mirror of
https://github.com/tutao/tutanota.git
synced 2025-12-08 06:09:50 +00:00
Implement a local machine learning model for client-side spam filtering. The local model is implemented using tensorflow "LayersModel" to train separate models in all available mailboxes, resulting in one model per ownerGroup (i.e. mailbox). Initially, the training data is aggregated from the last 30 days of received mails, and the data is stored in a separate offline database table named spam_classification_training_data. The trained model is stored in the table spam_classification_model. The initial training starts after indexing, with periodic training happening every 30 minutes and on each subsequent login. The model will predict on incoming mails once we have received the entity event for said mail, moving it to either inbox or spam folder. When users move mails, we update the training data labels accordingly, by adjusting the isSpam classification and isSpamConfidence values in the offline database. The MoveMailService now contains a moveReason, which indicates that the mail has been moved by our spam filter. Client-side spam filtering can be activated using the SpamClientClassification feature flag, and is for now only available on the desktop client. Co-authored-by: sug <sug@tutao.de> Co-authored-by: kib <104761667+kibibytium@users.noreply.github.com> Co-authored-by: abp <abp@tutao.de> Co-authored-by: map <mpfau@users.noreply.github.com> Co-authored-by: jhm <17314077+jomapp@users.noreply.github.com> Co-authored-by: frm <frm@tutao.de> Co-authored-by: das <das@tutao.de> Co-authored-by: nif <nif@tutao.de> Co-authored-by: amm <amm@tutao.de>
584 lines
21 KiB
TypeScript
584 lines
21 KiB
TypeScript
import o from "@tutao/otest"
|
|
import fs from "node:fs"
|
|
import { parseCsv } from "../../../../../../src/common/misc/parsing/CsvParser"
|
|
import {
|
|
DEFAULT_PREPROCESS_CONFIGURATION,
|
|
SpamClassifier,
|
|
SpamTrainMailDatum,
|
|
} from "../../../../../../src/mail-app/workerUtils/spamClassification/SpamClassifier"
|
|
import { tokenize as testTokenize } from "./HashingVectorizerTest"
|
|
import { OfflineStoragePersistence } from "../../../../../../src/mail-app/workerUtils/index/OfflineStoragePersistence"
|
|
import { matchers, object, when } from "testdouble"
|
|
import { assertNotNull, promiseMap } from "@tutao/tutanota-utils"
|
|
import { SpamClassificationInitializer } from "../../../../../../src/mail-app/workerUtils/spamClassification/SpamClassificationInitializer"
|
|
import { CacheStorage } from "../../../../../../src/common/api/worker/rest/DefaultEntityRestCache"
|
|
import { mockAttribute } from "@tutao/tutanota-test-utils"
|
|
import "@tensorflow/tfjs-backend-cpu"
|
|
import { HashingVectorizer } from "../../../../../../src/mail-app/workerUtils/spamClassification/HashingVectorizer"
|
|
import { LayersModel, tensor1d } from "../../../../../../src/mail-app/workerUtils/spamClassification/tensorflow-custom"
|
|
|
|
export const DATASET_FILE_PATH: string = "./tests/api/worker/utils/spamClassification/spam_classification_test_mails.csv"
|
|
|
|
export async function readMailDataFromCSV(filePath: string): Promise<{
|
|
spamData: SpamTrainMailDatum[]
|
|
hamData: SpamTrainMailDatum[]
|
|
}> {
|
|
const file = await fs.promises.readFile(filePath)
|
|
const csv = parseCsv(file.toString())
|
|
|
|
