mirror of
				https://github.com/Legrandin/pycryptodome.git
				synced 2025-11-04 07:31:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			412 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			412 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# ===================================================================
 | 
						|
#
 | 
						|
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
 | 
						|
# All rights reserved.
 | 
						|
#
 | 
						|
# Redistribution and use in source and binary forms, with or without
 | 
						|
# modification, are permitted provided that the following conditions
 | 
						|
# are met:
 | 
						|
#
 | 
						|
# 1. Redistributions of source code must retain the above copyright
 | 
						|
#    notice, this list of conditions and the following disclaimer.
 | 
						|
# 2. Redistributions in binary form must reproduce the above copyright
 | 
						|
#    notice, this list of conditions and the following disclaimer in
 | 
						|
#    the documentation and/or other materials provided with the
 | 
						|
#    distribution.
 | 
						|
#
 | 
						|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
						|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
						|
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
						|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
						|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
						|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
						|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
						|
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
						|
# POSSIBILITY OF SUCH DAMAGE.
 | 
						|
# ===================================================================
 | 
						|
 | 
						|
from Crypto.Util.number import long_to_bytes, bytes_to_long
 | 
						|
from Crypto.Util.py3compat import maxint
 | 
						|
 | 
						|
class Integer(object):
 | 
						|
    """A class to model a natural integer (including zero)"""
 | 
						|
 | 
						|
    def __init__(self, value):
 | 
						|
        if isinstance(value, float):
 | 
						|
            raise ValueError("A floating point type is not a natural number")
 | 
						|
        try:
 | 
						|
            self._value = value._value
 | 
						|
        except AttributeError:
 | 
						|
            self._value = value
 | 
						|
 | 
						|
    # Conversions
 | 
						|
    def __int__(self):
 | 
						|
        return self._value
 | 
						|
 | 
						|
    def __str__(self):
 | 
						|
        return str(int(self))
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return "Integer(%s)" % str(self)
 | 
						|
 | 
						|
    def to_bytes(self, block_size=0):
 | 
						|
        if self._value < 0:
 | 
						|
            raise ValueError("Conversion only valid for non-negative numbers")
 | 
						|
        result = long_to_bytes(self._value, block_size)
 | 
						|
        if len(result) > block_size > 0:
 | 
						|
            raise ValueError("Value too large to encode")
 | 
						|
        return result
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def from_bytes(byte_string):
 | 
						|
        return Integer(bytes_to_long(byte_string))
 | 
						|
 | 
						|
    # Relations
 | 
						|
    def __eq__(self, term):
 | 
						|
        try:
 | 
						|
            result = self._value == term._value
 | 
						|
        except AttributeError:
 | 
						|
            result = self._value == term
 | 
						|
        return result
 | 
						|
 | 
						|
    def __ne__(self, term):
 | 
						|
        return not self.__eq__(term)
 | 
						|
 | 
						|
    def __lt__(self, term):
 | 
						|
        try:
 | 
						|
            result = self._value < term._value
 | 
						|
        except AttributeError:
 | 
						|
            result = self._value < term
 | 
						|
        return result
 | 
						|
 | 
						|
    def __le__(self, term):
 | 
						|
        return self.__lt__(term) or self.__eq__(term)
 | 
						|
 | 
						|
    def __gt__(self, term):
 | 
						|
        return not self.__le__(term)
 | 
						|
 | 
						|
    def __ge__(self, term):
 | 
						|
        return not self.__lt__(term)
 | 
						|
 | 
