import o from "@tutao/otest" import fs from "node:fs" import { parseCsv } from "../../../../../../src/common/misc/parsing/CsvParser" import { Classifier, DEFAULT_PREDICTION_THRESHOLD, SpamClassifier } from "../../../../../../src/mail-app/workerUtils/spamClassification/SpamClassifier" import { matchers, object, when } from "testdouble" import { assertNotNull } from "@tutao/tutanota-utils" import { SpamClassificationDataDealer, TrainingDataset } from "../../../../../../src/mail-app/workerUtils/spamClassification/SpamClassificationDataDealer" import { CacheStorage } from "../../../../../../src/common/api/worker/rest/DefaultEntityRestCache" import { mockAttribute } from "@tutao/tutanota-test-utils" import "@tensorflow/tfjs-backend-cpu" import { HashingVectorizer } from "../../../../../../src/mail-app/workerUtils/spamClassification/HashingVectorizer" import { LayersModel, tensor1d } from "../../../../../../src/mail-app/workerUtils/spamClassification/tensorflow-custom" import { createTestEntity } from "../../../../TestUtils" import { ClientSpamTrainingDatum, ClientSpamTrainingDatumTypeRef, MailTypeRef } from "../../../../../../src/common/api/entities/tutanota/TypeRefs" import { Sequential } from "@tensorflow/tfjs-layers" import { SparseVectorCompressor } from "../../../../../../src/common/api/common/utils/spamClassificationUtils/SparseVectorCompressor" import { DEFAULT_IS_SPAM_CONFIDENCE, DEFAULT_PREPROCESS_CONFIGURATION, SpamMailDatum, SpamMailProcessor, } from "../../../../../../src/common/api/common/utils/spamClassificationUtils/SpamMailProcessor" import { SpamDecision } from "../../../../../../src/common/api/common/TutanotaConstants" import { GENERATED_MIN_ID } from "../../../../../../src/common/api/common/utils/EntityUtils" const { anything } = matchers export const DATASET_FILE_PATH: string = "./tests/api/worker/utils/spamClassification/spam_classification_test_mails.csv" const TEST_OWNER_GROUP = "owner" export async function readMailDataFromCSV(filePath: string): Promise<{ spamData: SpamMailDatum[] hamData: SpamMailDatum[] }> { const file = await fs.promises.readFile(filePath) const csv = parseCsv(file.toString()) let spamData: SpamMailDatum[] = [] let hamData: SpamMailDatum[] = [] for (const row of csv.rows.slice(1, csv.rows.length - 1)) { const subject = row[8] const body = row[10] const label = row[11] const from = row[0] const to = row[1] const cc = row[2] const bcc = row[3] const authStatus = row[4] let isSpam = label === "spam" ? true : label === "ham" ? false : null isSpam = assertNotNull(isSpam, "Unknown label detected: " + label) const spamMailDatum = { subject, body, ownerGroup: TEST_OWNER_GROUP, sender: from, toRecipients: to, ccRecipients: cc, bccRecipients: bcc, authStatus: authStatus, } as SpamMailDatum const targetData = isSpam ? spamData : hamData targetData.push(spamMailDatum) } return { spamData, hamData } } async function convertToClientTrainingDatum(spamData: SpamMailDatum[], spamProcessor: SpamMailProcessor, isSpam: boolean): Promise { let result: ClientSpamTrainingDatum[] = [] for (const spamDatum of spamData) { const clientSpamTrainingDatum = createTestEntity(ClientSpamTrainingDatumTypeRef, { confidence: DEFAULT_IS_SPAM_CONFIDENCE.toString(), spamDecision: isSpam ? SpamDecision.BLACKLIST : SpamDecision.WHITELIST, vector: await spamProcessor.vectorizeAndCompress(spamDatum), }) result.push(clientSpamTrainingDatum) } return result } function getTrainingDataset(trainSet: ClientSpamTrainingDatum[]) { return { trainingData: trainSet, hamCount: trainSet.filter((item) => item.spamDecision === SpamDecision.WHITELIST).length, spamCount: trainSet.filter((item) => item.spamDecision === SpamDecision.BLACKLIST).length, lastTrainingDataIndexId: GENERATED_MIN_ID, } } // Initial training (cutoff by day or amount) o.spec("SpamClassifierTest", () => { const mockCacheStorage = object() const mockSpamClassificationDataDealer = object() let spamClassifier: SpamClassifier let spamProcessor: SpamMailProcessor let compressor: SparseVectorCompressor let spamData: ClientSpamTrainingDatum[] let hamData: ClientSpamTrainingDatum[] let dataSlice: ClientSpamTrainingDatum[] o.beforeEach(async () => { const spamHamData = await readMailDataFromCSV(DATASET_FILE_PATH) mockSpamClassificationDataDealer.fetchAllTrainingData = async () => { return getTrainingDataset(dataSlice) } const vectorLength = 512 compressor = new SparseVectorCompressor(vectorLength) spamProcessor = new SpamMailProcessor(DEFAULT_PREPROCESS_CONFIGURATION, new HashingVectorizer(vectorLength), compressor) spamClassifier = new SpamClassifier(mockCacheStorage, mockSpamClassificationDataDealer, true) spamClassifier.spamMailProcessor = spamProcessor spamClassifier.sparseVectorCompressor = compressor spamData = await convertToClientTrainingDatum(spamHamData.spamData, spamProcessor, true) hamData = await convertToClientTrainingDatum(spamHamData.hamData, spamProcessor, false) dataSlice = spamData.concat(hamData) seededShuffle(dataSlice, 42) }) o("processSpam maintains server classification when client classification is not enabled", async function () { const mail = createTestEntity(MailTypeRef, { _id: ["mailListId", "mailId"], sets: [["folderList", "serverFolder"]], }) const spamMailDatum: SpamMailDatum = { ownerGroup: TEST_OWNER_GROUP, subject: mail.subject, body: "some body", sender: "sender@tuta.com", toRecipients: "recipient@tuta.com", ccRecipients: "", bccRecipients: "", authStatus: "0", } // convert to vector const layersModel = object() const classifier = object() classifier.layersModel = layersModel classifier.isEnabled = false classifier.threshold = DEFAULT_PREDICTION_THRESHOLD spamClassifier.addSpamClassifierForOwner(spamMailDatum.ownerGroup, classifier) const vector = await spamProcessor.vectorize(spamMailDatum) const predictedSpam = await spamClassifier.predict(vector, spamMailDatum.ownerGroup) o(predictedSpam).equals(null) }) o("processSpam uses client classification when enabled", async function () { const mail = createTestEntity(MailTypeRef, { _id: ["mailListId", "mailId"], sets: [["folderList", "serverFolder"]], }) const spamMailDatum: SpamMailDatum = { ownerGroup: TEST_OWNER_GROUP, subject: mail.subject, body: "some body", sender: "sender@tuta.com", toRecipients: "recipient@tuta.com", ccRecipients: "", bccRecipients: "", authStatus: "0", } const layersModel = object() when(layersModel.predict(anything())).thenReturn(tensor1d([1])) const classifier = object() classifier.layersModel = layersModel classifier.isEnabled = true classifier.threshold = DEFAULT_PREDICTION_THRESHOLD spamClassifier.addSpamClassifierForOwner(spamMailDatum.ownerGroup, classifier) const vector = await spamProcessor.vectorize(spamMailDatum) const predictedSpam = await spamClassifier.predict(vector, spamMailDatum.ownerGroup) o(predictedSpam).equals(true) }) o("processSpam respects the classifier threshold", async function () { const mail = createTestEntity(MailTypeRef, { _id: ["mailListId", "mailId"], sets: [["folderList", "serverFolder"]], }) const spamMailDatum: SpamMailDatum = { ownerGroup: TEST_OWNER_GROUP, subject: mail.subject, body: "some body", sender: "sender@tuta.com", toRecipients: "recipient@tuta.com", ccRecipients: "", bccRecipients: "", authStatus: "0", } const layersModel = object() when(layersModel.predict(anything())).thenReturn(tensor1d([0.7])) const classifier = object() classifier.layersModel = layersModel classifier.isEnabled = true classifier.threshold = 0.9 spamClassifier.addSpamClassifierForOwner(spamMailDatum.ownerGroup, classifier) const vector = await spamProcessor.vectorize(spamMailDatum) const predictedSpam = await spamClassifier.predict(vector, spamMailDatum.ownerGroup) o(predictedSpam).equals(false) }) o("Initial training only", async () => { o.timeout(20_000) const trainTestSplit = dataSlice.length * 0.8 const trainSet = dataSlice.slice(0, trainTestSplit) const testSet = dataSlice.slice(trainTestSplit) const trainingDataset: TrainingDataset = getTrainingDataset(trainSet) await spamClassifier.initialTraining(TEST_OWNER_GROUP, trainingDataset) await testClassifier(spamClassifier, testSet, compressor) const classifier = spamClassifier.classifiers.get(TEST_OWNER_GROUP) o(classifier?.hamCount).equals(trainingDataset.hamCount) o(classifier?.spamCount).equals(trainingDataset.spamCount) o(classifier?.threshold).equals(spamClassifier.calculateThreshold(trainingDataset.hamCount, trainingDataset.spamCount)) }) o("Initial training and refitting in multi step", async () => { o.timeout(20_000) const trainTestSplit = dataSlice.length * 0.8 const trainSet = dataSlice.slice(0, trainTestSplit) const testSet = dataSlice.slice(trainTestSplit) const trainSetFirstHalf = trainSet.slice(0, trainSet.length / 2) const trainSetSecondHalf = trainSet.slice(trainSet.length / 2, trainSet.length) dataSlice = trainSetFirstHalf o((await mockSpamClassificationDataDealer.fetchAllTrainingData(TEST_OWNER_GROUP)).trainingData).deepEquals(dataSlice) const initialTrainingDataset = getTrainingDataset(dataSlice) await spamClassifier.initialTraining(TEST_OWNER_GROUP, initialTrainingDataset) console.log(`==> Result when testing with mails in two steps (first step).`) await testClassifier(spamClassifier, testSet, compressor) const trainingDatasetSecondHalf = getTrainingDataset(trainSetSecondHalf) await spamClassifier.updateModel(TEST_OWNER_GROUP, trainingDatasetSecondHalf) console.log(`==> Result when testing with mails in two steps (second step).`) await testClassifier(spamClassifier, testSet, compressor) const classifier = spamClassifier.classifiers.get(TEST_OWNER_GROUP) const finalHamCount = initialTrainingDataset.hamCount + trainingDatasetSecondHalf.hamCount const finalSpamCount = initialTrainingDataset.spamCount + trainingDatasetSecondHalf.spamCount o(classifier?.hamCount).equals(finalHamCount) o(classifier?.spamCount).equals(finalSpamCount) o(classifier?.threshold).equals(spamClassifier.calculateThreshold(finalHamCount, finalSpamCount)) }) o("preprocessMail outputs expected tokens for mail content", async () => { const mail = { subject: `Sample Tokens and values`, sender: "sender", toRecipients: "toRecipients", ccRecipients: "ccRecipients", bccRecipients: "bccRecipients", authStatus: "authStatus", // prettier-ignore body: `Hello, these are my MAC Address FB-94-77-45-96-74 91-58-81-D5-55-7C B4-09-49-2A-DE-D4 along with my ISBNs 718385414-0 733065633-X 632756390-2 SSN 227-78-2283 134-34-1253 591-61-6459 SHAs 585eab9b3a5e4430e08f5096d636d0d475a8c69dae21a61c6f1b26c4bd8dd8c1 7233d153f2e0725d3d212d1f27f30258fafd72b286d07b3b1d94e7e3c35dce67 769f65bf44557df44fc5f99c014cbe98894107c9d7be0801f37c55b3776c3990 Phone Numbers (341) 2027690 +385 958 638 7625 430-284-9438 VIN (Vehicle identification number) 3FADP4AJ3BM438397 WAULT64B82N564937 GUIDs 781a9631-0716-4f9c-bb36-25c3364b754b 325783d4-a64e-453b-85e6-ed4b2cd4c9bf Hex Colors #2016c1 #c090a4 #c855f5 #000000 IPV4 91.17.182.120 