let spamData: SpamTrainMailDatum[] = []
|
|
let hamData: SpamTrainMailDatum[] = []
|
|
for (const row of csv.rows.slice(1, csv.rows.length - 1)) {
|
|
const subject = row[8]
|
|
const body = row[10]
|
|
const label = row[11]
|
|
|
|
let isSpam = label === "spam" ? true : label === "ham" ? false : null
|
|
isSpam = assertNotNull(isSpam, "Unknown label detected: " + label)
|
|
const targetData = isSpam ? spamData : hamData
|
|
targetData.push({
|
|
mailId: ["mailListId", "mailElementId"],
|
|
subject,
|
|
body,
|
|
isSpam,
|
|
isSpamConfidence: 1,
|
|
ownerGroup: "owner",
|
|
} as SpamTrainMailDatum)
|
|
}
|
|
|
|
return { spamData, hamData }
|
|
}
|
|
|
|
// Initial training (cutoff by day or amount)
|
|
o.spec("SpamClassifier", () => {
|
|
const mockOfflineStorageCache = object<CacheStorage>()
|
|
const mockOfflineStorage = object<OfflineStoragePersistence>()
|
|
const mockSpamClassificationInitializer = object<SpamClassificationInitializer>()
|
|
let nonEfficientSmallVectorizer: HashingVectorizer
|
|
let spamClassifier: SpamClassifier
|
|
|
|
let spamData: SpamTrainMailDatum[]
|
|
let hamData: SpamTrainMailDatum[]
|
|
let dataSlice: SpamTrainMailDatum[]
|
|
|
|
o.beforeEach(async () => {
|
|
const spamHamData = await readMailDataFromCSV(DATASET_FILE_PATH)
|
|
spamData = spamHamData.spamData
|
|
hamData = spamHamData.hamData
|
|
dataSlice = spamData.concat(hamData)
|
|
seededShuffle(dataSlice, 42)
|
|
|
|
mockOfflineStorage.tokenize = async (text) => {
|
|
return testTokenize(text)
|
|
}
|
|
mockSpamClassificationInitializer.init = async () => {
|
|
return dataSlice
|
|
}
|
|
|
|
nonEfficientSmallVectorizer = new HashingVectorizer(512)
|
|
spamClassifier = new SpamClassifier(
|
|
mockOfflineStorage,
|
|
mockOfflineStorageCache,
|
|
mockSpamClassificationInitializer,
|
|
true,
|
|
DEFAULT_PREPROCESS_CONFIGURATION,
|
|
nonEfficientSmallVectorizer,
|
|
)
|
|
})
|
|
|
|
o("Initial training only", async () => {
|
|
o.timeout(20_000)
|
|
|
|
const trainTestSplit = dataSlice.length * 0.8
|
|
const trainSet = dataSlice.slice(0, trainTestSplit)
|
|
const testSet = dataSlice.slice(trainTestSplit)
|
|
|
|
await spamClassifier.initialTraining(trainSet)
|
|
await spamClassifier.test(testSet)
|
|
})
|
|
|
|
o("Initial training and refitting in multi step", async () => {
|
|
o.timeout(20_000)
|
|
|
|
const testStart = Date.now()
|
|
const trainTestSplit = dataSlice.length * 0.8
|
|
const trainSet = dataSlice.slice(0, trainTestSplit)
|
|
const testSet = dataSlice.slice(trainTestSplit)
|
|
|
|
const trainSetFirstHalf = trainSet.slice(0, trainSet.length / 2)
|
|
const trainSetSecondHalf = trainSet.slice(trainSet.length / 2, trainSet.length)
|
|
|
|
dataSlice = trainSetFirstHalf
|
|
o(await mockSpamClassificationInitializer.init("owner")).deepEquals(trainSetFirstHalf)
|
|
await spamClassifier.initialTraining(dataSlice)
|
|
console.log(`==> Result when testing with mails in two steps (first step).`)
|
|
await spamClassifier.test(testSet)
|
|
|
|
await spamClassifier.updateModel("owner", trainSetSecondHalf)
|
|
console.log(`==> Result when testing with mails in two steps (second step).`)
|
|
await spamClassifier.test(testSet)
|
|
})
|
|
|
|
o("preprocessMail outputs expected tokens for mail content", async () => {
|
|
const classifier = new SpamClassifier(null, object(), object())
|
|
const mail = {
|
|
subject: `Sample Tokens and values`,
