tutanota/test/tests/api/worker/utils/spamClassification/SpamClassificationDataDealerTest.ts
jhm ff856f821e
ensure all relevant clientSpamTrainingData is uploaded for mailbox
We want to make sure that all relevant clientSpamTrainingData is
uploaded correctly for each mailbox. Previously, if
clientSpamTrainingData was not empty for a mailbox, we would not upload
more training data. This led to cases where users do only have a
fraction of training data in comparison to mails available in their
mailbox. We now check if the length of the already existing
clientSpamTrainingData is smaller than the number of relevant mails
for training when training from scratch.

Co-authored-by: abp <abp@tutao.de>
2025-11-20 13:14:31 +01:00

478 lines
22 KiB
TypeScript

import o from "@tutao/otest"
import {
SINGLE_TRAIN_INTERVAL_TRAINING_DATA_LIMIT,
SpamClassificationDataDealer,
UnencryptedPopulateClientSpamTrainingDatum,
} from "../../../../../../src/mail-app/workerUtils/spamClassification/SpamClassificationDataDealer"
import {
ClientSpamTrainingDatum,
ClientSpamTrainingDatumIndexEntryTypeRef,
ClientSpamTrainingDatumTypeRef,
MailBagTypeRef,
MailBox,
MailboxGroupRoot,
MailboxGroupRootTypeRef,
MailBoxTypeRef,
MailDetails,
MailDetailsTypeRef,
MailFolderRefTypeRef,
MailFolderTypeRef,
MailTypeRef,
} from "../../../../../../src/common/api/entities/tutanota/TypeRefs"
import { MailSetKind, SpamDecision } from "../../../../../../src/common/api/common/TutanotaConstants"
import { matchers, object, verify, when } from "testdouble"
import { EntityClient } from "../../../../../../src/common/api/common/EntityClient"
import { BulkMailLoader } from "../../../../../../src/mail-app/workerUtils/index/BulkMailLoader"
import { MailFacade } from "../../../../../../src/common/api/worker/facades/lazy/MailFacade"
import { createTestEntity } from "../../../../TestUtils"
import { GENERATED_MIN_ID, getElementId, isSameId } from "../../../../../../src/common/api/common/utils/EntityUtils"
import { DEFAULT_IS_SPAM_CONFIDENCE } from "../../../../../../src/common/api/common/utils/spamClassificationUtils/SpamMailProcessor"
import { last } from "@tutao/tutanota-utils"
const { anything } = matchers
function createMailByFolderAndReceivedDate(mailId: IdTuple, mailSet: IdTuple, receivedDate: Date, mailDetailsId: Id) {
return createTestEntity(MailTypeRef, {
_id: mailId,
sets: [mailSet],
receivedDate: receivedDate,
mailDetails: ["detailsListId", mailDetailsId],
})
}
function createSpamTrainingDatumByConfidenceAndDecision(
confidence: string,
spamDecision: SpamDecision,
id: IdTuple = ["listId", "elementId"],
): ClientSpamTrainingDatum {
return createTestEntity(ClientSpamTrainingDatumTypeRef, {
_id: id,
_ownerGroup: "group",
confidence,
spamDecision,
vector: new Uint8Array(),
})
}
function createClientSpamTrainingDatumIndexEntryByClientSpamTrainingDatumElementId(clientSpamTrainingDatumElementId: Id) {
return createTestEntity(ClientSpamTrainingDatumIndexEntryTypeRef, { clientSpamTrainingDatumElementId })
}
o.spec("SpamClassificationDataDealer", () => {
const entityClientMock = object<EntityClient>()
const bulkMailLoaderMock = object<BulkMailLoader>()
const mailFacadeMock = object<MailFacade>()
let mailDetails: MailDetails
let spamClassificationDataDealer: SpamClassificationDataDealer
let mailboxGroupRoot: MailboxGroupRoot
let mailBox: MailBox
const inboxFolder = createTestEntity(MailFolderTypeRef, {
_id: ["folderListId", "inbox"],
_ownerGroup: "owner",
folderType: MailSetKind.INBOX,
})