						|
    def __nonzero__(self):
 | 
						|
        return self._value != 0
 | 
						|
 | 
						|
    def is_negative(self):
 | 
						|
        return self._value < 0
 | 
						|
 | 
						|
    # Arithmetic operations
 | 
						|
    def __add__(self, term):
 | 
						|
        try:
 | 
						|
            return Integer(self._value + term._value)
 | 
						|
        except AttributeError:
 | 
						|
            return Integer(self._value + term)
 | 
						|
 | 
						|
    def __sub__(self, term):
 | 
						|
        try:
 | 
						|
            diff = self._value - term._value
 | 
						|
        except AttributeError:
 | 
						|
            diff = self._value - term
 | 
						|
        return Integer(diff)
 | 
						|
 | 
						|
    def __mul__(self, factor):
 | 
						|
        try:
 | 
						|
            return Integer(self._value * factor._value)
 | 
						|
        except AttributeError:
 | 
						|
            return Integer(self._value * factor)
 | 
						|
 | 
						|
    def __floordiv__(self, divisor):
 | 
						|
        try:
 | 
						|
            divisor_value = divisor._value
 | 
						|
        except AttributeError:
 | 
						|
            divisor_value = divisor
 | 
						|
        return Integer(self._value // divisor_value)
 | 
						|
 | 
						|
    def __mod__(self, divisor):
 | 
						|
        try:
 | 
						|
            divisor_value = divisor._value
 | 
						|
        except AttributeError:
 | 
						|
            divisor_value = divisor
 | 
						|
        if divisor_value < 0:
 | 
						|
            raise ValueError("Modulus must be positive")
 | 
						|
        return Integer(self._value % divisor_value)
 | 
						|
 | 
						|
    def inplace_pow(self, exponent, modulus=None):
 | 
						|
        try:
 | 
						|
            exp_value = exponent._value
 | 
						|
        except AttributeError:
 | 
						|
            exp_value = exponent
 | 
						|
        if exp_value < 0:
 | 
						|
            raise ValueError("Exponent must not be negative")
 | 
						|
 | 
						|
        try:
 | 
						|
            mod_value = modulus._value
 | 
						|
        except AttributeError:
 | 
						|
            mod_value = modulus
 | 
						|
        if mod_value is not None:
 | 
						|
            if mod_value < 0:
 | 
						|
                raise ValueError("Modulus must be positive")
 | 
						|
            if mod_value == 0:
 | 
						|
                raise ZeroDivisionError("Modulus cannot be zero")
 | 
						|
        self._value = pow(self._value, exp_value, mod_value)
 | 
						|
        return self
 | 
						|
 | 
						|
    def __pow__(self, exponent, modulus=None):
 | 
						|
        result = Integer(self)
 | 
						|
        return result.inplace_pow(exponent, modulus)
 | 
						|
 | 
						|
    def __abs__(self):
 | 
						|
        return abs(self._value)
 | 
						|
 | 
						|
    def sqrt(self):
 | 
						|
        # http://stackoverflow.com/questions/15390807/integer-square-root-in-python
 | 
						|
        if self._value < 0:
 | 
						|
            raise ValueError("Square root of negative value")
 | 
						|
        x = self._value
 | 
						|
        y = (x + 1) // 2
 | 
						|
        while y < x:
 | 
						|
            x = y
 | 
						|
            y = (x + self._value // x) // 2
 | 
						|
        return Integer(x)
 | 
						|
 | 
						|
    def __iadd__(self, term):
 | 
						|
        try:
 | 
						|
            self._value += term._value
 | 
						|
        except AttributeError:
 | 
						|
            self._value += term
 | 
						|
        return self
 | 
						|
 | 
						|
    def __isub__(self, term):
 | 
						|
        try:
 | 
						|
            self._value -= term._value
 | 
						|
        except AttributeError:
 | 
						|
            self._value -= term
 | 
						|
        return self
 | 
						|
 | 
						|
    def __imul__(self, term):
 | 
						|
        try:
 | 
						|
            self._value *= term._value
 | 
						|
        except AttributeError:
 | 
						|
            self._value *= term
 | 
						|
        return self
 | 
						|
 | 
						|
    def __imod__(self, term):
 | 
						|
        try:
 | 
						|
