2015-03-27 13:41:30 -07:00
|
|
|
// Copyright 2015 The Go Authors. All rights reserved.
|
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
|
|
package ssa
|
|
|
|
|
|
2016-02-08 12:07:39 -05:00
|
|
|
import (
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
"cmd/compile/internal/types"
|
cmd/compile: assign and preserve statement boundaries.
A new pass run after ssa building (before any other
optimization) identifies the "first" ssa node for each
statement. Other "noise" nodes are tagged as being never
appropriate for a statement boundary (e.g., VarKill, VarDef,
Phi).
Rewrite, deadcode, cse, and nilcheck are modified to move
the statement boundaries forward whenever possible if a
boundary-tagged ssa value is removed; never-boundary nodes
are ignored in this search (some operations involving
constants are also tagged as never-boundary and also ignored
because they are likely to be moved or removed during
optimization).
Code generation treats all nodes except those explicitly
marked as statement boundaries as "not statement" nodes,
and floats statement boundaries to the beginning of each
same-line run of instructions found within a basic block.
Line number html conversion was modified to make statement
boundary nodes a bit more obvious by prepending a "+".
The code in fuse.go that glued together the value slices
of two blocks produced a result that depended on the
former capacities (not lengths) of the two slices. This
causes differences in the 386 bootstrap, and also can
sometimes put values into an order that does a worse job
of preserving statement boundaries when values are removed.
Portions of two delve tests that had caught problems were
incorporated into ssa/debug_test.go. There are some
opportunities to do better with optimized code, but the
next-ing is not lying or overly jumpy.
Over 4 CLs, compilebench geomean measured binary size
increase of 3.5% and compile user time increase of 3.8%
(this is after optimization to reuse a sparse map instead
of creating multiple maps.)
This CL worsens the optimized-debugging experience with
Delve; we need to work with the delve team so that
they can use the is_stmt marks that we're emitting now.
The reference output changes from time to time depending
on other changes in the compiler, sometimes better,
sometimes worse.
This CL now includes a test ensuring that 99+% of the lines
in the Go command itself (a handy optimized binary) include
is_stmt markers.
Change-Id: I359c94e06843f1eb41f9da437bd614885aa9644a
Reviewed-on: https://go-review.googlesource.com/102435
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
2018-03-23 22:46:06 -04:00
|
|
|
"cmd/internal/src"
|
2016-02-08 12:07:39 -05:00
|
|
|
"fmt"
|
|
|
|
|
"sort"
|
|
|
|
|
)
|
2015-03-27 13:41:30 -07:00
|
|
|
|
|
|
|
|
// cse does common-subexpression elimination on the Function.
|
2016-03-01 23:21:55 +00:00
|
|
|
// Values are just relinked, nothing is deleted. A subsequent deadcode
|
2015-03-27 13:41:30 -07:00
|
|
|
// pass is required to actually remove duplicate expressions.
|
|
|
|
|
func cse(f *Func) {
|
|
|
|
|
// Two values are equivalent if they satisfy the following definition:
|
|
|
|
|
// equivalent(v, w):
|
|
|
|
|
// v.op == w.op
|
|
|
|
|
// v.type == w.type
|
|
|
|
|
// v.aux == w.aux
|
2015-06-23 16:44:06 -07:00
|
|
|
// v.auxint == w.auxint
|
2015-03-27 13:41:30 -07:00
|
|
|
// len(v.args) == len(w.args)
|
2015-07-20 18:50:17 -07:00
|
|
|
// v.block == w.block if v.op == OpPhi
|
2015-03-27 13:41:30 -07:00
|
|
|
// equivalent(v.args[i], w.args[i]) for i in 0..len(v.args)-1
|
|
|
|
|
|
|
|
|
|
// The algorithm searches for a partition of f's values into
|
|
|
|
|
// equivalence classes using the above definition.
|
|
|
|
|
// It starts with a coarse partition and iteratively refines it
|
|
|
|
|
// until it reaches a fixed point.
|
|
|
|
|
|
2016-01-27 16:47:23 -08:00
|
|
|
// Make initial coarse partitions by using a subset of the conditions above.
|
|
|
|
|
a := make([]*Value, 0, f.NumValues())
|
2017-02-09 10:45:35 -08:00
|
|
|
if f.auxmap == nil {
|
|
|
|
|
f.auxmap = auxmap{}
|
|
|
|
|
}
|
2015-03-27 13:41:30 -07:00
|
|
|
for _, b := range f.Blocks {
|
|
|
|
|
for _, v := range b.Values {
|
2016-01-27 16:47:23 -08:00
|
|
|
if v.Type.IsMemory() {
|
|
|
|
|
continue // memory values can never cse
|
2015-07-20 18:50:17 -07:00
|
|
|
}
|
2017-02-09 10:45:35 -08:00
|
|
|
if f.auxmap[v.Aux] == 0 {
|
|
|
|
|
f.auxmap[v.Aux] = int32(len(f.auxmap)) + 1
|
|
|
|
|
}
|
2016-01-27 16:47:23 -08:00
|
|
|
a = append(a, v)
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
|
|
|
|
}
|
2017-02-09 10:45:35 -08:00
|
|
|
partition := partitionValues(a, f.auxmap)
|
2015-03-27 13:41:30 -07:00
|
|
|
|
|
|
|
|
// map from value id back to eqclass id
|
2016-01-27 16:47:23 -08:00
|
|
|
valueEqClass := make([]ID, f.NumValues())
|
|
|
|
|
for _, b := range f.Blocks {
|
|
|
|
|
for _, v := range b.Values {
|
|
|
|
|
// Use negative equivalence class #s for unique values.