|
|
// prettier-ignore
|
|
body: `Hello, these are my MAC Address
|
|
FB-94-77-45-96-74
|
|
91-58-81-D5-55-7C
|
|
B4-09-49-2A-DE-D4
|
|
along with my ISBNs
|
|
718385414-0
|
|
733065633-X
|
|
632756390-2
|
|
SSN
|
|
227-78-2283
|
|
134-34-1253
|
|
591-61-6459
|
|
SHAs
|
|
585eab9b3a5e4430e08f5096d636d0d475a8c69dae21a61c6f1b26c4bd8dd8c1
|
|
7233d153f2e0725d3d212d1f27f30258fafd72b286d07b3b1d94e7e3c35dce67
|
|
769f65bf44557df44fc5f99c014cbe98894107c9d7be0801f37c55b3776c3990
|
|
Phone Numbers
|
|
(341) 2027690
|
|
+385 958 638 7625
|
|
430-284-9438
|
|
VIN (Vehicle identification number)
|
|
3FADP4AJ3BM438397
|
|
WAULT64B82N564937
|
|
GUIDs
|
|
781a9631-0716-4f9c-bb36-25c3364b754b
|
|
325783d4-a64e-453b-85e6-ed4b2cd4c9bf
|
|
Hex Colors
|
|
#2016c1
|
|
#c090a4
|
|
#c855f5
|
|
#000000
|
|
IPV4
|
|
91.17.182.120
|
|
47.232.175.0
|
|
171.90.3.93
|
|
On Date:
|
|
01-12-2023
|
|
1-12-2023
|
|
Not Date
|
|
2023/12-1
|
|
URL
|
|
https://tuta.com
|
|
https://subdomain.microsoft.com/outlook/test
|
|
NOT URL
|
|
https://tuta/com
|
|
MAIL
|
|
test@example.com
|
|
plus+addressing@example.com
|
|
Credit Card
|
|
5002355116026522
|
|
4041 3751 9030 3866
|
|
Not Credit Card
|
|
1234 1234
|
|
Bit Coin Address
|
|
159S1vV25PAxMiCVaErjPznbWB8YBvANAi
|
|
1NJmLtKTyHyqdKo6epyF9ecMyuH1xFWjEt
|
|
Not BTC
|
|
5213nYwhhGw2qpNijzfnKcbCG4z3hnrVA
|
|
1OUm2eZK2ETeAo8v95WhZioQDy32YSerkD
|
|
Special Characters
|
|
!
|
|
@
|
|
Not Special Characters
|
|
]
|
|
Number Sequences:
|
|
26098375
|
|
IBAN: DE91 1002 0370 0320 2239 82
|
|
Not Number Sequences
|
|
SHLT116
|
|
gb_67ca4b
|
|
Other values found in mails
|
|
5.090 € 37 m 1 Zi 100%
|
|
Fax (089) 13 33 87 88
|
|
August 12, 2025
|
|
5:20 PM - 5:25 PM
|
|
<this gets removed by HTML as it should use < to represent the character>
|
|
and all text on other lines it seems.
|
|
<div>
|
|
<a rel="noopener noreferrer" target="_blank" href="https://www.somewebsite.de/?key=c2f395513421312029680" style="background-color:#055063;border-radius:3px;color:#ffffff;display:inline-block;font-size: 14px; font-family: sans-serif;font-weight:bold;line-height:36px;height:36px;text-align:center;text-decoration:none;width:157px;-webkit-text-size-adjust:none; margin-bottom:20px">Button Text</a>
|
|
</div>
|
|
<table cellpadding="0" cellspacing="0" border="0" role="presentation" width="100%"><tbody><tr><td align="center"><a href="https://mail.abc-web.de/optiext/optiextension.dll?ID=someid" rel="noopener noreferrer" target="_blank" style="text-decoration:none"><img id="OWATemporaryImageDivContainer1" src="https://mail.some-domain.de/images/SMC/grafik/image.png" alt="" border="0" class="" width="100%" style="max-width:100%;display:block;width:100%"></a></td></tr></tbody></table>
|
|
this text is shown
|
|
`,
|
|
} as SpamTrainMailDatum
|
|
const preprocessedMail = classifier.preprocessMail(mail)
|
|
// prettier-ignore
|
|
const expectedOutput = `Sample Tokens and values Hello <SPECIAL-CHAR> these are my MAC Address
|
|
\t\t\t\tFB <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> -D5 <SPECIAL-CHAR> <NUMBER> -7C
|
|
\t\t\t\tB4 <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> -2A-DE-D4
|
|
\t\t\t\talong with my ISBNs
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\t <NUMBER> -X
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\tSSN
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\tSHAs
