* Combine _GUARD_GLOBALS_VERSION_PUSH_KEYS and _LOAD_GLOBAL_MODULE_FROM_KEYS into _LOAD_GLOBAL_MODULE
* Combine _GUARD_BUILTINS_VERSION_PUSH_KEYS and _LOAD_GLOBAL_BUILTINS_FROM_KEYS into _LOAD_GLOBAL_BUILTINS
* Combine _CHECK_ATTR_MODULE_PUSH_KEYS and _LOAD_ATTR_MODULE_FROM_KEYS into _LOAD_ATTR_MODULE
* Remove stack transient in LOAD_ATTR_WITH_HINT
Move deprecated PyUnicode API docs to new section
Move Py_UNICODE to a new "Deprecated API" section.
Formally soft-deprecate PyUnicode_READY, and move it
Document and soft-deprecate PyUnicode_IS_READY, and move it
Document PyUnicode_IS_ASCII, PyUnicode_CHECK_INTERNED
PyUnicode_New docs: Clarify requirements for "fresh" strings
PyUnicodeWriter_DecodeUTF8Stateful: Link "error-handlers"
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Windows and macOS require precomputing a "timebase" in order to convert
OS timestamps into nanoseconds. Retrieve and compute this value during
runtime initialization to avoid data races when accessing the time.
The `free_work_item()` function in QSBR may call arbitrary code via
Python object destructors, which may reenter the QSBR code. Reorder
the processing of work items to be robust to reentrancy.
Also fix the TODO for the out of memory situation.
The use of PySys_GetObject() and _PySys_GetAttr(), which return a borrowed
reference, has been replaced by using one of the following functions, which
return a strong reference and distinguish a missing attribute from an error:
_PySys_GetOptionalAttr(), _PySys_GetOptionalAttrString(),
_PySys_GetRequiredAttr(), and _PySys_GetRequiredAttrString().
This fixes a fairly subtle bug involving finalizers and resurrection in
debug free threaded builds: if `_PyObject_ResurrectEnd` returns `1`
(i.e., the object was resurrected by a finalizer), it's not safe to
access the object because it might still be deallocated. For example:
* The finalizer may have exposed the object to another thread. That
thread may hold the last reference and concurrently deallocate it any
time after `_PyObject_ResurrectEnd()` returns `1`.
* `_PyObject_ResurrectEnd()` may call `_Py_brc_queue_object()`, which
may internally deallocate the object immediately if the owning thread
is dead.
Therefore, it's important not to access the object after it's
resurrected. We only violate this in two cases, and only in debug
builds:
* We assert that the object is tracked appropriately. This is now moved
up betewen the finalizer and the `_PyObject_ResurrectEnd()` call.
* The `--with-trace-refs` builds may need to remember the object if
it's resurrected. This is now handled by `_PyObject_ResurrectStart()`
and `_PyObject_ResurrectEnd()`.
Note that `--with-trace-refs` is currently disabled in `--disable-gil`
builds because the refchain hash table isn't thread-safe, but this
refactoring avoids an additional thread-safety issue.
* Implement C recursion protection with limit pointers for Linux, MacOS and Windows
* Remove calls to PyOS_CheckStack
* Add stack protection to parser
* Make tests more robust to low stacks
* Improve error messages for stack overflow
Revert "GH-91079: Implement C stack limits using addresses, not counters. (GH-130007)" for now
Unfortunatlely, the change broke some buildbots.
This reverts commit 2498c22fa0.
CPython current temporarily changes `PYMEM_DOMAIN_RAW` to the default
allocator during initialization and shutdown. The motivation is to
ensure that core runtime structures are allocated and freed using the
same allocator. However, modifying the current allocator changes global
state and is not thread-safe even with the GIL. Other threads may be
allocating or freeing objects use PYMEM_DOMAIN_RAW; they are not
required to hold the GIL to call PyMem_RawMalloc/PyMem_RawFree.
This adds new internal-only functions like `_PyMem_DefaultRawMalloc`
that aren't affected by calls to `PyMem_SetAllocator()`, so they're
appropriate for Python runtime initialization and finalization. Use
these calls in places where we previously swapped to the default raw
allocator.
Deprecate private C API functions:
* _PyUnicodeWriter_Init()
* _PyUnicodeWriter_Finish()
* _PyUnicodeWriter_Dealloc()
* _PyUnicodeWriter_WriteChar()
* _PyUnicodeWriter_WriteStr()
* _PyUnicodeWriter_WriteSubstring()
* _PyUnicodeWriter_WriteASCIIString()
* _PyUnicodeWriter_WriteLatin1String()
These functions are not deprecated in the internal C API (if the
Py_BUILD_CORE macro is defined).
* Implement C recursion protection with limit pointers
* Remove calls to PyOS_CheckStack
* Add stack protection to parser
* Make tests more robust to low stacks
* Improve error messages for stack overflow
* gh-129701: Fix a data race in `intern_common` in the free threaded build
* Use a mutex to avoid potentially returning a non-immortalized string,
because immortalization happens after the insertion into the interned
dict.
* Use `Py_DECREF()` calls instead of `Py_SET_REFCNT(s, Py_REFCNT(s) - 2)`
for thread-safety. This code path isn't performance sensistive, so
just use `Py_DECREF()` unconditionally for simplicity.
Use an atomic operation when setting
`_PyRuntime.signals.unhandled_keyboard_interrupt`. We now only clear the
variable at the start of `_PyRun_Main`, which is the same function where
we check it.
This avoids race conditions where previously another thread might call
`run_eval_code_obj()` and erroneously clear the unhandled keyboard
interrupt.
The MemoryError freelist was not thread-safe in the free threaded build.
Use a mutex to protect accesses to the freelist. Unlike other freelists,
the MemoryError freelist is not performance sensitive.
Implement PyUnicode_KIND() and PyUnicode_DATA() as function, in
addition to the macros with the same names. The macros rely on C bit
fields which have compiler-specific layout.
The stack pointers in interpreter frames are nearly always valid now, so
use them when visiting each thread's frame. For now, don't collect
objects with deferred references in the rare case that we see a frame
with a NULL stack pointer.
Use relative includes in Include/cpython/pyatomic.h for
pyatomic_gcc.h, pyatomic_std.h and pyatomic_msc.h.
Do a similar change in Include/cpython/pythread.h for
pthread_stubs.h include.
This exposes `_Py_TryIncref` as `PyUnstable_TryIncref()` and the helper
function `_PyObject_SetMaybeWeakref` as `PyUnstable_EnableTryIncRef`.
These are helpers for dealing with unowned references in a safe way,
particularly in the free threading build.
Co-authored-by: Petr Viktorin <encukou@gmail.com>
This reduces the size of _PyInterpreterFrame by 8 bytes on 64-bit
platforms using the free threading build due to alignment requirements.
This allows for slightly more recursive calls into the interpreter (from
C), but `test_call.test_super_deep` still crashes.
* Remove all 'if (0)' and 'if (1)' conditional stack effects
* Use array instead of conditional for BUILD_SLICE args
* Refactor LOAD_GLOBAL to use a common conditional uop
* Remove conditional stack effects from LOAD_ATTR specializations
* Replace conditional stack effects in LOAD_ATTR with a 0 or 1 sized array.
* Remove conditional stack effects from CALL_FUNCTION_EX