|
|
|
|
|
valueEqClass[v.ID] = -v.ID
|
|
|
|
|
}
|
|
|
|
|
}
|
2016-10-04 14:35:45 -07:00
|
|
|
var pNum ID = 1
|
|
|
|
|
for _, e := range partition {
|
[dev.ssa] cmd/compile: enhance command line option processing for SSA
The -d compiler flag can also specify ssa phase and flag,
for example -d=ssa/generic_cse/time,ssa/generic_cse/stats
Spaces in the phase names can be specified with an
underscore. Flags currently parsed (not necessarily
recognized by the phases yet) are:
on, off, mem, time, debug, stats, and test
On, off and time are handled in the harness,
debug, stats, and test are interpreted by the phase itself.
The pass is now attached to the Func being compiled, and a
new method logStats(key, ...value) on *Func to encourage a
semi-standardized format for that output. Output fields
are separated by tabs to ease digestion by awk and
spreadsheets. For example,
if f.pass.stats > 0 {
f.logStat("CSE REWRITES", rewrites)
}
Change-Id: I16db2b5af64c50ca9a47efeb51d961147a903abc
Reviewed-on: https://go-review.googlesource.com/19885
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Todd Neal <todd@tneal.org>
2016-02-25 13:10:51 -05:00
|
|
|
if f.pass.debug > 1 && len(e) > 500 {
|
2016-02-10 19:39:32 -06:00
|
|
|
fmt.Printf("CSE.large partition (%d): ", len(e))
|
|
|
|
|
for j := 0; j < 3; j++ {
|
|
|
|
|
fmt.Printf("%s ", e[j].LongString())
|
|
|
|
|
}
|
|
|
|
|
fmt.Println()
|
|
|
|
|
}
|
|
|
|
|
|
2015-03-27 13:41:30 -07:00
|
|
|
for _, v := range e {
|
2016-10-04 14:35:45 -07:00
|
|
|
valueEqClass[v.ID] = pNum
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
[dev.ssa] cmd/compile: enhance command line option processing for SSA
The -d compiler flag can also specify ssa phase and flag,
for example -d=ssa/generic_cse/time,ssa/generic_cse/stats
Spaces in the phase names can be specified with an
underscore. Flags currently parsed (not necessarily
recognized by the phases yet) are:
on, off, mem, time, debug, stats, and test
On, off and time are handled in the harness,
debug, stats, and test are interpreted by the phase itself.
The pass is now attached to the Func being compiled, and a
new method logStats(key, ...value) on *Func to encourage a
semi-standardized format for that output. Output fields
are separated by tabs to ease digestion by awk and
spreadsheets. For example,
if f.pass.stats > 0 {
f.logStat("CSE REWRITES", rewrites)
}
Change-Id: I16db2b5af64c50ca9a47efeb51d961147a903abc
Reviewed-on: https://go-review.googlesource.com/19885
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Todd Neal <todd@tneal.org>
2016-02-25 13:10:51 -05:00
|
|
|
if f.pass.debug > 2 && len(e) > 1 {
|
2016-10-04 14:35:45 -07:00
|
|
|
fmt.Printf("CSE.partition #%d:", pNum)
|
2016-02-08 12:07:39 -05:00
|
|
|
for _, v := range e {
|
|
|
|
|
fmt.Printf(" %s", v.String())
|
|
|
|
|
}
|
|
|
|
|
fmt.Printf("\n")
|
|
|
|
|
}
|
2016-10-04 14:35:45 -07:00
|
|
|
pNum++
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
|
|
|
|
|
2016-10-04 14:35:45 -07:00
|
|
|
// Split equivalence classes at points where they have
|
|
|
|
|
// non-equivalent arguments. Repeat until we can't find any
|
|
|
|
|
// more splits.
|
|
|
|
|
var splitPoints []int
|
2016-10-26 22:05:20 -07:00
|
|
|
byArgClass := new(partitionByArgClass) // reuseable partitionByArgClass to reduce allocations
|
2015-03-27 13:41:30 -07:00
|
|
|
for {
|
|
|
|
|
changed := false
|
|
|
|
|
|
2015-07-15 14:38:19 -06:00
|
|
|
// partition can grow in the loop. By not using a range loop here,
|
|
|
|
|
// we process new additions as they arrive, avoiding O(n^2) behavior.
|
|
|
|
|
for i := 0; i < len(partition); i++ {
|
|
|
|
|
e := partition[i]
|
2016-10-04 14:35:45 -07:00
|
|
|
|
2016-11-27 10:41:37 -08:00
|
|
|
if opcodeTable[e[0].Op].commutative {
|
|
|
|
|
// Order the first two args before comparison.
