mirror of
				https://github.com/Legrandin/pycryptodome.git
				synced 2025-10-31 13:41:27 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			373 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # ===================================================================
 | |
| #
 | |
| # Copyright (c) 2014, Legrandin <helderijs@gmail.com>
 | |
| # All rights reserved.
 | |
| #
 | |
| # Redistribution and use in source and binary forms, with or without
 | |
| # modification, are permitted provided that the following conditions
 | |
| # are met:
 | |
| #
 | |
| # 1. Redistributions of source code must retain the above copyright
 | |
| #    notice, this list of conditions and the following disclaimer.
 | |
| # 2. Redistributions in binary form must reproduce the above copyright
 | |
| #    notice, this list of conditions and the following disclaimer in
 | |
| #    the documentation and/or other materials provided with the
 | |
| #    distribution.
 | |
| #
 | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | |
| # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | |
| # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
| # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
| # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
| # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
| # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | |
| # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| # POSSIBILITY OF SUCH DAMAGE.
 | |
| # ===================================================================
 | |
| 
 | |
| from Crypto.Util.number import long_to_bytes, bytes_to_long
 | |
| from Crypto.Util.py3compat import maxint
 | |
| 
 | |
| class Integer(object):
 | |
|     """A class to model a natural integer (including zero)"""
 | |
| 
 | |
|     def __init__(self, value):
 | |
|         if isinstance(value, float):
 | |
|             raise ValueError("A floating point type is not a natural number")
 | |
|         try:
 | |
|             self._value = value._value
 | |
|         except AttributeError:
 | |
|             self._value = value
 | |
| 
 | |
|     # Conversions
 | |
|     def __int__(self):
 | |
|         return self._value
 | |
| 
 | |
|     def __str__(self):
 | |
|         return str(int(self))
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return "Integer(%s)" % str(self)
 | |
| 
 | |
|     def to_bytes(self, block_size=0):
 | |
|         if self._value < 0:
 | |
|             raise ValueError("Conversion only valid for non-negative numbers")
 | |
|         result = long_to_bytes(self._value, block_size)
 | |
|         if len(result) > block_size > 0:
 | |
|             raise ValueError("Value too large to encode")
 | |
|         return result
 | |
| 
 | |
|     @staticmethod
 | |
|     def from_bytes(byte_string):
 | |
|         return Integer(bytes_to_long(byte_string))
 | |
| 
 | |
|     # Relations
 | |
|     def __eq__(self, term):
 | |
|         try:
 | |
|             result = self._value == term._value
 | |
|         except AttributeError:
 | |
|             result = self._value == term
 | |
|         return result
 | |
| 
 | |
|     def __ne__(self, term):
 | |
|         return not self.__eq__(term)
 | |
| 
 | |
|     def __lt__(self, term):
 | |
|         try:
 | |
|             result = self._value < term._value
 | |
|         except AttributeError:
 | |
|             result = self._value < term
 | |
|         return result
 | |
| 
 | |
|     def __le__(self, term):
 | |
|         return self.__lt__(term) or self.__eq__(term)
 | |
| 
 | |
|     def __gt__(self, term):
 | |
|         return not self.__le__(term)
 | |
| 
 | |
|     def __ge__(self, term):
 | |
|         return not self.__lt__(term)
 | |
| 
 | |
|     def __nonzero__(self):
 | |
|         return self._value != 0
 | |
| 
 | |
|     def is_negative(self):
 | |
|         return self._value < 0
 | |
| 
 | |
|     # Arithmetic operations
 | |
|     def __add__(self, term):
 | |
|         try:
 | |
|             return Integer(self._value + term._value)
 | |
|         except AttributeError:
 | |
|             return Integer(self._value + term)
 | |
| 
 | |
|     def __sub__(self, term):
 | |
|         try:
 | |
|             diff = self._value - term._value
 | |
|         except AttributeError:
 | |
|             diff = self._value - term
 | |
|         return Integer(diff)
 | |
| 
 | |
|     def __mul__(self, factor):
 | |
|         try:
 | |
|             return Integer(self._value * factor._value)