47.232.175.0 171.90.3.93 On Date: 01-12-2023 1-12-2023 Not Date 2023/12-1 URL https://tuta.com https://subdomain.microsoft.com/outlook/test NOT URL https://tuta/com MAIL test@example.com plus+addressing@example.com Credit Card 5002355116026522 4041 3751 9030 3866 Not Credit Card 1234 1234 Bit Coin Address 159S1vV25PAxMiCVaErjPznbWB8YBvANAi 1NJmLtKTyHyqdKo6epyF9ecMyuH1xFWjEt Not BTC 5213nYwhhGw2qpNijzfnKcbCG4z3hnrVA 1OUm2eZK2ETeAo8v95WhZioQDy32YSerkD Special Characters ! @ Not Special Character § Number Sequences: 26098375 IBAN: DE91 1002 0370 0320 2239 82 Not Number Sequences SHLT116 gb_67ca4b Other values found in mails 5.090 € 37 m 1 Zi 100% Fax (089) 13 33 87 88 August 12, 2025 5:20 PM - 5:25 PM and all text on other lines it seems.
this text is shown `, } as SpamMailDatum const preprocessedMail = spamProcessor.preprocessMail(mail) // prettier-ignore const expectedOutput = `Sample Tokens and values Hello TSPECIALCHAR these are my MAC Address \t\t\t\tFB TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR D5 TSPECIALCHAR TNUMBER TSPECIALCHAR 7C \t\t\t\tB4 TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR 2A TSPECIALCHAR DE TSPECIALCHAR D4 \t\t\t\talong with my ISBNs \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER \t\t\t\t TNUMBER TSPECIALCHAR X \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER \t\t\t\tSSN \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\tSHAs \t\t\t\t585eab9b3a5e4430e08f5096d636d0d475a8c69dae21a61c6f1b26c4bd8dd8c1 \t\t\t\t7233d153f2e0725d3d212d1f27f30258fafd72b286d07b3b1d94e7e3c35dce67 \t\t\t\t769f65bf44557df44fc5f99c014cbe98894107c9d7be0801f37c55b3776c3990 \t\t\t\tPhone Numbers \t\t\t\t TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\t TSPECIALCHAR TNUMBER TNUMBER TNUMBER TNUMBER \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\tVIN TSPECIALCHAR Vehicle identification number TSPECIALCHAR \t\t\t\t3FADP4AJ3BM438397 \t\t\t\tWAULT64B82N564937 \t\t\t\tGUIDs \t\t\t\t781a9631 TSPECIALCHAR TNUMBER TSPECIALCHAR 4f9c TSPECIALCHAR bb36 TSPECIALCHAR 25c3364b754b \t\t\t\t325783d4 TSPECIALCHAR a64e TSPECIALCHAR 453b TSPECIALCHAR 85e6 TSPECIALCHAR ed4b2cd4c9bf \t\t\t\tHex Colors \t\t\t\t TSPECIALCHAR 2016c1 \t\t\t\t TSPECIALCHAR c090a4 \t\t\t\t TSPECIALCHAR c855f5 \t\t\t\t TSPECIALCHAR TNUMBER \t\t\t\tIPV4 \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\tOn Date TSPECIALCHAR \t\t\t\t TDATE \t\t\t\t TDATE \t\t\t\tNot Date \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER \t\t\t\tURL \t\t\t\t TURLtuta TSPECIALCHAR com \t\t\t\t TURLsubdomain TSPECIALCHAR microsoft TSPECIALCHAR com \t\t\t\tNOT URL \t\t\t\t TURLtuta \t\t\t\tMAIL \t\t\t\t TEMAIL \t\t\t\t TEMAIL \t\t\t\tCredit Card \t\t\t\t TCREDITCARD \t\t\t\t TCREDITCARD \t\t\t\tNot Credit Card \t\t\t\t TNUMBER TNUMBER \t\t\t\tBit Coin Address \t\t\t\t TBITCOIN \t\t\t\t TBITCOIN \t\t\t\tNot BTC \t\t\t\t5213nYwhhGw2qpNijzfnKcbCG4z3hnrVA \t\t\t\t1OUm2eZK2ETeAo8v95WhZioQDy32YSerkD \t\t\t\tSpecial Characters \t\t\t\t TSPECIALCHAR \t\t\t\t TSPECIALCHAR \t\t\t\tNot Special Character \t\t\t\t§ \t\t\t\tNumber Sequences TSPECIALCHAR \t\t\t\t TNUMBER \t\t\t\tIBAN TSPECIALCHAR DE91 TCREDITCARD TNUMBER \t\t\t\tNot Number Sequences \t\t\t\tSHLT116 \t\t\t\tgb TSPECIALCHAR 67ca4b \t\t\t\tOther values found in mails \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER € TNUMBER m TNUMBER Zi TNUMBER TSPECIALCHAR \t\t\t\tFax TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER TNUMBER TNUMBER TNUMBER \t\t\t\tAugust TNUMBER TSPECIALCHAR TNUMBER \t\t\t\t TNUMBER TSPECIALCHAR TNUMBER PM TSPECIALCHAR TNUMBER TSPECIALCHAR TNUMBER PM \t\t\t\tand all text on other lines it