += ''.join(chunks)
|
|
|
|
pem += "-----END %s KEY-----" % keyType
|
|
|
|
return pem
|
|
|
|
return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
|
2009-12-27 17:26:59 +01:00
|
|
|
|
2008-09-18 21:42:28 -04:00
|
|
|
class RSAImplementation(object):
|
2011-01-21 18:54:53 +01:00
|
|
|
"""
|
|
|
|
An RSA key factory.
|
|
|
|
|
|
|
|
This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` modulule.
|
|
|
|
|
|
|
|
:sort: __init__,generate,construct,importKey
|
|
|
|
:undocumented: _g*, _i*
|
|
|
|
"""
|
|
|
|
|
2008-09-18 21:42:28 -04:00
|
|
|
def __init__(self, **kwargs):
|
2011-01-21 18:54:53 +01:00
|
|
|
"""Create a new RSA key factory.
|
|
|
|
|
|
|
|
:Keywords:
|
|
|
|
use_fast_math : bool
|
|
|
|
Specify which mathematic library to use:
|
|
|
|
|
|
|
|
- *None* (default). Use fastest math available.
|
|
|
|
- *True* . Use fast math.
|
|
|
|
- *False* . Use slow math.
|
|
|
|
default_randfunc : callable
|
|
|
|
Specify how to collect random data:
|
|
|
|
|
|
|
|
- *None* (default). Use Random.new().read().
|
|
|
|
- not *Note* . Use the specified function directly.
|
|
|
|
:Raise RuntimeError:
|
|
|
|
When **use_fast_math** =True but fast math is not available.
|
|
|
|
"""
|
2008-09-18 21:42:28 -04:00
|
|
|
use_fast_math = kwargs.get('use_fast_math', None)
|
|
|
|
if use_fast_math is None: # Automatic
|
|
|
|
if _fastmath is not None:
|
|
|
|
self._math = _fastmath
|
|
|
|
else:
|
|
|
|
self._math = _slowmath
|
|
|
|
|
|
|
|
elif use_fast_math: # Explicitly select fast math
|
|
|
|
if _fastmath is not None:
|
|
|
|
self._math = _fastmath
|
|
|
|
else:
|
|
|
|
raise RuntimeError("fast math module not available")
|
|
|
|
|
|
|
|
else: # Explicitly select slow math
|
|
|
|
self._math = _slowmath
|
|
|
|
|
|
|
|
self.error = self._math.error
|
|
|
|
|
|
|
|
self._default_randfunc = kwargs.get('default_randfunc', None)
|
|
|
|
self._current_randfunc = None
|
|
|
|
|
|
|
|
def _get_randfunc(self, randfunc):
|
|
|
|
if randfunc is not None:
|
|
|
|
return randfunc
|
|
|
|
elif self._current_randfunc is None:
|
|
|
|
self._current_randfunc = Random.new().read
|
|
|
|
return self._current_randfunc
|
|
|
|
|
2011-01-17 21:17:19 +01:00
|
|
|
def generate(self, bits, randfunc=None, progress_func=None, e=65537):
|
2011-01-21 18:54:53 +01:00
|
|
|
"""Randomly generate a fresh, new RSA key object.
|
|
|
|
|
|
|
|
:Parameters:
|
|
|
|
bits : int
|
|
|
|
Key length, or size (in bits) of the RSA modulus.
|
|
|
|
|
|
|
|
It must be a multiple of 256, and no smaller than 1024.
|
|
|
|
randfunc : callable
|
|
|
|
Random number generation function; it should accept
|
|
|
|
a single integer N and return a string of random data
|
|
|
|
N bytes long.
|
|
|
|
progress_func : callable
|
|
|
|
Optional function that will be called with a short string
|
|
|
|
containing the key parameter currently being generated;
|
|
|
|
it's useful for interactive applications where a user is
|
|
|
|
waiting for a key to be generated.
|
|
|
|
e : int
|
|
|
|
Public RSA exponent. It must be an odd positive integer.
|
|
|
|
|
|
|
|
It is typically a small number with very few ones in its
|
|
|
|
binary representation.
|
|
|
|
|
|
|
|
The default value 65537 (= ``0b10000000000000001`` ) is a safe
|
|
|
|
choice: other common values are 5, 7, 17, and 257.