const trashFolder = createTestEntity(MailFolderTypeRef, {
_id: ["folderListId", "trash"],
_ownerGroup: "owner",
folderType: MailSetKind.TRASH,
})
const spamFolder = createTestEntity(MailFolderTypeRef, {
_id: ["folderListId", "spam"],
_ownerGroup: "owner",
folderType: MailSetKind.SPAM,
})
o.beforeEach(function () {
mailboxGroupRoot = createTestEntity(MailboxGroupRootTypeRef, {
_ownerGroup: "owner",
mailbox: "mailbox",
})
mailBox = createTestEntity(MailBoxTypeRef, {
_id: "mailbox",
_ownerGroup: "owner",
folders: createTestEntity(MailFolderRefTypeRef, { folders: "folderListId" }),
currentMailBag: createTestEntity(MailBagTypeRef, { mails: "mailListId" }),
archivedMailBags: [createTestEntity(MailBagTypeRef, { mails: "oldMailListId" })],
clientSpamTrainingData: "clientSpamTrainingData",
modifiedClientSpamTrainingDataIndex: "modifiedClientSpamTrainingDataIndex",
})
mailDetails = createTestEntity(MailDetailsTypeRef, { _id: "mailDetail" })
when(mailFacadeMock.vectorizeAndCompressMails(anything())).thenResolve(new Uint8Array(1))
spamClassificationDataDealer = new SpamClassificationDataDealer(
entityClientMock,
() => Promise.resolve(bulkMailLoaderMock),
() => Promise.resolve(mailFacadeMock),
)
})
o.spec("subsampleHamAndSpamMails", () => {
o("does not subsample if ratio is balanced", () => {
const data = [
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST),
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST),
]
const { subsampledTrainingData, hamCount, spamCount } = spamClassificationDataDealer.subsampleHamAndSpamMails(data)
o(subsampledTrainingData.length).equals(2)
o(hamCount).equals(1)
o(spamCount).equals(1)
})
o("limits ham when ratio > MAX_RATIO", () => {
const hamData = Array.from({ length: 50 }, () => createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST))
const spamData = Array.from({ length: 1 }, () => createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST))
const { subsampledTrainingData, hamCount, spamCount } = spamClassificationDataDealer.subsampleHamAndSpamMails([...hamData, ...spamData])
o(hamCount).equals(10)
o(spamCount).equals(1)
o(subsampledTrainingData.length).equals(11)
})
o("limits spam when ratio < MIN_RATIO", () => {
const hamData = Array.from({ length: 1 }, () => createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST))
const spamData = Array.from({ length: 50 }, () =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST),
)
const { subsampledTrainingData, hamCount, spamCount } = spamClassificationDataDealer.subsampleHamAndSpamMails([...hamData, ...spamData])
o(hamCount).equals(1)
o(spamCount).equals(10)
o(subsampledTrainingData.length).equals(11)
})
})
o.spec("fetchAllTrainingData", () => {
o("returns empty training data when index or training data is null", async () => {
mailBox.clientSpamTrainingData = null
mailBox.modifiedClientSpamTrainingDataIndex = null
when(entityClientMock.load(MailboxGroupRootTypeRef, "owner")).thenResolve(mailboxGroupRoot)
when(entityClientMock.load(MailBoxTypeRef, "mailbox")).thenResolve(mailBox)
const trainingDataset = await spamClassificationDataDealer.fetchAllTrainingData("owner")
o(trainingDataset.trainingData.length).equals(0)
o(trainingDataset.hamCount).equals(0)
o(trainingDataset.spamCount).equals(0)
o(trainingDataset.lastTrainingDataIndexId).equals(GENERATED_MIN_ID)
})
o("uploads training data when clientSpamTrainingData is empty", async () => {
when(entityClientMock.load(MailboxGroupRootTypeRef, "owner")).thenResolve(mailboxGroupRoot)