|
|
|
|
|
for _, v := range e {
|
|
|
|
|
if valueEqClass[v.Args[0].ID] > valueEqClass[v.Args[1].ID] {
|
|
|
|
|
v.Args[0], v.Args[1] = v.Args[1], v.Args[0]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2016-10-04 14:35:45 -07:00
|
|
|
// Sort by eq class of arguments.
|
2016-10-26 22:05:20 -07:00
|
|
|
byArgClass.a = e
|
|
|
|
|
byArgClass.eqClass = valueEqClass
|
|
|
|
|
sort.Sort(byArgClass)
|
2016-10-04 14:35:45 -07:00
|
|
|
|
|
|
|
|
// Find split points.
|
|
|
|
|
splitPoints = append(splitPoints[:0], 0)
|
|
|
|
|
for j := 1; j < len(e); j++ {
|
|
|
|
|
v, w := e[j-1], e[j]
|
2016-11-27 10:41:37 -08:00
|
|
|
// Note: commutative args already correctly ordered by byArgClass.
|
2016-10-04 14:35:45 -07:00
|
|
|
eqArgs := true
|
|
|
|
|
for k, a := range v.Args {
|
|
|
|
|
b := w.Args[k]
|
|
|
|
|
if valueEqClass[a.ID] != valueEqClass[b.ID] {
|
|
|
|
|
eqArgs = false
|
2016-02-06 20:56:50 -06:00
|
|
|
break
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
|
|
|
|
}
|
2016-10-04 14:35:45 -07:00
|
|
|
if !eqArgs {
|
|
|
|
|
splitPoints = append(splitPoints, j)
|
2016-02-06 20:56:50 -06:00
|
|
|
}
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
2016-10-04 14:35:45 -07:00
|
|
|
if len(splitPoints) == 1 {
|
|
|
|
|
continue // no splits, leave equivalence class alone.
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
2016-10-04 14:35:45 -07:00
|
|
|
|
|
|
|
|
// Move another equivalence class down in place of e.
|
|
|
|
|
partition[i] = partition[len(partition)-1]
|
|
|
|
|
partition = partition[:len(partition)-1]
|
|
|
|
|
i--
|
|
|
|
|
|
|
|
|
|
// Add new equivalence classes for the parts of e we found.
|
|
|
|
|
splitPoints = append(splitPoints, len(e))
|
|
|
|
|
for j := 0; j < len(splitPoints)-1; j++ {
|
|
|
|
|
f := e[splitPoints[j]:splitPoints[j+1]]
|
|
|
|
|
if len(f) == 1 {
|
|
|
|
|
// Don't add singletons.
|
|
|
|
|
valueEqClass[f[0].ID] = -f[0].ID
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
for _, v := range f {
|
|
|
|
|
valueEqClass[v.ID] = pNum
|
|
|
|
|
}
|
|
|
|
|
pNum++
|
|
|
|
|
partition = append(partition, f)
|
|
|
|
|
}
|
|
|
|
|
changed = true
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if !changed {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2019-11-01 14:04:08 -07:00
|
|
|
sdom := f.Sdom()
|
2015-03-27 13:41:30 -07:00
|
|
|
|
2016-03-01 23:21:55 +00:00
|
|
|
// Compute substitutions we would like to do. We substitute v for w
|
2015-03-27 13:41:30 -07:00
|
|
|
// if v and w are in the same equivalence class and v dominates w.
|
|
|
|
|
rewrite := make([]*Value, f.NumValues())
|
2016-10-26 22:05:20 -07:00
|
|
|
byDom := new(partitionByDom) // reusable partitionByDom to reduce allocs
|
2015-03-27 13:41:30 -07:00
|
|
|
for _, e := range partition {
|
2016-10-26 22:05:20 -07:00
|
|
|
byDom.a = e
|
|
|
|
|
byDom.sdom = sdom
|
|
|
|
|
sort.Sort(byDom)
|
2016-04-14 19:09:57 -04:00
|
|
|
for i := 0; i < len(e)-1; i++ {
|
2016-05-26 12:16:53 -07:00
|
|
|
// e is sorted by domorder, so a maximal dominant element is first in the slice
|
2016-04-14 19:09:57 -04:00
|
|
|
v := e[i]
|
|
|
|
|
if v == nil {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
e[i] = nil
|
2015-03-27 13:41:30 -07:00
|
|
|
// Replace all elements of e which v dominates
|
2016-04-14 19:09:57 -04:00
|
|
|
for j := i + 1; j < len(e); j++ {
|
|
|
|
|
w := e[j]
|
|
|
|
|
if w == nil {
|
|
|
|
|
continue
|
|
|
|
|
}
|
2019-11-01 14:04:08 -07:00
|
|
|
if sdom.IsAncestorEq(v.Block, w.Block) {
|
2015-03-27 13:41:30 -07:00
|
|
|
rewrite[w.ID] = v
|
2016-04-14 19:09:57 -04:00
|
|
|
e[j] = nil
|
2015-03-27 13:41:30 -07:00
|
|
|
} else {
|
2016-05-26 12:16:53 -07:00
|
|
|
// e is sorted by domorder, so v.Block doesn't dominate any subsequent blocks in e
|
2016-04-14 19:09:57 -04:00
|
|
|
break
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
[dev.ssa] cmd/compile: enhance command line option processing for SSA
The -d compiler flag can also specify ssa phase and flag,
for example -d=ssa/generic_cse/time,ssa/generic_cse/stats
Spaces in the phase names can be specified with an
underscore. Flags currently parsed (not necessarily
recognized by the phases yet) are:
on, off, mem, time, debug, stats, and test
On, off and time are handled in the harness,
debug, stats, and test are interpreted by the phase itself.