 | |
|         except AttributeError:
 | |
|             return Integer(self._value * factor)
 | |
| 
 | |
|     def __floordiv__(self, divisor):
 | |
|         try:
 | |
|             divisor_value = divisor._value
 | |
|         except AttributeError:
 | |
|             divisor_value = divisor
 | |
|         return Integer(self._value // divisor_value)
 | |
| 
 | |
|     def __mod__(self, divisor):
 | |
|         try:
 | |
|             divisor_value = divisor._value
 | |
|         except AttributeError:
 | |
|             divisor_value = divisor
 | |
|         if divisor_value < 0:
 | |
|             raise ValueError("Modulus must be positive")
 | |
|         return Integer(self._value % divisor_value)
 | |
| 
 | |
|     def inplace_pow(self, exponent, modulus=None):
 | |
|         try:
 | |
|             exp_value = exponent._value
 | |
|         except AttributeError:
 | |
|             exp_value = exponent
 | |
|         if exp_value < 0:
 | |
|             raise ValueError("Exponent must not be negative")
 | |
| 
 | |
|         try:
 | |
|             mod_value = modulus._value
 | |
|         except AttributeError:
 | |
|             mod_value = modulus
 | |
|         if mod_value is not None:
 | |
|             if mod_value < 0:
 | |
|                 raise ValueError("Modulus must be positive")
 | |
|             if mod_value == 0:
 | |
|                 raise ZeroDivisionError("Modulus cannot be zero")
 | |
|         self._value = pow(self._value, exp_value, mod_value)
 | |
|         return self
 | |
| 
 | |
|     def __pow__(self, exponent, modulus=None):
 | |
|         result = Integer(self)
 | |
|         return result.inplace_pow(exponent, modulus)
 | |
| 
 | |
|     def __abs__(self):
 | |
|         return abs(self._value)
 | |
| 
 | |
|     def sqrt(self):
 | |
|         # http://stackoverflow.com/questions/15390807/integer-square-root-in-python
 | |
|         if self._value < 0:
 | |
|             raise ValueError("Square root of negative value")
 | |
|         x = self._value
 | |
|         y = (x + 1) // 2
 | |
|         while y < x:
 | |
|             x = y
 | |
|             y = (x + self._value // x) // 2
 | |
|         return Integer(x)
 | |
| 
 | |
|     # Boolean/bit operations
 | |
|     def __and__(self, term):
 | |
|         try:
 | |
|             return Integer(self._value & term._value)
 | |
|         except AttributeError:
 | |
|             return Integer(self._value & term)
 | |
| 
 | |
|     def __or__(self, term):
 | |
|         try:
 | |
|             return Integer(self._value | term._value)
 | |
|         except AttributeError:
 | |
|             return Integer(self._value | term)
 | |
| 
 | |
|     def __rshift__(self, pos):
 | |
|         try:
 | |
|             try:
 | |
|                 return Integer(self._value >> pos._value)
 | |
|             except AttributeError:
 | |
|                 return Integer(self._value >> pos)
 | |
|         except OverflowError:
 | |
|             raise ValueError("Incorrect shift count")
 | |
| 
 | |
|     def __irshift__(self, pos):
 | |
|         try:
 | |
|             try:
 | |
|                 self._value >>= pos._value
 | |
|             except AttributeError:
 | |
|                 self._value >>= pos
 | |
|         except OverflowError:
 | |
|             raise ValueError("Incorrect shift count")
 | |
|         return self
 | |
| 
 | |
|     def __lshift__(self, pos):
 | |
|         try:
 | |
|             try:
 | |
|                 return Integer(self._value << pos._value)
 | |
|             except AttributeError:
 | |
|                 return Integer(self._value << pos)
 | |
|         except OverflowError:
 | |
|             raise ValueError("Incorrect shift count")
 | |
| 
 | |
|     def __ilshift__(self, pos):
 | |
|         try:
 | |
|             try:
 | |
|                 self._value <<= pos._value
 | |
|             except AttributeError:
 | |
|                 self._value <<= pos
 | |
|         except OverflowError:
 | |
|             raise ValueError("Incorrect shift count")
 | |
|         return self
 | |
| 
 | |
| 
 | |
|     def get_bit(self, n):
 | |
|         try:
 | |
|             try:
 | |
|                 return (self._value >> n._value) & 1
 | |
|             except AttributeError:
 | |
|                 return (self._value >> n) & 1
 | |
|         except OverflowError:
 | |
|             raise ValueError("Incorrect bit position")
 | |
| 
 | |
|     # Extra
 | |
|     def is_odd(self):
 | |