when(entityClientMock.load(MailBoxTypeRef, "mailbox")).thenResolve(mailBox)
const mails = Array.from({ length: 10 }, (_, index) =>
createMailByFolderAndReceivedDate([mailBox.currentMailBag!.mails, "inboxMailId" + index], inboxFolder._id, new Date(), mailDetails._id),
).concat(
Array.from({ length: 10 }, (_, index) =>
createMailByFolderAndReceivedDate([mailBox.currentMailBag!.mails, "spamMailId" + index], spamFolder._id, new Date(), mailDetails._id),
),
)
const spamTrainingData = Array.from({ length: 10 }, (_, index) =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST, [
mailBox.clientSpamTrainingData!,
getElementId(mails[index]),
]),
).concat(
Array.from({ length: 10 }, (_, index) =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST, [
mailBox.clientSpamTrainingData!,
getElementId(mails[10 + index]),
]),
),
)
const modifiedIndicesSinceStart = spamTrainingData.map((data) =>
createClientSpamTrainingDatumIndexEntryByClientSpamTrainingDatumElementId(getElementId(data)),
)
when(entityClientMock.loadAll(ClientSpamTrainingDatumTypeRef, mailBox.clientSpamTrainingData!)).thenResolve([], spamTrainingData)
when(entityClientMock.loadAll(MailTypeRef, mailBox.currentMailBag!.mails, anything())).thenResolve(mails)
when(entityClientMock.loadAll(MailTypeRef, mailBox.archivedMailBags[0].mails, anything())).thenResolve([])
when(entityClientMock.loadAll(MailFolderTypeRef, mailBox.folders!.folders)).thenResolve([inboxFolder, spamFolder, trashFolder])
when(entityClientMock.loadAll(ClientSpamTrainingDatumIndexEntryTypeRef, mailBox.modifiedClientSpamTrainingDataIndex!)).thenResolve(
modifiedIndicesSinceStart,
)
when(bulkMailLoaderMock.loadMailDetails(mails)).thenResolve(
mails.map((mail) => {
return { mail, mailDetails }
}),
)
const trainingDataset = await spamClassificationDataDealer.fetchAllTrainingData("owner")
// first load: empty, second load: fetch uploaded data
verify(entityClientMock.loadAll(ClientSpamTrainingDatumTypeRef, mailBox.clientSpamTrainingData!), { times: 2 })
verify(entityClientMock.loadAll(ClientSpamTrainingDatumIndexEntryTypeRef, mailBox.modifiedClientSpamTrainingDataIndex!), { times: 1 })
const unencryptedPayload = mails.map((mail) => {
return {
mailId: mail._id,
isSpam: isSameId(mail.sets[0], spamFolder._id),
confidence: DEFAULT_IS_SPAM_CONFIDENCE,
vector: new Uint8Array(1),
} as UnencryptedPopulateClientSpamTrainingDatum
})
verify(mailFacadeMock.populateClientSpamTrainingData("owner", unencryptedPayload), { times: 1 })
o(trainingDataset).deepEquals({
trainingData: spamTrainingData,
lastTrainingDataIndexId: getElementId(last(modifiedIndicesSinceStart)!),
hamCount: 10,
spamCount: 10,
})
})
o("uploads training data when clientSpamTrainingData does not include all relevant mails", async () => {
when(entityClientMock.load(MailboxGroupRootTypeRef, "owner")).thenResolve(mailboxGroupRoot)
when(entityClientMock.load(MailBoxTypeRef, "mailbox")).thenResolve(mailBox)
const relevantMails = Array.from({ length: 40 }, (_, index) =>
createMailByFolderAndReceivedDate([mailBox.currentMailBag!.mails, "inboxMailId" + index], inboxFolder._id, new Date(), mailDetails._id),
).concat(
Array.from({ length: 40 }, (_, index) =>
createMailByFolderAndReceivedDate([mailBox.currentMailBag!.mails, "spamMailId" + index], spamFolder._id, new Date(), mailDetails._id),
),
)
const existingSpamTrainingData = Array.from({ length: 20 }, (_, index) =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST, [
mailBox.clientSpamTrainingData!,
getElementId(relevantMails[index]),