The pass is now attached to the Func being compiled, and a
new method logStats(key, ...value) on *Func to encourage a
semi-standardized format for that output. Output fields
are separated by tabs to ease digestion by awk and
spreadsheets. For example,
if f.pass.stats > 0 {
f.logStat("CSE REWRITES", rewrites)
}
Change-Id: I16db2b5af64c50ca9a47efeb51d961147a903abc
Reviewed-on: https://go-review.googlesource.com/19885
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Todd Neal <todd@tneal.org>
2016-02-25 13:10:51 -05:00
|
|
|
rewrites := int64(0)
|
2016-02-11 15:09:43 -05:00
|
|
|
|
2015-03-27 13:41:30 -07:00
|
|
|
// Apply substitutions
|
|
|
|
|
for _, b := range f.Blocks {
|
|
|
|
|
for _, v := range b.Values {
|
|
|
|
|
for i, w := range v.Args {
|
|
|
|
|
if x := rewrite[w.ID]; x != nil {
|
cmd/compile: assign and preserve statement boundaries.
A new pass run after ssa building (before any other
optimization) identifies the "first" ssa node for each
statement. Other "noise" nodes are tagged as being never
appropriate for a statement boundary (e.g., VarKill, VarDef,
Phi).
Rewrite, deadcode, cse, and nilcheck are modified to move
the statement boundaries forward whenever possible if a
boundary-tagged ssa value is removed; never-boundary nodes
are ignored in this search (some operations involving
constants are also tagged as never-boundary and also ignored
because they are likely to be moved or removed during
optimization).
Code generation treats all nodes except those explicitly
marked as statement boundaries as "not statement" nodes,
and floats statement boundaries to the beginning of each
same-line run of instructions found within a basic block.
Line number html conversion was modified to make statement
boundary nodes a bit more obvious by prepending a "+".
The code in fuse.go that glued together the value slices
of two blocks produced a result that depended on the
former capacities (not lengths) of the two slices. This
causes differences in the 386 bootstrap, and also can
sometimes put values into an order that does a worse job
of preserving statement boundaries when values are removed.
Portions of two delve tests that had caught problems were
incorporated into ssa/debug_test.go. There are some
opportunities to do better with optimized code, but the
next-ing is not lying or overly jumpy.
Over 4 CLs, compilebench geomean measured binary size
increase of 3.5% and compile user time increase of 3.8%
(this is after optimization to reuse a sparse map instead
of creating multiple maps.)
This CL worsens the optimized-debugging experience with
Delve; we need to work with the delve team so that
they can use the is_stmt marks that we're emitting now.
The reference output changes from time to time depending
on other changes in the compiler, sometimes better,
sometimes worse.
This CL now includes a test ensuring that 99+% of the lines
in the Go command itself (a handy optimized binary) include
is_stmt markers.
Change-Id: I359c94e06843f1eb41f9da437bd614885aa9644a
Reviewed-on: https://go-review.googlesource.com/102435
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
2018-03-23 22:46:06 -04:00
|
|
|
if w.Pos.IsStmt() == src.PosIsStmt {
|
|
|
|
|
// about to lose a statement marker, w
|
|
|
|
|
// w is an input to v; if they're in the same block
|
|
|
|
|
// and the same line, v is a good-enough new statement boundary.
|
|
|
|
|
if w.Block == v.Block && w.Pos.Line() == v.Pos.Line() {
|
|
|
|
|
v.Pos = v.Pos.WithIsStmt()
|
|
|
|
|
w.Pos = w.Pos.WithNotStmt()
|
|
|
|
|
} // TODO and if this fails?
|
|
|
|
|
}
|
2015-03-27 13:41:30 -07:00
|
|
|
v.SetArg(i, x)
|
2016-02-11 15:09:43 -05:00
|
|
|
rewrites++
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2019-08-12 20:19:58 +01:00
|
|
|
for i, v := range b.ControlValues() {
|
2015-12-11 14:59:01 -08:00
|
|
|
if x := rewrite[v.ID]; x != nil {
|
|
|
|
|
if v.Op == OpNilCheck {
|
|
|
|
|
// nilcheck pass will remove the nil checks and log
|
|
|
|
|
// them appropriately, so don't mess with them here.
|
|
|
|
|
continue
|
|
|
|
|
}
|
2019-08-12 20:19:58 +01:00
|
|
|
b.ReplaceControl(i, x)
|
2015-12-11 14:59:01 -08:00
|
|
|
}
|
|
|
|
|
}
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
2020-05-13 16:46:16 +01:00
|
|
|
|
[dev.ssa] cmd/compile: enhance command line option processing for SSA
The -d compiler flag can also specify ssa phase and flag,
for example -d=ssa/generic_cse/time,ssa/generic_cse/stats
Spaces in the phase names can be specified with an
underscore. Flags currently parsed (not necessarily
recognized by the phases yet) are:
on, off, mem, time, debug, stats, and test
On, off and time are handled in the harness,
debug, stats, and test are interpreted by the phase itself.