            modulus = term._value
 | 
						|
        except AttributeError:
 | 
						|
            modulus = term
 | 
						|
        if modulus == 0:
 | 
						|
            raise ZeroDivisionError("Division by zero")
 | 
						|
        if modulus < 0:
 | 
						|
            raise ValueError("Modulus must be positive")
 | 
						|
        self._value %= modulus
 | 
						|
        return self
 | 
						|
 | 
						|
    # Boolean/bit operations
 | 
						|
    def __and__(self, term):
 | 
						|
        try:
 | 
						|
            return Integer(self._value & term._value)
 | 
						|
        except AttributeError:
 | 
						|
            return Integer(self._value & term)
 | 
						|
 | 
						|
    def __or__(self, term):
 | 
						|
        try:
 | 
						|
            return Integer(self._value | term._value)
 | 
						|
        except AttributeError:
 | 
						|
            return Integer(self._value | term)
 | 
						|
 | 
						|
    def __rshift__(self, pos):
 | 
						|
        try:
 | 
						|
            try:
 | 
						|
                return Integer(self._value >> pos._value)
 | 
						|
            except AttributeError:
 | 
						|
                return Integer(self._value >> pos)
 | 
						|
        except OverflowError:
 | 
						|
            raise ValueError("Incorrect shift count")
 | 
						|
 | 
						|
    def __irshift__(self, pos):
 | 
						|
        try:
 | 
						|
            try:
 | 
						|
                self._value >>= pos._value
 | 
						|
            except AttributeError:
 | 
						|
                self._value >>= pos
 | 
						|
        except OverflowError:
 | 
						|
            raise ValueError("Incorrect shift count")
 | 
						|
        return self
 | 
						|
 | 
						|
    def __lshift__(self, pos):
 | 
						|
        try:
 | 
						|
            try:
 | 
						|
                return Integer(self._value << pos._value)
 | 
						|
            except AttributeError:
 | 
						|
                return Integer(self._value << pos)
 | 
						|
        except OverflowError:
 | 
						|
            raise ValueError("Incorrect shift count")
 | 
						|
 | 
						|
    def __ilshift__(self, pos):
 | 
						|
        try:
 | 
						|
            try:
 | 
						|
                self._value <<= pos._value
 | 
						|
            except AttributeError:
 | 
						|
                self._value <<= pos
 | 
						|
        except OverflowError:
 | 
						|
            raise ValueError("Incorrect shift count")
 | 
						|
        return self
 | 
						|
 | 
						|
 | 
						|
    def get_bit(self, n):
 | 
						|
        try:
 | 
						|
            try:
 | 
						|
                return (self._value >> n._value) & 1
 | 
						|
            except AttributeError:
 | 
						|
                return (self._value >> n) & 1
 | 
						|
        except OverflowError:
 | 
						|
            raise ValueError("Incorrect bit position")
 | 
						|
 | 
						|
    # Extra
 | 
						|
    def is_odd(self):
 | 
						|
        return (self._value & 1) == 1
 | 
						|
 | 
						|
    def is_even(self):
 | 
						|
        return (self._value & 1) == 0
 | 
						|
 | 
						|
    def size_in_bits(self):
 | 
						|
 | 
						|
        if self._value < 0:
 | 
						|
            raise ValueError("Conversion only valid for non-negative numbers")
 | 
						|
 | 
						|
        if self._value == 0:
 | 
						|
            return 1
 | 
						|
 | 
						|
        bit_size = 0
 | 
						|
        tmp = self._value
 | 
						|
        while tmp:
 | 
						|
            tmp >>= 1
 | 
						|
            bit_size += 1
 | 
						|
 | 
						|
        return bit_size
 | 
						|
 | 
						|
    def is_perfect_square(self):
 | 
						|
        if self._value < 0:
 | 
						|
            return False
 | 
						|
        if self._value in (0, 1):
 | 
						|
            return True
 | 
						|
 | 
						|
        x = self._value // 2
 | 
						|
        square_x = x ** 2
 | 
						|
 | 
						|
        while square_x > self._value:
 | 
						|
            x = (square_x + self._value) // (2 * x)
 | 
						|
            square_x = x ** 2
 | 
						|
 | 
						|
        return self._value == x ** 2