]),
).concat(
Array.from({ length: 20 }, (_, index) =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST, [
mailBox.clientSpamTrainingData!,
getElementId(relevantMails[40 + index]),
]),
),
)
const updatedSpamTrainingData = Array.from({ length: 40 }, (_, index) =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST, [
mailBox.clientSpamTrainingData!,
getElementId(relevantMails[index]),
]),
).concat(
Array.from({ length: 40 }, (_, index) =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST, [
mailBox.clientSpamTrainingData!,
getElementId(relevantMails[40 + index]),
]),
),
)
const modifiedIndicesSinceStart = updatedSpamTrainingData.map((data) =>
createClientSpamTrainingDatumIndexEntryByClientSpamTrainingDatumElementId(getElementId(data)),
)
when(entityClientMock.loadAll(ClientSpamTrainingDatumTypeRef, mailBox.clientSpamTrainingData!)).thenResolve(
existingSpamTrainingData,
updatedSpamTrainingData,
)
when(entityClientMock.loadAll(MailTypeRef, mailBox.currentMailBag!.mails, anything())).thenResolve(relevantMails)
when(entityClientMock.loadAll(MailTypeRef, mailBox.archivedMailBags[0].mails, anything())).thenResolve([])
when(entityClientMock.loadAll(MailFolderTypeRef, mailBox.folders!.folders)).thenResolve([inboxFolder, spamFolder, trashFolder])
when(entityClientMock.loadAll(ClientSpamTrainingDatumIndexEntryTypeRef, mailBox.modifiedClientSpamTrainingDataIndex!)).thenResolve(
modifiedIndicesSinceStart,
)
when(bulkMailLoaderMock.loadMailDetails(relevantMails)).thenResolve(
relevantMails.map((mail) => {
return { mail, mailDetails }
}),
)
const trainingDataset = await spamClassificationDataDealer.fetchAllTrainingData("owner")
// first load: empty, second load: fetch uploaded data
verify(entityClientMock.loadAll(ClientSpamTrainingDatumTypeRef, mailBox.clientSpamTrainingData!), { times: 2 })
verify(entityClientMock.loadAll(ClientSpamTrainingDatumIndexEntryTypeRef, mailBox.modifiedClientSpamTrainingDataIndex!), { times: 1 })
const expectedUploadMailsHam = relevantMails.slice(20, 40)
const expectedUploadMailsSpam = relevantMails.slice(60, 80)
const unencryptedPayload = expectedUploadMailsHam.concat(expectedUploadMailsSpam).map((mail) => {
return {
mailId: mail._id,
isSpam: isSameId(mail.sets[0], spamFolder._id),
confidence: DEFAULT_IS_SPAM_CONFIDENCE,
vector: new Uint8Array(1),
} as UnencryptedPopulateClientSpamTrainingDatum
})
verify(mailFacadeMock.populateClientSpamTrainingData("owner", unencryptedPayload), { times: 1 })
o(trainingDataset).deepEquals({
trainingData: updatedSpamTrainingData,
lastTrainingDataIndexId: getElementId(last(modifiedIndicesSinceStart)!),
hamCount: 40,
spamCount: 40,
})
})
o("successfully returns training data with mixed ham/spam data", async () => {
when(entityClientMock.load(MailboxGroupRootTypeRef, "owner")).thenResolve(mailboxGroupRoot)
when(entityClientMock.load(MailBoxTypeRef, "mailbox")).thenResolve(mailBox)
when(entityClientMock.loadAll(MailTypeRef, anything(), anything())).thenResolve([])
const spamTrainingData = Array.from({ length: 10 }, () =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST),
).concat(Array.from({ length: 10 }, () => createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST)))
const modifiedIndicesSinceStart = spamTrainingData.map((data) =>
createClientSpamTrainingDatumIndexEntryByClientSpamTrainingDatumElementId(getElementId(data)),
)
when(entityClientMock.loadAll(ClientSpamTrainingDatumTypeRef, mailBox.clientSpamTrainingData!)).thenResolve(spamTrainingData)