|
|
\t\t\t\t585eab9b3a5e4430e08f5096d636d0d475a8c69dae21a61c6f1b26c4bd8dd8c1
|
|
\t\t\t\t7233d153f2e0725d3d212d1f27f30258fafd72b286d07b3b1d94e7e3c35dce67
|
|
\t\t\t\t769f65bf44557df44fc5f99c014cbe98894107c9d7be0801f37c55b3776c3990
|
|
\t\t\t\tPhone Numbers
|
|
\t\t\t\t <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\t <SPECIAL-CHAR> <NUMBER> <NUMBER> <NUMBER> <NUMBER>
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\tVIN <SPECIAL-CHAR> Vehicle identification number <SPECIAL-CHAR>
|
|
\t\t\t\t3FADP4AJ3BM438397
|
|
\t\t\t\tWAULT64B82N564937
|
|
\t\t\t\tGUIDs
|
|
\t\t\t\t781a9631 <SPECIAL-CHAR> <NUMBER> -4f9c-bb36-25c3364b754b
|
|
\t\t\t\t325783d4-a64e-453b-85e6-ed4b2cd4c9bf
|
|
\t\t\t\tHex Colors
|
|
\t\t\t\t <SPECIAL-CHAR> 2016c1
|
|
\t\t\t\t <SPECIAL-CHAR> c090a4
|
|
\t\t\t\t <SPECIAL-CHAR> c855f5
|
|
\t\t\t\t <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\tIPV4
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\tOn Date <SPECIAL-CHAR>
|
|
\t\t\t\t <DATE>
|
|
\t\t\t\t <DATE>
|
|
\t\t\t\tNot Date
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\tURL
|
|
\t\t\t\t <URL-tuta.com>
|
|
\t\t\t\t <URL-subdomain.microsoft.com>
|
|
\t\t\t\tNOT URL
|
|
\t\t\t\t <URL-tuta>
|
|
\t\t\t\tMAIL
|
|
\t\t\t\t <EMAIL>
|
|
\t\t\t\t <EMAIL>
|
|
\t\t\t\tCredit Card
|
|
\t\t\t\t <CREDIT-CARD>
|
|
\t\t\t\t <CREDIT-CARD>
|
|
\t\t\t\tNot Credit Card
|
|
\t\t\t\t <NUMBER> <NUMBER>
|
|
\t\t\t\tBit Coin Address
|
|
\t\t\t\t <BITCOIN>
|
|
\t\t\t\t <BITCOIN>
|
|
\t\t\t\tNot BTC
|
|
\t\t\t\t5213nYwhhGw2qpNijzfnKcbCG4z3hnrVA
|
|
\t\t\t\t1OUm2eZK2ETeAo8v95WhZioQDy32YSerkD
|
|
\t\t\t\tSpecial Characters
|
|
\t\t\t\t <SPECIAL-CHAR>
|
|
\t\t\t\t <SPECIAL-CHAR>
|
|
\t\t\t\tNot Special Characters
|
|
\t\t\t\t]
|
|
\t\t\t\tNumber Sequences <SPECIAL-CHAR>
|
|
\t\t\t\t <NUMBER>
|
|
\t\t\t\tIBAN <SPECIAL-CHAR> DE91 <CREDIT-CARD> <NUMBER>
|
|
\t\t\t\tNot Number Sequences
|
|
\t\t\t\tSHLT116
|
|
\t\t\t\tgb <SPECIAL-CHAR> 67ca4b
|
|
\t\t\t\tOther values found in mails
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> € <NUMBER> m <NUMBER> Zi <NUMBER> <SPECIAL-CHAR>
|
|
\t\t\t\tFax <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> <NUMBER> <NUMBER> <NUMBER>
|
|
\t\t\t\tAugust <NUMBER> <SPECIAL-CHAR> <NUMBER>
|
|
\t\t\t\t <NUMBER> <SPECIAL-CHAR> <NUMBER> PM <SPECIAL-CHAR> <NUMBER> <SPECIAL-CHAR> <NUMBER> PM
|
|
\t\t\t\tand all text on other lines it seems <SPECIAL-CHAR>
|
|
Button Text
|
|
this text is shown`
|
|
o.check(preprocessedMail).equals(expectedOutput)
|
|
})
|
|
|
|
o("predict uses different models for different owner groups", async () => {
|
|
const firstGroupModel = object<LayersModel>()
|
|
const secondGroupModel = object<LayersModel>()
|
|
mockAttribute(spamClassifier, spamClassifier.loadModel, (ownerGroup) => {
|
|
if (ownerGroup === "firstGroup") {
|
|
return Promise.resolve(firstGroupModel)
|
|
} else if (ownerGroup === "secondGroup") {
|
|
return Promise.resolve(secondGroupModel)
|
|
}
|
|
return null
|
|
})
|
|
|
|
mockAttribute(spamClassifier, spamClassifier.updateAndSaveModel, () => {
|
|
return Promise.resolve()
|
|
})
|
|
|
|
const firstGroupReturnTensor = tensor1d([1.0], undefined)
|
|
when(firstGroupModel.predict(matchers.anything())).thenReturn(firstGroupReturnTensor)
|
|
const secondGroupReturnTensor = tensor1d([0.0], undefined)
|
|
