# =================================================================== # # Copyright (c) 2014, Legrandin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # =================================================================== from Crypto.Util.number import long_to_bytes, bytes_to_long class Natural(object): """A class to model a natural integer (including zero)""" def __init__(self, value): if isinstance(value, float): raise ValueError("A floating point type is not a natural number") if value < 0: raise ValueError("A natural number is not negative") self._value = value def to_bytes(self, block_size=0): result = long_to_bytes(self._value, block_size) if len(result) > block_size > 0: raise ValueError("Value too large to encode") return result def __int__(self): return self._value def __str__(self): return str(int(self)) @staticmethod def from_bytes(byte_string): return Natural(bytes_to_long(byte_string)) # Arithmetic operations def __add__(self, term): try: return Natural(self._value + term._value) except AttributeError: return Natural(self._value + term) def __sub__(self, term): try: diff = self._value - term._value except AttributeError: diff = self._value - term if diff < 0: raise ValueError("Result of subtraction is not a natural value") return Natural(diff) def __mod__(self, divisor): try: return Natural(self._value % divisor._value) except AttributeError: return Natural(self._value % divisor) def __pow__(self, exponent, modulus): try: exp_value = exponent._value except AttributeError: exp_value = exponent try: mod_value = modulus._value except AttributeError: mod_value = modulus if exp_value < 0: raise ValueError("Exponent must not be negative") if mod_value < 0: raise ValueError("Modulus must be positive") return pow(self._value, exp_value, mod_value) # Boolean def __and__(self, term): try: return Natural(self._value & term._value) except AttributeError: return Natural(self._value % term) def __irshift__(self, pos): try: self._value >>= pos._value except AttributeError: self._value >>= pos return self def size_in_bits(self): if self._value == 0: return 1 bit_size = 0 tmp = self._value while tmp: tmp >>= 1 bit_size += 1 return bit_size def is_odd(self): return (self._value & 1) == 1 def is_even(self): return (self._value & 1) == 0 # Relations def __eq__(self, term): try: result = self._value == term._value except AttributeError: result = self._value == term return result def __ne__(self, term): return not self.__eq__(term) def __lt__(self, term): try: result = self._value < term._value except AttributeError: result = self._value < term return result def __le__(self, term): return self.__lt__(term) or self.__eq__(term) def __gt__(self, term): return not self.__le__(term) def __ge__(self, term): return not self.__lt__(term) def __nonzero__(self): return self._value != 0 # Extra def is_perfect_square(self): if self._value in (0, 1): return True x = self._value // 2 square_x = x**2 while square_x > self._value: x = (square_x + self._value) // (2 * x) square_x = x**2 return self._value == x**2