seems TSPECIALCHAR Button Text this text is shown sender toRecipients ccRecipients bccRecipients authStatus` o.check(preprocessedMail).equals(expectedOutput) }) o("predict uses different models for different owner groups", async () => { const firstGroupClassifier = object() firstGroupClassifier.layersModel = object() firstGroupClassifier.threshold = DEFAULT_PREDICTION_THRESHOLD const secondGroupClassifier = object() secondGroupClassifier.threshold = DEFAULT_PREDICTION_THRESHOLD secondGroupClassifier.layersModel = object() mockAttribute(spamClassifier, spamClassifier.loadClassifier, (ownerGroup) => { if (ownerGroup === "firstGroup") { return Promise.resolve(firstGroupClassifier) } else if (ownerGroup === "secondGroup") { return Promise.resolve(secondGroupClassifier) } return null }) mockAttribute(spamClassifier, spamClassifier.updateAndSaveModel, () => { return Promise.resolve() }) const firstGroupReturnTensor = tensor1d([1.0], undefined) when(firstGroupClassifier.layersModel.predict(matchers.anything())).thenReturn(firstGroupReturnTensor) const secondGroupReturnTensor = tensor1d([0.0], undefined) when(secondGroupClassifier.layersModel.predict(matchers.anything())).thenReturn(secondGroupReturnTensor) await spamClassifier.initialize("firstGroup") await spamClassifier.initialize("secondGroup") const commonSpamFields = { subject: "", body: "", sender: "string", toRecipients: "string", ccRecipients: "string", bccRecipients: "string", authStatus: "", } const firstMailVector = await spamProcessor.vectorize({ ownerGroup: "firstGroup", ...commonSpamFields, }) const isSpamFirstMail = await spamClassifier.predict(firstMailVector, "firstGroup") const secondMailVector = await spamProcessor.vectorize({ ownerGroup: "secondGroup", ...commonSpamFields, }) const isSpamSecondMail = await spamClassifier.predict(secondMailVector, "secondGroup") o(isSpamFirstMail).equals(true) o(isSpamSecondMail).equals(false) // manually dispose @tensorflow tensors to save memory firstGroupReturnTensor.dispose() secondGroupReturnTensor.dispose() }) }) // These are rather analysis instead of test // They run in loop hence do take more time to finish and is not necessary to include in CI test suite // // To enable running this, change following constant to true const DO_RUN_PERFORMANCE_ANALYSIS = true if (DO_RUN_PERFORMANCE_ANALYSIS) { async function filterForMisclassifiedClientSpamTrainingData( classifier: SpamClassifier, compressor: SparseVectorCompressor, dataSlice: ClientSpamTrainingDatum[], desiredSlice: number, ) { return dataSlice .slice(desiredSlice) .filter(async (datum) => { const currentClassificationIsSpam = datum.spamDecision === SpamDecision.BLACKLIST const actualPrediction = await classifier.predict(compressor.binaryToVector(datum.vector), datum._ownerGroup || TEST_OWNER_GROUP) return currentClassificationIsSpam !== actualPrediction }) .sort() .slice(0, desiredSlice) } o.spec("SpamClassifier - Performance Analysis", () => { const mockOfflineStorageCache = object() const compressor = new SparseVectorCompressor() let spamClassifier = object() let dataSlice: ClientSpamTrainingDatum[] let spamProcessor: SpamMailProcessor o.beforeEach(async () => { const mockSpamClassificationDataDealer = object() mockSpamClassificationDataDealer.fetchAllTrainingData = async () => { return getTrainingDataset(dataSlice) } spamProcessor = new SpamMailProcessor(DEFAULT_PREPROCESS_CONFIGURATION, new HashingVectorizer(), compressor) spamClassifier = new SpamClassifier(mockOfflineStorageCache, mockSpamClassificationDataDealer, false) spamClassifier.spamMailProcessor = spamProcessor }) o("time to refit", async () => { o.timeout(20_000_000) const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH) const hamSlice = await convertToClientTrainingDatum(hamData.slice(0, 1000), spamProcessor, false) const spamSlice = await convertToClientTrainingDatum(spamData.slice(0, 400), spamProcessor, true) dataSlice = hamSlice.concat(spamSlice) seededShuffle(dataSlice, 42) const start = performance.now() await spamClassifier.initialTraining(TEST_OWNER_GROUP, getTrainingDataset(dataSlice)) const initialTrainingDuration = performance.now() - start console.log(`initial training time ${initialTrainingDuration}ms`) for (let i = 0; i < 20; i++) { const nowSpam = [hamSlice[0]] nowSpam.map((formerHam) => (formerHam.spamDecision = "1")) const retrainingStart = performance.now() await spamClassifier.updateModel(TEST_OWNER_GROUP, getTrainingDataset(nowSpam)) const retrainingDuration = performance.now() - retrainingStart console.log(`retraining time ${retrainingDuration}ms`) } }) o("refit after moving a false negative classification multiple times", async () => { o.timeout(20_000_000) const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH) const hamSlice = await convertToClientTrainingDatum(hamData.slice(0, 100), spamProcessor, false) const spamSlice = await convertToClientTrainingDatum(spamData.slice(0, 10), spamProcessor, true) dataSlice = hamSlice.concat(spamSlice) seededShuffle(dataSlice, 42) await spamClassifier.initialTraining(TEST_OWNER_GROUP, getTrainingDataset(dataSlice)) const falseNegatives = await filterForMisclassifiedClientSpamTrainingData(spamClassifier, compressor, spamSlice, 10) let retrainingNeeded = new Array(falseNegatives.length).fill(0) for (let i = 0; i < falseNegatives.length; i++) { const sample = falseNegatives[i] const copiedClassifier = await spamClassifier.cloneClassifier() let retrainCount = 0 let predictedSpam = false while (!predictedSpam && retrainCount++ <= 10) { await copiedClassifier.updateModel( TEST_OWNER_GROUP, getTrainingDataset([ { ...sample, spamDecision: SpamDecision.BLACKLIST, confidence: "4", }, ]), ) predictedSpam = assertNotNull(await copiedClassifier.predict(compressor.binaryToVector(sample.vector), TEST_OWNER_GROUP)) } retrainingNeeded[i] = retrainCount } console.log(retrainingNeeded) const maxRetrain = Math.max(...retrainingNeeded) o.check(retrainingNeeded.length >= 10).equals(false) o.check(maxRetrain < 3).equals(true) }) o("refit after moving a false positive classification multiple times", async () => { o.timeout(20_000_000) const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH) const hamSlice = await convertToClientTrainingDatum(hamData.slice(0, 10), spamProcessor, false) const spamSlice = await convertToClientTrainingDatum(spamData.slice(0, 100), spamProcessor, true) dataSlice = hamSlice.concat(spamSlice) seededShuffle(dataSlice, 42) await spamClassifier.initialTraining(TEST_OWNER_GROUP, getTrainingDataset(dataSlice)) const falsePositive = await filterForMisclassifiedClientSpamTrainingData(spamClassifier, compressor, hamSlice, 10) let retrainingNeeded = new Array(falsePositive.length).fill(0) for (let i = 0; i < falsePositive.length; i++) { const sample = falsePositive[i] const copiedClassifier = await spamClassifier.cloneClassifier() let retrainCount = 0 let predictedSpam = false while (!predictedSpam && retrainCount++ <= 10) { await copiedClassifier.updateModel( TEST_OWNER_GROUP, getTrainingDataset([{ ...sample, spamDecision: SpamDecision.WHITELIST, confidence: "4" }]), ) predictedSpam = assertNotNull(await copiedClassifier.predict(compressor.binaryToVector(sample.vector), TEST_OWNER_GROUP)) } retrainingNeeded[i] = retrainCount } console.log(retrainingNeeded) const maxRetrain = Math.max(...retrainingNeeded) o.check(retrainingNeeded.length >= 10).equals(false) o.check(maxRetrain < 3).equals(true) }) o("retrain from scratch after moving a false negative classification multiple times", async () => { o.timeout(20_000_000) const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH) const hamSlice = await convertToClientTrainingDatum(hamData.slice(0, 100), spamProcessor, false) const spamSlice = await convertToClientTrainingDatum(spamData.slice(0, 10), spamProcessor, true) dataSlice = hamSlice.concat(spamSlice) seededShuffle(dataSlice, 42) await spamClassifier.initialTraining(TEST_OWNER_GROUP, getTrainingDataset(dataSlice)) const falseNegatives = await filterForMisclassifiedClientSpamTrainingData(spamClassifier, compressor, spamSlice, 10) let retrainingNeeded = new Array(falseNegatives.length).fill(0) for (let i = 0; i < falseNegatives.length; i++) { const sample = falseNegatives[i] const copiedClassifier = await spamClassifier.cloneClassifier() let retrainCount = 0 let predictedSpam = false while (!predictedSpam && retrainCount++ <= 10) { await copiedClassifier.initialTraining( TEST_OWNER_GROUP, getTrainingDataset([...dataSlice, { ...sample, spamDecision: SpamDecision.BLACKLIST, confidence: "4" }]), ) predictedSpam = assertNotNull(await copiedClassifier.predict(compressor.binaryToVector(sample.vector), TEST_OWNER_GROUP)) } retrainingNeeded[i] = retrainCount } console.log(retrainingNeeded) const maxRetrain = Math.max(...retrainingNeeded) o.check(retrainingNeeded.length >= 10).equals(false) o.check(maxRetrain < 3).equals(true) }) }) } async function testClassifier(classifier: SpamClassifier, mails: ClientSpamTrainingDatum[], compressor: SparseVectorCompressor): Promise { let predictionArray: number[] = [] for (let mail of mails) { const prediction = await classifier.predict(compressor.binaryToVector(mail.vector), TEST_OWNER_GROUP) predictionArray.push(prediction ? 1 : 0) } const ysArray = mails.map((mail) => mail.spamDecision === SpamDecision.BLACKLIST) let tp = 0, tn = 0, fp = 0, fn = 0 for (let i = 0; i < predictionArray.length; i++) { const predictedSpam = predictionArray[i] > 0.5 const isActuallyASpam = ysArray[i] if (predictedSpam && isActuallyASpam) tp++ else if (!predictedSpam && !isActuallyASpam) tn++ else if (predictedSpam && !isActuallyASpam) fp++ else if (!predictedSpam && isActuallyASpam) fn++ } const total = tp + tn + fp + fn const accuracy = (tp + tn) / total const precision = tp / (tp + fp + 1e-7) const recall = tp / (tp + fn + 1e-7) const f1 = 2 * ((precision * recall) / (precision + recall + 1e-7)) console.log("\n--- Evaluation Metrics ---") console.log(`Accuracy: \t${(accuracy * 100).toFixed(2)}%`) console.log(`Precision:\t${(precision * 100).toFixed(2)}%`) console.log(`Recall: \t${(recall * 100).toFixed(2)}%`) console.log(`F1 Score: \t${(f1 * 100).toFixed(2)}%`) console.log("\nConfusion Matrix:") console.log({ Predicted_Spam: { True_Positive: tp, False_Positive: fp }, Predicted_Ham: { False_Negative: fn, True_Negative: tn }, }) } // For testing, we need deterministic shuffling which is not provided by tf.util.shuffle(dataSlice) // Seeded Fisher-Yates shuffle function seededShuffle(array: T[], seed: number): void { const random = seededRandom(seed) for (let i = array.length - 1; i > 0; i--) { const j = Math.floor(random() * (i + 1)) ;[array[i], array[j]] = [array[j], array[i]] } } function seededRandom(seed: number): () => number { const m = 0x80000000 // 2^31 const a = 1103515245 const c = 12345 let state = seed return function (): number { state = (a * state + c) % m return state / m } }