The pass is now attached to the Func being compiled, and a
new method logStats(key, ...value) on *Func to encourage a
semi-standardized format for that output. Output fields
are separated by tabs to ease digestion by awk and
spreadsheets. For example,
if f.pass.stats > 0 {
f.logStat("CSE REWRITES", rewrites)
}
Change-Id: I16db2b5af64c50ca9a47efeb51d961147a903abc
Reviewed-on: https://go-review.googlesource.com/19885
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Todd Neal <todd@tneal.org>
2016-02-25 13:10:51 -05:00
|
|
|
if f.pass.stats > 0 {
|
cmd/compile: use sparse algorithm for phis in large program
This adds a sparse method for locating nearest ancestors
in a dominator tree, and checks blocks with more than one
predecessor for differences and inserts phi functions where
there are.
Uses reversed post order to cut number of passes, running
it from first def to last use ("last use" for paramout and
mem is end-of-program; last use for a phi input from a
backedge is the source of the back edge)
Includes a cutover from old algorithm to new to avoid paying
large constant factor for small programs. This keeps normal
builds running at about the same time, while not running
over-long on large machine-generated inputs.
Add "phase" flags for ssa/build -- ssa/build/stats prints
number of blocks, values (before and after linking references
and inserting phis, so expansion can be measured), and their
product; the product governs the cutover, where a good value
seems to be somewhere between 1 and 5 million.
Among the files compiled by make.bash, this is the shape of
the tail of the distribution for #blocks, #vars, and their
product:
#blocks #vars product
max 6171 28180 173,898,780
99.9% 1641 6548 10,401,878
99% 463 1909 873,721
95% 152 639 95,235
90% 84 359 30,021
The old algorithm is indeed usually fastest, for 99%ile
values of usually.
The fix to LookupVarOutgoing
( https://go-review.googlesource.com/#/c/22790/ )
deals with some of the same problems addressed by this CL,
but on at least one bug ( #15537 ) this change is still
a significant help.
With this CL:
/tmp/gopath$ rm -rf pkg bin
/tmp/gopath$ time go get -v -gcflags -memprofile=y.mprof \
github.com/gogo/protobuf/test/theproto3/combos/...
...
real 4m35.200s
user 13m16.644s
sys 0m36.712s
and pprof reports 3.4GB allocated in one of the larger profiles
With tip:
/tmp/gopath$ rm -rf pkg bin
/tmp/gopath$ time go get -v -gcflags -memprofile=y.mprof \
github.com/gogo/protobuf/test/theproto3/combos/...
...
real 10m36.569s
user 25m52.286s
sys 4m3.696s
and pprof reports 8.3GB allocated in the same larger profile
With this CL, most of the compilation time on the benchmarked
input is spent in register/stack allocation (cumulative 53%)
and in the sparse lookup algorithm itself (cumulative 20%).
Fixes #15537.
Change-Id: Ia0299dda6a291534d8b08e5f9883216ded677a00
Reviewed-on: https://go-review.googlesource.com/22342
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-21 13:24:58 -04:00
|
|
|
f.LogStat("CSE REWRITES", rewrites)
|
2016-02-11 15:09:43 -05:00
|
|
|
}
|
2015-03-27 13:41:30 -07:00
|
|
|
}
|
|
|
|
|
|
2016-03-01 23:21:55 +00:00
|
|
|
// An eqclass approximates an equivalence class. During the
|
2015-03-27 13:41:30 -07:00
|
|
|
// algorithm it may represent the union of several of the
|
|
|
|
|
// final equivalence classes.
|
|
|
|
|
type eqclass []*Value
|
|
|
|
|
|
2016-01-27 16:47:23 -08:00
|
|
|
// partitionValues partitions the values into equivalence classes
|
|
|
|
|
// based on having all the following features match:
|
|
|
|
|
// - opcode
|
|
|
|
|
// - type
|
|
|
|
|
// - auxint
|
|
|
|
|
// - aux
|
|
|
|
|
// - nargs
|
|
|
|
|
// - block # if a phi op
|
2016-02-08 12:07:39 -05:00
|
|
|
// - first two arg's opcodes and auxint
|
|
|
|
|
// - NOT first two arg's aux; that can break CSE.
|
2016-01-27 16:47:23 -08:00
|
|
|
// partitionValues returns a list of equivalence classes, each
|
2016-03-01 23:21:55 +00:00
|
|
|
// being a sorted by ID list of *Values. The eqclass slices are
|
2016-01-27 16:47:23 -08:00
|
|
|
// backed by the same storage as the input slice.
|
|
|
|
|
// Equivalence classes of size 1 are ignored.