when(secondGroupModel.predict(matchers.anything())).thenReturn(secondGroupReturnTensor)
|
|
|
|
await spamClassifier.initialize("firstGroup")
|
|
await spamClassifier.initialize("secondGroup")
|
|
|
|
const isSpamFirstMail = await spamClassifier.predict({ subject: "", body: "", ownerGroup: "firstGroup" })
|
|
const isSpamSecondMail = await spamClassifier.predict({ subject: "", body: "", ownerGroup: "secondGroup" })
|
|
|
|
o(isSpamFirstMail).equals(true)
|
|
o(isSpamSecondMail).equals(false)
|
|
|
|
// manually dispose @tensorflow tensors to save memory
|
|
firstGroupReturnTensor.dispose()
|
|
secondGroupReturnTensor.dispose()
|
|
})
|
|
})
|
|
|
|
// These are rather analysis instead of test
|
|
// They run in loop hence do take more time to finish and is not necessary to include in CI test suite
|
|
//
|
|
// To enable running this, change following constant to true
|
|
const DO_RUN_PERFORMANCE_ANALYSIS = false
|
|
if (DO_RUN_PERFORMANCE_ANALYSIS) {
|
|
o.spec("SpamClassifier - Performance Analysis", () => {
|
|
const mockOfflineStorageCache = object<CacheStorage>()
|
|
const mockOfflineStorage = object<OfflineStoragePersistence>()
|
|
let classifier = object<SpamClassifier>()
|
|
let dataSlice: SpamTrainMailDatum[]
|
|
o.beforeEach(() => {
|
|
mockOfflineStorage.tokenize = async (text) => {
|
|
return testTokenize(text)
|
|
}
|
|
|
|
const mockSpamClassificationInitializer = object<SpamClassificationInitializer>()
|
|
mockSpamClassificationInitializer.init = async () => {
|
|
return dataSlice
|
|
}
|
|
classifier = new SpamClassifier(mockOfflineStorage, mockOfflineStorageCache, mockSpamClassificationInitializer)
|
|
})
|
|
|
|
o("time to refit", async () => {
|
|
o.timeout(20_000_000)
|
|
const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH)
|
|
const hamSlice = hamData.slice(0, 1000)
|
|
const spamSlice = spamData.slice(0, 400)
|
|
dataSlice = hamSlice.concat(spamSlice)
|
|
seededShuffle(dataSlice, 42)
|
|
|
|
const start = performance.now()
|
|
await classifier.initialTraining(dataSlice)
|
|
const initialTrainingDuration = performance.now() - start
|
|
console.log(`initial training time ${initialTrainingDuration}ms`)
|
|
|
|
for (let i = 0; i < 20; i++) {
|
|
const nowSpam = [hamSlice[0]]
|
|
nowSpam.map((formerHam) => (formerHam.isSpam = true))
|
|
const retrainingStart = performance.now()
|
|
await classifier.updateModel("owner", nowSpam)
|
|
const retrainingDuration = performance.now() - retrainingStart
|
|
console.log(`retraining time ${retrainingDuration}ms`)
|
|
}
|
|
})
|
|
|
|
o("refit after moving a false negative classification multiple times", async () => {
|
|
o.timeout(20_000_000)
|
|
const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH)
|
|
const hamSlice = hamData.slice(0, 100)
|
|
const spamSlice = spamData.slice(0, 10)
|
|
dataSlice = hamSlice.concat(spamSlice)
|
|
// seededShuffle(dataSlice, 42)
|
|
|
|
await classifier.initialTraining(dataSlice)
|
|
const falseNegatives = spamData
|
|
.slice(10)
|
|
.filter(async (mailDatum) => mailDatum.isSpam !== (await classifier.predict(mailDatum)))
|
|
.sort()
|
|
.slice(0, 10)
|
|
|
|
let retrainingNeeded = new Array<number>(falseNegatives.length).fill(0)
|
|
for (let i = 0; i < falseNegatives.length; i++) {
|
|
const sample = falseNegatives[i]
|
|
const copiedClassifier = await classifier.cloneClassifier()
|
|
|
|
let retrainCount = 0
|
|