|
|
|
|
|
|
|
|
:attention: You should always use a cryptographically secure random number generator,
|
|
|
|
such as the one defined in the ``Crypto.Random`` module; **don't** just use the
|
|
|
|
current time and the ``random`` module.
|
|
|
|
|
|
|
|
:attention: Exponent 3 is also widely used, but it requires very special care when padding
|
|
|
|
the message.
|
|
|
|
|
|
|
|
:Raise ValueError:
|
|
|
|
When **bits** is too little or not a multiple of 256, or when
|
|
|
|
**e** is not odd or smaller than 2.
|
|
|
|
"""
|
2010-08-27 00:13:44 -04:00
|
|
|
if bits < 1024 or (bits & 0xff) != 0:
|
|
|
|
# pubkey.getStrongPrime doesn't like anything that's not a multiple of 128 and > 512
|
2011-01-16 21:44:10 +01:00
|
|
|
raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
|
2011-01-21 18:54:53 +01:00
|
|
|
if e%2==0 or e<3:
|
|
|
|
raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
|
2008-09-18 21:42:28 -04:00
|
|
|
rf = self._get_randfunc(randfunc)
|
2011-01-17 21:17:19 +01:00
|
|
|
obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module
|
2008-09-18 21:42:28 -04:00
|
|
|
key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
|
|
|
|
return _RSAobj(self, key)
|
|
|
|
|
|
|
|
def construct(self, tup):
|
2011-01-21 18:54:53 +01:00
|
|
|
"""Construct an RSA key object from a tuple of valid RSA components.
|
|
|
|
|
|
|
|
The modulus **n** must be the product of two primes.
|
|
|
|
The public exponent **e** must be odd and larger than 1.
|
|
|
|
|
|
|
|
In case of a private key, the following equations must apply:
|
|
|
|
|
|
|
|
- e != 1
|
|
|
|
- p*q = n
|
|
|
|
- e*d = 1 mod (p-1)(q-1)
|
|
|
|
- p*u = 1 mod q
|
|
|
|
|
|
|
|
:Parameters:
|
|
|
|
tup : tuple
|
|
|
|
A tuple of long integers, with at least 2 and no
|
|
|
|
more than 6 items. The items come in the following order:
|
|
|
|
|
|
|
|
1. RSA modulus (n).
|
|
|
|
2. Public exponent (e).
|
|
|
|
3. Private exponent (d). Only required if the key is private.
|
|
|
|
4. First factor of n (p). Optional.
|
|
|
|
5. Second factor of n (q). Optional.
|
|
|
|
6. CRT coefficient, (1/p) mod q (u). Optional.
|
|
|
|
"""
|
2008-09-18 21:42:28 -04:00
|
|
|
key = self._math.rsa_construct(*tup)
|
|
|
|
return _RSAobj(self, key)
|
|
|
|
|
2009-12-27 17:26:59 +01:00
|
|
|
def _importKeyDER(self, externKey):
|
2011-01-21 18:54:53 +01:00
|
|
|
"""Import an RSA key (public or private half), encoded in DER form."""
|
2011-01-16 22:05:54 +01:00
|
|
|
der = DerSequence()
|
|
|
|
der.decode(externKey, True)
|
|
|
|
if len(der)==9 and der.hasOnlyInts() and der[0]==0:
|
|
|
|
# ASN.1 RSAPrivateKey element
|
|
|
|
del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
|
2011-01-16 21:44:10 +01:00
|
|
|
der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
|
2011-01-16 22:05:54 +01:00
|
|
|
del der[0] # Remove version
|
|
|
|
return self.construct(der[:])
|
|
|
|
if len(der)==2:
|
2011-01-17 21:17:19 +01:00
|
|
|
# The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
|
|
|
|
# an algorithm SEQUENCE (or algorithmIdentifier) and a subjectPublicKey BIT STRING.
|
2011-01-16 21:44:10 +01:00
|
|
|
#
|
2011-01-17 21:17:19 +01:00
|
|
|
# The first element is always the same. It contains the oid of
|
|
|
|
# the RSA algorithm and its parameters (none).
|
2011-01-16 21:44:10 +01:00
|
|
|
# 0x30 0x0D SEQUENCE, 12 bytes of payload
|
|
|
|
# 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload
|
|
|
|
# 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
|
|
|
|
# rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
|
|
|
|
# 0x05 0x00 NULL
|
|
|
|
#
|
2011-01-17 21:17:19 +01:00
|
|
|
# subjectPublicKey encapsulates the actual ASN.1 RSAPublicKey element.
|
2011-01-16 22:05:54 +01:00
|
|
|
if der[0]=='\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01\x05\x00':
|
|
|
|
bitmap = DerObject()
|
|
|
|
bitmap.decode(der[1], True)
|
|
|
|
if bitmap.typeTag=='\x03' and bitmap.payload[0]=='\x00':
|
|
|
|
der.decode(bitmap.payload[1:], True)
|
|
|
|
if len(der)==2 and der.hasOnlyInts():
|
|
|
|
return self.construct(der[:])
|
|
|
|
raise ValueError("RSA key format is not supported")
|
2009-12-27 17:26:59 +01:00
|
|
|
|
|
|
|
def importKey(self, externKey):
|
2011-01-21 18:54:53 +01:00
|
|
|
"""Import an RSA key (public or private half), encoded in standard form.
|
|
|
|
|
|
|
|
:Parameter externKey:
|
|
|
|
The RSA key to import, encoded as a string.
|
2009-12-27 17:26:59 +01:00
|
|
|
|
2011-09-21 00:01:36 +02:00
|
|
|
The key can be in DER (PKCS#1), OpenSSH or in unencrypted PEM format (RFC1421).
|
2011-01-21 18:54:53 +01:00
|
|
|
:Type externKey: string
|
2011-01-16 21:44:10 +01:00
|
|
|
|
2011-01-21 18:54:53 +01:00
|
|
|
:Raise ValueError/IndexError:
|
|
|
|
When the given key cannot be parsed.
|
2011-01-16 22:05:54 +01:00
|
|
|
"""
|
|
|
|
if externKey.startswith('-----'):
|
|
|
|
# This is probably a PEM encoded key
|
|
|
|
lines = externKey.replace(" ",'').split()
|
|
|
|
der = binascii.a2b_base64(''.join(lines[1:-1]))
|
|
|
|
return self._importKeyDER(der)
|
2011-09-21 00:01:36 +02:00
|
|
|
if externKey.startswith('ssh-rsa '):
|
|
|
|
# This is probably an OpenSSH key
|
|
|
|
keystring = binascii.a2b_base64(externKey.split(' ')[1])
|
|
|
|
keyparts = []
|
|
|
|
while keystring:
|
|
|
|
len = struct.unpack(">I",keystring[:4])[0]
|
|
|
|
keyparts.append(keystring[4:4+len])
|
|
|
|
keystring = keystring[4+len:]
|
|
|
|
e = bytes_to_long(keyparts[1])
|
|
|
|
n = bytes_to_long(keyparts[2])
|
|
|
|
return self.construct([n, e])
|
2011-01-16 22:05:54 +01:00
|
|
|
if externKey[0]=='\x30':
|
|
|
|
# This is probably a DER encoded key
|
|
|
|
return self._importKeyDER(externKey)
|
|
|
|
raise ValueError("RSA key format is not supported")
|
2009-12-27 17:26:59 +01:00
|
|
|
|
2008-09-18 21:42:28 -04:00
|
|
|
_impl = RSAImplementation()
|
2011-01-21 18:54:53 +01:00
|
|
|
#:
|
|
|
|
#: Randomly generate a fresh, new RSA key object.
|
|
|
|
#:
|
|
|
|
#: See `RSAImplementation.generate`.
|
|
|
|
#:
|
2008-09-18 21:42:28 -04:00
|
|
|
generate = _impl.generate
|
2011-01-21 18:54:53 +01:00
|
|
|
#:
|
|
|
|
#: Construct an RSA key object from a tuple of valid RSA components.
|
|
|
|
#:
|
|
|
|
#: See `RSAImplementation.construct`.
|
|
|
|
#:
|
2008-09-18 21:42:28 -04:00
|
|
|
construct = _impl.construct
|
2011-01-21 18:54:53 +01:00
|
|
|
#:
|
|
|
|
#: Import an RSA key (public or private half), encoded in standard form.
|
|
|
|
#:
|
|
|
|
#: See `RSAImplementation.importKey`.
|
|
|
|
#:
|
2009-12-27 17:26:59 +01:00
|
|
|
importKey = _impl.importKey
|
2008-09-18 21:42:28 -04:00
|
|
|
error = _impl.error
|
|
|
|
|
|
|
|
# vim:set ts=4 sw=4 sts=4 expandtab:
|
|
|
|
|