 | 
						|
 | 
						|
    def fail_if_divisible_by(self, small_prime):
 | 
						|
        try:
 | 
						|
            if (self._value % small_prime._value) == 0:
 | 
						|
                raise ValueError("Value is composite")
 | 
						|
        except AttributeError:
 | 
						|
            if (self._value % small_prime) == 0:
 | 
						|
                raise ValueError("Value is composite")
 | 
						|
 | 
						|
    def multiply_accumulate(self, a, b):
 | 
						|
        if type(a) == Integer:
 | 
						|
            a = a._value
 | 
						|
        if type(b) == Integer:
 | 
						|
            b = b._value
 | 
						|
        self._value += a * b
 | 
						|
        return self
 | 
						|
 | 
						|
    def set(self, source):
 | 
						|
        if type(source) == Integer:
 | 
						|
            self._value = source._value
 | 
						|
        else:
 | 
						|
            self._value = source
 | 
						|
 | 
						|
    def inplace_inverse(self, modulus):
 | 
						|
        try:
 | 
						|
            modulus = modulus._value
 | 
						|
        except AttributeError:
 | 
						|
            pass
 | 
						|
        if modulus == 0:
 | 
						|
            raise ZeroDivisionError("Modulus cannot be zero")
 | 
						|
        if modulus < 0:
 | 
						|
            raise ValueError("Modulus cannot be negative")
 | 
						|
        r_p, r_n = self._value, modulus
 | 
						|
        s_p, s_n = 1, 0
 | 
						|
        while r_n > 0:
 | 
						|
            q = r_p // r_n
 | 
						|
            r_p, r_n = r_n, r_p - q * r_n
 | 
						|
            s_p, s_n = s_n, s_p - q * s_n
 | 
						|
        if r_p != 1:
 | 
						|
            raise ValueError("No inverse value can be computed" + str(r_p))
 | 
						|
        while s_p < 0:
 | 
						|
            s_p += modulus
 | 
						|
        self._value = s_p
 | 
						|
        return self
 | 
						|
 | 
						|
    def inverse(self, modulus):
 | 
						|
        result = Integer(self)
 | 
						|
        result.inplace_inverse(modulus)
 | 
						|
        return result
 | 
						|
 | 
						|
    def gcd(self, term):
 | 
						|
        try:
 | 
						|
            term = term._value
 | 
						|
        except AttributeError:
 | 
						|
            pass
 | 
						|
        r_p, r_n = abs(self._value), abs(term)
 | 
						|
        while r_n > 0:
 | 
						|
            q = r_p // r_n
 | 
						|
            r_p, r_n = r_n, r_p - q * r_n
 | 
						|
        return Integer(r_p)
 | 
						|
 | 
						|
    def lcm(self, term):
 | 
						|
        try:
 | 
						|
            term = term._value
 | 
						|
        except AttributeError:
 | 
						|
            pass
 | 
						|
        if self._value == 0 or term == 0:
 | 
						|
            return Integer(0)
 | 
						|
        return Integer(abs((self._value * term) // self.gcd(term)._value))
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def jacobi_symbol(a, n):
 | 
						|
        if isinstance(a, Integer):
 | 
						|
            a = a._value
 | 
						|
        if isinstance(n, Integer):
 | 
						|
            n = n._value
 | 
						|
 | 
						|
        if (n & 1) == 0:
 | 
						|
            raise ValueError("n must be even for the Jacobi symbol")
 | 
						|
 | 
						|
        # Step 1
 | 
						|
        a = a % n
 | 
						|
        # Step 2
 | 
						|
        if a == 1 or n == 1:
 | 
						|
            return 1
 | 
						|
        # Step 3
 | 
						|
        if a == 0:
 | 
						|
            return 0
 | 
						|
        # Step 4
 | 
						|
        e = 0
 | 
						|
        a1 = a
 | 
						|
        while (a1 & 1) == 0:
 | 
						|
            a1 >>= 1
 | 
						|
            e += 1
 | 
						|
        # Step 5
 | 
						|
        if (e & 1) == 0:
 | 
						|
            s = 1
 | 
						|
        elif n % 8 in (1, 7):
 | 
						|
            s = 1
 | 
						|
        else:
 | 
						|
            s = -1
 | 
						|
        # Step 6
 | 
						|
        if n % 4 == 3 and a1 % 4 == 3:
 | 
						|
            s = -s
 | 
						|
        # Step 7
 | 
						|
        n1 = n % a1
 | 
						|
        # Step 8
 | 
						|
        return s * Integer.jacobi_symbol(n1, a1)
 |