|
2016-02-23 17:52:17 -06:00
|
|
|
func partitionValues(a []*Value, auxIDs auxmap) []eqclass {
|
2016-02-11 15:09:43 -05:00
|
|
|
sort.Sort(sortvalues{a, auxIDs})
|
2016-01-27 16:47:23 -08:00
|
|
|
|
|
|
|
|
var partition []eqclass
|
|
|
|
|
for len(a) > 0 {
|
|
|
|
|
v := a[0]
|
|
|
|
|
j := 1
|
|
|
|
|
for ; j < len(a); j++ {
|
|
|
|
|
w := a[j]
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
if cmpVal(v, w, auxIDs) != types.CMPeq {
|
2016-01-27 16:47:23 -08:00
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if j > 1 {
|
|
|
|
|
partition = append(partition, a[:j])
|
|
|
|
|
}
|
|
|
|
|
a = a[j:]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return partition
|
|
|
|
|
}
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
func lt2Cmp(isLt bool) types.Cmp {
|
2016-02-23 17:52:17 -06:00
|
|
|
if isLt {
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
return types.CMPlt
|
2016-02-23 17:52:17 -06:00
|
|
|
}
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
return types.CMPgt
|
2016-01-27 16:47:23 -08:00
|
|
|
}
|
|
|
|
|
|
2016-02-23 17:52:17 -06:00
|
|
|
type auxmap map[interface{}]int32
|
|
|
|
|
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
func cmpVal(v, w *Value, auxIDs auxmap) types.Cmp {
|
2016-02-23 17:52:17 -06:00
|
|
|
// Try to order these comparison by cost (cheaper first)
|
2016-01-27 16:47:23 -08:00
|
|
|
if v.Op != w.Op {
|
2016-02-23 17:52:17 -06:00
|
|
|
return lt2Cmp(v.Op < w.Op)
|
2016-01-27 16:47:23 -08:00
|
|
|
}
|
|
|
|
|
if v.AuxInt != w.AuxInt {
|
2016-02-23 17:52:17 -06:00
|
|
|
return lt2Cmp(v.AuxInt < w.AuxInt)
|
2016-01-27 16:47:23 -08:00
|
|
|
}
|
|
|
|
|
if len(v.Args) != len(w.Args) {
|
2016-02-23 17:52:17 -06:00
|
|
|
return lt2Cmp(len(v.Args) < len(w.Args))
|
2016-01-27 16:47:23 -08:00
|
|
|
}
|
2016-02-23 17:52:17 -06:00
|
|
|
if v.Op == OpPhi && v.Block != w.Block {
|
|
|
|
|
return lt2Cmp(v.Block.ID < w.Block.ID)
|
2016-01-27 16:47:23 -08:00
|
|
|
}
|
2016-05-03 13:58:28 -07:00
|
|
|
if v.Type.IsMemory() {
|
|
|
|
|
// We will never be able to CSE two values
|
|
|
|
|
// that generate memory.
|
|
|
|
|
return lt2Cmp(v.ID < w.ID)
|
2016-04-12 17:12:26 -07:00
|
|
|
}
|
2017-05-09 22:09:08 -07:00
|
|
|
// OpSelect is a pseudo-op. We need to be more aggressive
|
2017-04-24 11:20:09 -04:00
|
|
|
// regarding CSE to keep multiple OpSelect's of the same
|
|
|
|
|
// argument from existing.
|
|
|
|
|
if v.Op != OpSelect0 && v.Op != OpSelect1 {
|
|
|
|
|
if tc := v.Type.Compare(w.Type); tc != types.CMPeq {
|
|
|
|
|
return tc
|
|
|
|
|
}
|
2016-02-23 17:52:17 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if v.Aux != w.Aux {
|
|
|
|
|
if v.Aux == nil {
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
return types.CMPlt
|
2016-01-27 16:47:23 -08:00
|
|
|
}
|
2016-02-23 17:52:17 -06:00
|
|
|
if w.Aux == nil {
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
return types.CMPgt
|
2016-02-23 17:52:17 -06:00
|
|
|
}
|
|
|
|
|
return lt2Cmp(auxIDs[v.Aux] < auxIDs[w.Aux])
|
|
|
|
|
}
|
2016-02-06 20:56:50 -06:00
|
|
|
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
return types.CMPeq
|
2016-02-23 17:52:17 -06:00
|
|
|
}
|
2016-01-27 16:47:23 -08:00
|
|
|
|
2016-02-23 17:52:17 -06:00
|
|
|
// Sort values to make the initial partition.
|
|
|
|
|
type sortvalues struct {
|
|
|
|
|
a []*Value // array of values
|
|
|
|
|
auxIDs auxmap // aux -> aux ID map
|
|
|
|
|
}
|
2016-01-27 16:47:23 -08:00
|
|
|
|
2016-02-23 17:52:17 -06:00
|
|
|
func (sv sortvalues) Len() int { return len(sv.a) }
|
|
|
|
|
func (sv sortvalues) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
|
|
|
|
|
func (sv sortvalues) Less(i, j int) bool {
|
|
|
|
|
v := sv.a[i]
|
|
|
|
|
w := sv.a[j]
|
cmd/compile: change ssa.Type into *types.Type
When package ssa was created, Type was in package gc.
To avoid circular dependencies, we used an interface (ssa.Type)
to represent type information in SSA.