let predictedSpam = false
|
|
while (!predictedSpam && retrainCount++ <= 3) {
|
|
// await copiedClassifier.updateModel([{ ...sample, isSpam: false }])
|
|
|
|
/*
|
|
isSpamConfidence: 2
|
|
[
|
|
3, 2, 1, 3, 1,
|
|
1, 3, 2, 1, 5
|
|
] = 22
|
|
isSpamConfidence: 3
|
|
[
|
|
2, 5, 1, 2, 1,
|
|
1, 1, 2, 1, 2
|
|
] = 18
|
|
|
|
isSpamConfidence: 4
|
|
[
|
|
1, 1, 1, 2, 5,
|
|
1, 1, 1, 1, 5
|
|
] = 19
|
|
Retraining finished. Took: 477ms
|
|
Retraining finished. Took: 1259ms
|
|
predicted new mail to be with probability 0.46 spam
|
|
Retraining finished. Took: 560ms
|
|
Retraining finished. Took: 1273ms
|
|
|
|
isSpamConfidence: 8
|
|
Retraining finished. Took: 486ms
|
|
Retraining finished. Took: 2289ms
|
|
predicted new mail to be with probability 0.82 spam
|
|
Retraining finished. Took: 580ms
|
|
Retraining finished. Took: 2356ms
|
|
predicted new mail to be with probability 1.00 spam
|
|
Retraining finished. Took: 556ms
|
|
Retraining finished. Took: 2357ms
|
|
predicted new mail to be with probability 0.52 spam
|
|
[
|
|
1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1
|
|
]
|
|
|
|
|
|
*/
|
|
await copiedClassifier.updateModel("owner", [{ ...sample, isSpam: true, isSpamConfidence: 1 }])
|
|
predictedSpam = assertNotNull(await copiedClassifier.predict(sample))
|
|
}
|
|
retrainingNeeded[i] = retrainCount
|
|
}
|
|
|
|
console.log(retrainingNeeded)
|
|
const maxRetrain = Math.max(...retrainingNeeded)
|
|
o.check(retrainingNeeded.length >= 10).equals(true)
|
|
o.check(maxRetrain < 3).equals(true)
|
|
})
|
|
|
|
o("refit after moving a false positive classification multiple times", async () => {
|
|
o.timeout(20_000_000)
|
|
const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH)
|
|
const hamSlice = hamData.slice(0, 10)
|
|
const spamSlice = spamData.slice(0, 100)
|
|
dataSlice = hamSlice.concat(spamSlice)
|
|
// seededShuffle(dataSlice, 42)
|
|
|
|
await classifier.initialTraining(dataSlice)
|
|
const falsePositive = hamData
|
|
.slice(10)
|
|
.filter(async (mailDatum) => mailDatum.isSpam !== (await classifier.predict(mailDatum)))
|
|
.slice(0, 10)
|
|
let retrainingNeeded = new Array<number>(falsePositive.length).fill(0)
|
|
for (let i = 0; i < falsePositive.length; i++) {
|
|
const sample = falsePositive[i]
|
|
const copiedClassifier = await classifier.cloneClassifier()
|
|
|
|
let retrainCount = 0
|
|
let predictedSpam = false
|
|
while (!predictedSpam && retrainCount++ <= 10) {
|
|
await copiedClassifier.updateModel("owner", [{ ...sample, isSpam: true }])
|
|
await copiedClassifier.updateModel("owner", [{ ...sample, isSpam: false }])
|
|
predictedSpam = assertNotNull(await copiedClassifier.predict(sample))
|
|
}
|
|
retrainingNeeded[i] = retrainCount
|
|
}
|
|
|
|
console.log(retrainingNeeded)
|
|
const maxRetrain = Math.max(...retrainingNeeded)
|
|
o.check(retrainingNeeded.length >= 10).equals(true)
|
|
o.check(maxRetrain < 3).equals(true)
|
|
})
|
|
|
|
o("retrain after moving a false negative classification multiple times", async () => {
|
|
o.timeout(20_000_000)
|
|
const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH)
|
|
const hamSlice = hamData.slice(0, 100)
|
|
const spamSlice = spamData.slice(0, 10)
|
|
dataSlice = hamSlice.concat(spamSlice)
|
|
seededShuffle(dataSlice, 42)
|
|
|
|
await classifier.initialTraining(dataSlice)
|
|
const falseNegatives = spamData
|
|