when(entityClientMock.loadAll(MailFolderTypeRef, mailBox.folders!.folders)).thenResolve([inboxFolder, spamFolder, trashFolder])
when(entityClientMock.loadAll(ClientSpamTrainingDatumIndexEntryTypeRef, mailBox.modifiedClientSpamTrainingDataIndex!)).thenResolve(
modifiedIndicesSinceStart,
)
const trainingDataset = await spamClassificationDataDealer.fetchAllTrainingData("owner")
// only one load as the list is already populated
verify(entityClientMock.loadAll(ClientSpamTrainingDatumTypeRef, mailBox.clientSpamTrainingData!), { times: 1 })
verify(entityClientMock.loadAll(ClientSpamTrainingDatumIndexEntryTypeRef, mailBox.modifiedClientSpamTrainingDataIndex!), { times: 1 })
o(trainingDataset).deepEquals({
trainingData: spamTrainingData,
lastTrainingDataIndexId: getElementId(last(modifiedIndicesSinceStart)!),
hamCount: 10,
spamCount: 10,
})
})
o("filters out training data with confidence=0 or spamDecision NONE", async () => {
const noneDecisionData = createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.NONE)
const zeroConfData = createSpamTrainingDatumByConfidenceAndDecision("0", SpamDecision.WHITELIST)
const validHamData = createSpamTrainingDatumByConfidenceAndDecision("1", SpamDecision.WHITELIST)
const validSpamData = createSpamTrainingDatumByConfidenceAndDecision("4", SpamDecision.BLACKLIST)
when(entityClientMock.load(MailboxGroupRootTypeRef, "owner")).thenResolve(mailboxGroupRoot)
when(entityClientMock.load(MailBoxTypeRef, "mailbox")).thenResolve(mailBox)
when(entityClientMock.loadAll(MailTypeRef, anything(), anything())).thenResolve([])
const spamTrainingData = [noneDecisionData, zeroConfData, validSpamData, validHamData]
const modifiedIndicesSinceStart = spamTrainingData.map((data) =>
createClientSpamTrainingDatumIndexEntryByClientSpamTrainingDatumElementId(getElementId(data)),
)
when(entityClientMock.loadAll(ClientSpamTrainingDatumTypeRef, mailBox.clientSpamTrainingData!)).thenResolve(spamTrainingData)
when(entityClientMock.loadAll(ClientSpamTrainingDatumIndexEntryTypeRef, mailBox.modifiedClientSpamTrainingDataIndex!)).thenResolve(
modifiedIndicesSinceStart,
)
when(entityClientMock.loadAll(MailFolderTypeRef, mailBox.folders!.folders)).thenResolve([inboxFolder, spamFolder, trashFolder])
const result = await spamClassificationDataDealer.fetchAllTrainingData("owner")
o(result.trainingData.length).equals(2)
o(result.spamCount).equals(1)
o(result.hamCount).equals(1)
o(new Set(result.trainingData)).deepEquals(new Set([validSpamData, validHamData]))
})
})
o.spec("fetchPartialTrainingDataFromIndexStartId", () => {
o("returns empty training data when index or training data is null", async () => {
mailBox.clientSpamTrainingData = null
mailBox.modifiedClientSpamTrainingDataIndex = null
when(entityClientMock.load(MailboxGroupRootTypeRef, "owner")).thenResolve(mailboxGroupRoot)
when(entityClientMock.load(MailBoxTypeRef, "mailbox")).thenResolve(mailBox)
const trainingDataset = await spamClassificationDataDealer.fetchPartialTrainingDataFromIndexStartId("startId", "owner")
o(trainingDataset.trainingData.length).equals(0)
o(trainingDataset.hamCount).equals(0)
o(trainingDataset.spamCount).equals(0)
o(trainingDataset.lastTrainingDataIndexId).equals("startId")
})
o("returns empty training data when modifiedClientSpamTrainingDataIndicesSinceStart are null", async () => {
when(entityClientMock.load(MailboxGroupRootTypeRef, "owner")).thenResolve(mailboxGroupRoot)
when(entityClientMock.load(MailBoxTypeRef, "mailbox")).thenResolve(mailBox)