In the Go 1.9 cycle, gri extricated the Type type from package gc.
As a result, we can now use it in package ssa.
Now, instead of package types depending on package ssa,
it is the other way.
This is a more sensible dependency tree,
and helps compiler performance a bit.
Though this is a big CL, most of the changes are
mechanical and uninteresting.
Interesting bits:
* Add new singleton globals to package types for the special
SSA types Memory, Void, Invalid, Flags, and Int128.
* Add two new Types, TSSA for the special types,
and TTUPLE, for SSA tuple types.
ssa.MakeTuple is now types.NewTuple.
* Move type comparison result constants CMPlt, CMPeq, and CMPgt
to package types.
* We had picked the name "types" in our rules for the handy
list of types provided by ssa.Config. That conflicted with
the types package name, so change it to "typ".
* Update the type comparison routine to handle tuples and special
types inline.
* Teach gc/fmt.go how to print special types.
* We can now eliminate ElemTypes in favor of just Elem,
and probably also some other duplicated Type methods
designed to return ssa.Type instead of *types.Type.
* The ssa tests were using their own dummy types,
and they were not particularly careful about types in general.
Of necessity, this CL switches them to use *types.Type;
it does not make them more type-accurate.
Unfortunately, using types.Type means initializing a bit
of the types universe.
This is prime for refactoring and improvement.
This shrinks ssa.Value; it now fits in a smaller size class
on 64 bit systems. This doesn't have a giant impact,
though, since most Values are preallocated in a chunk.
name old alloc/op new alloc/op delta
Template 37.9MB ± 0% 37.7MB ± 0% -0.57% (p=0.000 n=10+8)
Unicode 28.9MB ± 0% 28.7MB ± 0% -0.52% (p=0.000 n=10+10)
GoTypes 110MB ± 0% 109MB ± 0% -0.88% (p=0.000 n=10+10)
Flate 24.7MB ± 0% 24.6MB ± 0% -0.66% (p=0.000 n=10+10)
GoParser 31.1MB ± 0% 30.9MB ± 0% -0.61% (p=0.000 n=10+9)
Reflect 73.9MB ± 0% 73.4MB ± 0% -0.62% (p=0.000 n=10+8)
Tar 25.8MB ± 0% 25.6MB ± 0% -0.77% (p=0.000 n=9+10)
XML 41.2MB ± 0% 40.9MB ± 0% -0.80% (p=0.000 n=10+10)
[Geo mean] 40.5MB 40.3MB -0.68%
name old allocs/op new allocs/op delta
Template 385k ± 0% 386k ± 0% ~ (p=0.356 n=10+9)
Unicode 343k ± 1% 344k ± 0% ~ (p=0.481 n=10+10)
GoTypes 1.16M ± 0% 1.16M ± 0% -0.16% (p=0.004 n=10+10)
Flate 238k ± 1% 238k ± 1% ~ (p=0.853 n=10+10)
GoParser 320k ± 0% 320k ± 0% ~ (p=0.720 n=10+9)
Reflect 957k ± 0% 957k ± 0% ~ (p=0.460 n=10+8)
Tar 252k ± 0% 252k ± 0% ~ (p=0.133 n=9+10)
XML 400k ± 0% 400k ± 0% ~ (p=0.796 n=10+10)
[Geo mean] 428k 428k -0.01%
Removing all the interface calls helps non-trivially with CPU, though.
name old time/op new time/op delta
Template 178ms ± 4% 173ms ± 3% -2.90% (p=0.000 n=94+96)
Unicode 85.0ms ± 4% 83.9ms ± 4% -1.23% (p=0.000 n=96+96)
GoTypes 543ms ± 3% 528ms ± 3% -2.73% (p=0.000 n=98+96)
Flate 116ms ± 3% 113ms ± 4% -2.34% (p=0.000 n=96+99)
GoParser 144ms ± 3% 140ms ± 4% -2.80% (p=0.000 n=99+97)
Reflect 344ms ± 3% 334ms ± 4% -3.02% (p=0.000 n=100+99)
Tar 106ms ± 5% 103ms ± 4% -3.30% (p=0.000 n=98+94)
XML 198ms ± 5% 192ms ± 4% -2.88% (p=0.000 n=92+95)
[Geo mean] 178ms 173ms -2.65%
name old user-time/op new user-time/op delta
Template 229ms ± 5% 224ms ± 5% -2.36% (p=0.000 n=95+99)
Unicode 107ms ± 6% 106ms ± 5% -1.13% (p=0.001 n=93+95)
GoTypes 696ms ± 4% 679ms ± 4% -2.45% (p=0.000 n=97+99)
Flate 137ms ± 4% 134ms ± 5% -2.66% (p=0.000 n=99+96)
GoParser 176ms ± 5% 172ms ± 8% -2.27% (p=0.000 n=98+100)
Reflect 430ms ± 6% 411ms ± 5% -4.46% (p=0.000 n=100+92)
Tar 128ms ±13% 123ms ±13% -4.21% (p=0.000 n=100+100)
XML 239ms ± 6% 233ms ± 6% -2.50% (p=0.000 n=95+97)
[Geo mean] 220ms 213ms -2.76%
Change-Id: I15c7d6268347f8358e75066dfdbd77db24e8d0c1
Reviewed-on: https://go-review.googlesource.com/42145
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2017-04-28 14:12:28 -07:00
|
|
|
if cmp := cmpVal(v, w, sv.auxIDs); cmp != types.CMPeq {
|
|
|
|
|
return cmp == types.CMPlt
|
2016-02-23 17:52:17 -06:00
|
|
|
}
|
2016-01-27 16:47:23 -08:00
|
|
|
|
|
|
|
|
// Sort by value ID last to keep the sort result deterministic.