.slice(10)
|
|
.filter(async (mailDatum) => mailDatum.isSpam !== (await classifier.predict(mailDatum)))
|
|
.slice(0, 10)
|
|
|
|
let retrainingNeeded = new Array<number>(falseNegatives.length).fill(0)
|
|
for (let i = 0; i < falseNegatives.length; i++) {
|
|
const sample = falseNegatives[i]
|
|
const copiedClassifier = await classifier.cloneClassifier()
|
|
|
|
let retrainCount = 0
|
|
let predictedSpam = false
|
|
while (!predictedSpam && retrainCount++ <= 10) {
|
|
await copiedClassifier.initialTraining([...dataSlice, sample])
|
|
predictedSpam = assertNotNull(await copiedClassifier.predict(sample))
|
|
}
|
|
retrainingNeeded[i] = retrainCount
|
|
}
|
|
|
|
console.log(retrainingNeeded)
|
|
const maxRetrain = Math.max(...retrainingNeeded)
|
|
o.check(retrainingNeeded.length >= 10).equals(true)
|
|
o.check(maxRetrain < 3).equals(true)
|
|
})
|
|
|
|
o("Time spent in vectorization during initial training", async () => {
|
|
o.timeout(2_000_000)
|
|
|
|
const ITERATION_COUNT: number = 1
|
|
const { spamData, hamData } = await readMailDataFromCSV(DATASET_FILE_PATH)
|
|
dataSlice = spamData.concat(hamData)
|
|
|
|
let trainingTimes = new Array<number>()
|
|
let vectorizationTimes = new Array<number>()
|
|
let trainingWithoutVectorization = new Array<number>()
|
|
|
|
await promiseMap(
|
|
new Array<number>(ITERATION_COUNT).fill(0),
|
|
async () => {
|
|
const { vectorizationTime, trainingTime } = await classifier.initialTraining(dataSlice)
|
|
trainingTimes.push(trainingTime)
|
|
vectorizationTimes.push(vectorizationTime)
|
|
trainingWithoutVectorization.push(trainingTime - vectorizationTime)
|
|
},
|
|
{ concurrency: ITERATION_COUNT },
|
|
)
|
|
|
|
trainingTimes = trainingTimes.sort()
|
|
vectorizationTimes = vectorizationTimes.sort()
|
|
trainingWithoutVectorization = trainingWithoutVectorization.sort()
|
|
const avgTrainingTime = trainingTimes.reduce((a, b) => a + b, 0) / trainingTimes.length
|
|
const avgVectorizationTime = vectorizationTimes.reduce((a, b) => a + b, 0) / vectorizationTimes.length
|
|
const avgTrainingWithoutVectorization = trainingWithoutVectorization.reduce((a, b) => a + b, 0) / trainingWithoutVectorization.length
|
|
|
|
console.log("For vectorization:")
|
|
console.log({ min: vectorizationTimes.at(0), max: vectorizationTimes.at(-1), avg: avgVectorizationTime })
|
|
console.log("For whole training:")
|
|
console.log({ min: trainingTimes.at(0), max: trainingTimes.at(-1), avg: avgTrainingTime })
|
|
console.log("For training without vectorization:")
|
|
console.log({
|
|
min: trainingWithoutVectorization.at(0),
|
|
max: trainingWithoutVectorization.at(-1),
|
|
avg: avgTrainingWithoutVectorization,
|
|
})
|
|
})
|
|
})
|
|
}
|
|
// For testing, we need deterministic shuffling which is not provided by tf.util.shuffle(dataSlice)
|
|
// Seeded Fisher-Yates shuffle
|
|
function seededShuffle<T>(array: T[], seed: number): void {
|
|
const random = seededRandom(seed)
|
|
for (let i = array.length - 1; i > 0; i--) {
|
|
const j = Math.floor(random() * (i + 1))
|
|
;[array[i], array[j]] = [array[j], array[i]]
|
|
}
|
|
}
|
|
|
|
function seededRandom(seed: number): () => number {
|
|
const m = 0x80000000 // 2^31
|
|
const a = 1103515245
|
|
const c = 12345
|
|
|
|
let state = seed
|
|
|
|
return function (): number {
|
|
state = (a * state + c) % m
|
|
return state / m
|
|
}
|
|
}
|