when(
entityClientMock.loadRange(
ClientSpamTrainingDatumIndexEntryTypeRef,
mailBox.modifiedClientSpamTrainingDataIndex!,
"startId",
SINGLE_TRAIN_INTERVAL_TRAINING_DATA_LIMIT,
false,
),
).thenResolve([])
const trainingDataset = await spamClassificationDataDealer.fetchPartialTrainingDataFromIndexStartId("startId", "owner")
o(trainingDataset.trainingData.length).equals(0)
o(trainingDataset.hamCount).equals(0)
o(trainingDataset.spamCount).equals(0)
o(trainingDataset.lastTrainingDataIndexId).equals("startId")
})
o("returns new training data when index or training data is there", async () => {
when(entityClientMock.load(MailboxGroupRootTypeRef, "owner")).thenResolve(mailboxGroupRoot)
when(entityClientMock.load(MailBoxTypeRef, "mailbox")).thenResolve(mailBox)
const oldSpamTrainingData = Array.from({ length: 50 }, () =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST),
).concat(Array.from({ length: 50 }, () => createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST)))
oldSpamTrainingData.map((data) => (data._id = [mailBox.clientSpamTrainingData!, GENERATED_MIN_ID]))
const newSpamTrainingData = Array.from({ length: 10 }, () =>
createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.WHITELIST),
).concat(Array.from({ length: 10 }, () => createSpamTrainingDatumByConfidenceAndDecision(DEFAULT_IS_SPAM_CONFIDENCE, SpamDecision.BLACKLIST)))
newSpamTrainingData.map((data) => (data._id = [mailBox.clientSpamTrainingData!, GENERATED_MIN_ID]))
const modifiedIndicesSinceStart = newSpamTrainingData.map((data) =>
createClientSpamTrainingDatumIndexEntryByClientSpamTrainingDatumElementId(getElementId(data)),
)
when(
entityClientMock.loadRange(
ClientSpamTrainingDatumIndexEntryTypeRef,
mailBox.modifiedClientSpamTrainingDataIndex!,
"startId",
anything(),
false,
),
).thenResolve(modifiedIndicesSinceStart)
when(
entityClientMock.loadMultiple(
ClientSpamTrainingDatumTypeRef,
mailBox.clientSpamTrainingData,
modifiedIndicesSinceStart.map((index) => index.clientSpamTrainingDatumElementId),
),
).thenResolve(newSpamTrainingData)
const trainingDataset = await spamClassificationDataDealer.fetchPartialTrainingDataFromIndexStartId("startId", "owner")
o(trainingDataset.trainingData.length).equals(20)
o(trainingDataset.hamCount).equals(10)
o(trainingDataset.spamCount).equals(10)
o(trainingDataset.lastTrainingDataIndexId).equals(getElementId(last(modifiedIndicesSinceStart)!))
})
})
o.spec("fetchMailsByMailbagAfterDate", () => {
o("correctly filters mails with received date greater than start date", async () => {
const startDate = new Date(2020, 11, 30)
const dayBeforeStart = new Date(2020, 11, 29)
const recentMails = Array.from({ length: 10 }, () =>
createMailByFolderAndReceivedDate([mailBox.currentMailBag!.mails, "inboxMailId"], inboxFolder._id, new Date(2025, 11, 17), mailDetails._id),
)
const oldMails = Array.from({ length: 10 }, () =>
createMailByFolderAndReceivedDate([mailBox.currentMailBag!.mails, "inboxMailId"], inboxFolder._id, dayBeforeStart, mailDetails._id),
)
const mails = recentMails.concat(oldMails)
when(entityClientMock.loadAll(MailTypeRef, mailBox.currentMailBag!.mails, anything())).thenResolve(mails)
when(bulkMailLoaderMock.loadMailDetails(recentMails)).thenResolve(
recentMails.map((mail) => {
return { mail, mailDetails }
}),
)
const result = await spamClassificationDataDealer.fetchMailsByMailbagAfterDate(
mailBox.currentMailBag!,
[inboxFolder, spamFolder, trashFolder],
startDate,
)
o(result.length).equals(10)
})
})
})