|
|
|
|
|
return v.ID < w.ID
|
|
|
|
|
}
|
2016-04-13 08:51:46 -04:00
|
|
|
|
2016-05-26 12:16:53 -07:00
|
|
|
type partitionByDom struct {
|
2016-04-13 08:51:46 -04:00
|
|
|
a []*Value // array of values
|
cmd/compile: use sparse algorithm for phis in large program
This adds a sparse method for locating nearest ancestors
in a dominator tree, and checks blocks with more than one
predecessor for differences and inserts phi functions where
there are.
Uses reversed post order to cut number of passes, running
it from first def to last use ("last use" for paramout and
mem is end-of-program; last use for a phi input from a
backedge is the source of the back edge)
Includes a cutover from old algorithm to new to avoid paying
large constant factor for small programs. This keeps normal
builds running at about the same time, while not running
over-long on large machine-generated inputs.
Add "phase" flags for ssa/build -- ssa/build/stats prints
number of blocks, values (before and after linking references
and inserting phis, so expansion can be measured), and their
product; the product governs the cutover, where a good value
seems to be somewhere between 1 and 5 million.
Among the files compiled by make.bash, this is the shape of
the tail of the distribution for #blocks, #vars, and their
product:
#blocks #vars product
max 6171 28180 173,898,780
99.9% 1641 6548 10,401,878
99% 463 1909 873,721
95% 152 639 95,235
90% 84 359 30,021
The old algorithm is indeed usually fastest, for 99%ile
values of usually.
The fix to LookupVarOutgoing
( https://go-review.googlesource.com/#/c/22790/ )
deals with some of the same problems addressed by this CL,
but on at least one bug ( #15537 ) this change is still
a significant help.
With this CL:
/tmp/gopath$ rm -rf pkg bin
/tmp/gopath$ time go get -v -gcflags -memprofile=y.mprof \
github.com/gogo/protobuf/test/theproto3/combos/...
...
real 4m35.200s
user 13m16.644s
sys 0m36.712s
and pprof reports 3.4GB allocated in one of the larger profiles
With tip:
/tmp/gopath$ rm -rf pkg bin
/tmp/gopath$ time go get -v -gcflags -memprofile=y.mprof \
github.com/gogo/protobuf/test/theproto3/combos/...
...
real 10m36.569s
user 25m52.286s
sys 4m3.696s
and pprof reports 8.3GB allocated in the same larger profile
With this CL, most of the compilation time on the benchmarked
input is spent in register/stack allocation (cumulative 53%)
and in the sparse lookup algorithm itself (cumulative 20%).
Fixes #15537.
Change-Id: Ia0299dda6a291534d8b08e5f9883216ded677a00
Reviewed-on: https://go-review.googlesource.com/22342
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-21 13:24:58 -04:00
|
|
|
sdom SparseTree
|
2016-04-13 08:51:46 -04:00
|
|
|
}
|
|
|
|
|
|
2016-05-26 12:16:53 -07:00
|
|
|
func (sv partitionByDom) Len() int { return len(sv.a) }
|
|
|
|
|
func (sv partitionByDom) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
|
|
|
|
|
func (sv partitionByDom) Less(i, j int) bool {
|
2016-04-13 08:51:46 -04:00
|
|
|
v := sv.a[i]
|
|
|
|
|
w := sv.a[j]
|
2016-05-26 12:16:53 -07:00
|
|
|
return sv.sdom.domorder(v.Block) < sv.sdom.domorder(w.Block)
|
2016-04-13 08:51:46 -04:00
|
|
|
}
|
2016-10-04 14:35:45 -07:00
|
|
|
|
|
|
|
|
type partitionByArgClass struct {
|
|
|
|
|
a []*Value // array of values
|
|
|
|
|
eqClass []ID // equivalence class IDs of values
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
func (sv partitionByArgClass) Len() int { return len(sv.a) }
|
|
|
|
|
func (sv partitionByArgClass) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
|
|
|
|
|
func (sv partitionByArgClass) Less(i, j int) bool {
|
|
|
|
|
v := sv.a[i]
|
|
|
|
|
w := sv.a[j]
|
|
|
|
|
for i, a := range v.Args {
|
|
|
|
|
b := w.Args[i]
|
|
|
|
|
if sv.eqClass[a.ID] < sv.eqClass[b.ID] {
|
|
|
|
|
return true
|
|
|
|
|
}
|
|
|
|
|
if sv.eqClass[a.ID] > sv.eqClass[b.ID] {
|
|
|
|
|
return false
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return false
|
|
|
|
|
}
|