|         return (self._value & 1) == 1
 | |
| 
 | |
|     def is_even(self):
 | |
|         return (self._value & 1) == 0
 | |
| 
 | |
|     def size_in_bits(self):
 | |
| 
 | |
|         if self._value < 0:
 | |
|             raise ValueError("Conversion only valid for non-negative numbers")
 | |
| 
 | |
|         if self._value == 0:
 | |
|             return 1
 | |
| 
 | |
|         bit_size = 0
 | |
|         tmp = self._value
 | |
|         while tmp:
 | |
|             tmp >>= 1
 | |
|             bit_size += 1
 | |
| 
 | |
|         return bit_size
 | |
| 
 | |
|     def is_perfect_square(self):
 | |
|         if self._value < 0:
 | |
|             return False
 | |
|         if self._value in (0, 1):
 | |
|             return True
 | |
| 
 | |
|         x = self._value // 2
 | |
|         square_x = x ** 2
 | |
| 
 | |
|         while square_x > self._value:
 | |
|             x = (square_x + self._value) // (2 * x)
 | |
|             square_x = x ** 2
 | |
| 
 | |
|         return self._value == x ** 2
 | |
| 
 | |
|     def fail_if_divisible_by(self, small_prime):
 | |
|         try:
 | |
|             if (self._value % small_prime._value) == 0:
 | |
|                 raise ValueError("Value is composite")
 | |
|         except AttributeError:
 | |
|             if (self._value % small_prime) == 0:
 | |
|                 raise ValueError("Value is composite")
 | |
| 
 | |
|     def multiply_accumulate(self, a, b):
 | |
|         if type(a) == Integer:
 | |
|             a = a._value
 | |
|         if type(b) == Integer:
 | |
|             b = b._value
 | |
|         self._value += a * b
 | |
|         return self
 | |
| 
 | |
|     def set(self, source):
 | |
|         if type(source) == Integer:
 | |
|             self._value = source._value
 | |
|         else:
 | |
|             self._value = source
 | |
| 
 | |
|     def inverse(self, modulus):
 | |
|         try:
 | |
|             modulus = modulus._value
 | |
|         except AttributeError:
 | |
|             pass
 | |
|         if modulus == 0:
 | |
|             raise ZeroDivisionError("Modulus cannot be zero")
 | |
|         if modulus < 0:
 | |
|             raise ValueError("Modulus cannot be negative")
 | |
|         r_p, r_n = self._value, modulus
 | |
|         s_p, s_n = 1, 0
 | |
|         while r_n > 0:
 | |
|             q = r_p // r_n
 | |
|             r_p, r_n = r_n, r_p - q * r_n
 | |
|             s_p, s_n = s_n, s_p - q * s_n
 | |
|         if r_p != 1:
 | |
|             raise ValueError("No inverse value can be computed" + str(r_p))
 | |
|         while s_p < 0:
 | |
|             s_p += modulus
 | |
|         return Integer(s_p)
 | |
| 
 | |
|     def gcd(self, term):
 | |
|         try:
 | |
|             term = term._value
 | |
|         except AttributeError:
 | |
|             pass
 | |
|         r_p, r_n = abs(self._value), abs(term)
 | |
|         while r_n > 0:
 | |
|             q = r_p // r_n
 | |
|             r_p, r_n = r_n, r_p - q * r_n
 | |
|         return Integer(r_p)
 | |
| 
 | |
|     def lcm(self, term):
 | |
|         try:
 | |
|             term = term._value
 | |
|         except AttributeError:
 | |
|             pass
 | |
|         if self._value == 0 or term == 0:
 | |
|             return Integer(0)
 | |
|         return Integer(abs((self._value * term) // self.gcd(term)._value))
 | |
| 
 | |
|     @staticmethod
 | |
|     def jacobi_symbol(a, n):
 | |
|         if isinstance(a, Integer):
 | |
|             a = a._value
 | |
|         if isinstance(n, Integer):
 | |
|             n = n._value
 | |
| 
 | |
|         if (n & 1) == 0:
 | |
|             raise ValueError("n must be even for the Jacobi symbol")
 | |
| 
 | |
|         # Step 1
 | |
|         a = a % n
 | |
|         # Step 2
 | |
|         if a == 1 or n == 1:
 | |
|             return 1
 | |
|         # Step 3
 | |
|         if a == 0:
 | |
|             return 0
 | |
|         # Step 4
 | |
|         e = 0
 | |
|         a1 = a
 | |
|         while (a1 & 1) == 0:
 | |
|             a1 >>= 1
 | |
|             e += 1
 | |
|         # Step 5
 | |
|         if (e & 1) == 0:
 | |
|             s = 1
 | |
|         elif n % 8 in (1, 7):
 | |
|             s = 1
 | |
|         else:
 | |
|             s = -1
 | |
|         # Step 6
 | |
|         if n % 4 == 3 and a1 % 4 == 3:
 | |
|             s = -s
 | |
|         # Step 7
 | |
|         n1 = n % a1
 | |
|         # Step 8
 | |
|         return s * Integer.jacobi_symbol(n1, a1)
 | 
