go/src/pkg/gob/encode.go

439 lines
11 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gob
import (
"gob";
"io";
"math";
"os";
"reflect";
"sync";
"unsafe";
)
// Step through the indirections on a type to discover the base type.
// Return the number of indirections.
func indirect(t reflect.Type) (rt reflect.Type, count int) {
rt = t;
for {
pt, ok := rt.(reflect.PtrType);
if !ok {
break
}
rt = pt.Sub();
count++;
}
return;
}
// The global execution state of an instance of the encoder.
// Field numbers are delta encoded and always increase. The field
// number is initialized to -1 so 0 comes out as delta(1). A delta of
// 0 terminates the structure.
type EncState struct {
w io.Writer;
err os.Error; // error encountered during encoding;
fieldnum int; // the last field number written.
buf [16]byte; // buffer used by the encoder; here to avoid allocation.
}
// Integers encode as a variant of Google's protocol buffer varint (varvarint?).
// The variant is that the continuation bytes have a zero top bit instead of a one.
// That way there's only one bit to clear and the value is a little easier to see if
// you're the unfortunate sort of person who must read the hex to debug.
// EncodeUint writes an encoded unsigned integer to state.w. Sets state.err.
// If state.err is already non-nil, it does nothing.
func EncodeUint(state *EncState, x uint64) {
var n int;
if state.err != nil {
return
}
for n = 0; x > 127; n++ {
state.buf[n] = uint8(x & 0x7F);
x >>= 7;
}
state.buf[n] = 0x80 | uint8(x);
var nn int;
nn, state.err = state.w.Write(state.buf[0:n+1]);
}
// EncodeInt writes an encoded signed integer to state.w.
// The low bit of the encoding says whether to bit complement the (other bits of the) uint to recover the int.
// Sets state.err. If state.err is already non-nil, it does nothing.
func EncodeInt(state *EncState, i int64){
var x uint64;
if i < 0 {
x = uint64(^i << 1) | 1
} else {
x = uint64(i << 1)
}
EncodeUint(state, uint64(x))
}
type encInstr struct
type encOp func(i *encInstr, state *EncState, p unsafe.Pointer)
// The 'instructions' of the encoding machine
type encInstr struct {
op encOp;
field int; // field number
indir int; // how many pointer indirections to reach the value in the struct
offset uintptr; // offset in the structure of the field to encode
}
// Emit a field number and update the state to record its value for delta encoding.
// If the instruction pointer is nil, do nothing
func (state *EncState) update(instr *encInstr) {
if instr != nil {
EncodeUint(state, uint64(instr.field - state.fieldnum));
state.fieldnum = instr.field;
}
}
// Each encoder is responsible for handling any indirections associated
// with the data structure. If any pointer so reached is nil, no bytes are written.
// If the data item is zero, no bytes are written.
// Otherwise, the output (for a scalar) is the field number, as an encoded integer,
// followed by the field data in its appropriate format.
func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
for ; indir > 0; indir-- {
p = *(*unsafe.Pointer)(p);
if p == nil {
return unsafe.Pointer(nil)
}
}
return p
}
func encBool(i *encInstr, state *EncState, p unsafe.Pointer) {
b := *(*bool)(p);
if b {
state.update(i);
EncodeUint(state, 1);
}
}
func encInt(i *encInstr, state *EncState, p unsafe.Pointer) {
v := int64(*(*int)(p));
if v != 0 {
state.update(i);
EncodeInt(state, v);
}
}
func encUint(i *encInstr, state *EncState, p unsafe.Pointer) {
v := uint64(*(*uint)(p));
if v != 0 {
state.update(i);
EncodeUint(state, v);
}
}
func encInt8(i *encInstr, state *EncState, p unsafe.Pointer) {
v := int64(*(*int8)(p));
if v != 0 {
state.update(i);
EncodeInt(state, v);
}
}
func encUint8(i *encInstr, state *EncState, p unsafe.Pointer) {
v := uint64(*(*uint8)(p));
if v != 0 {
state.update(i);
EncodeUint(state, v);
}
}
func encInt16(i *encInstr, state *EncState, p unsafe.Pointer) {
v := int64(*(*int16)(p));
if v != 0 {
state.update(i);
EncodeInt(state, v);
}
}
func encUint16(i *encInstr, state *EncState, p unsafe.Pointer) {
v := uint64(*(*uint16)(p));
if v != 0 {
state.update(i);
EncodeUint(state, v);
}
}
func encInt32(i *encInstr, state *EncState, p unsafe.Pointer) {
v := int64(*(*int32)(p));
if v != 0 {
state.update(i);
EncodeInt(state, v);
}
}
func encUint32(i *encInstr, state *EncState, p unsafe.Pointer) {
v := uint64(*(*uint32)(p));
if v != 0 {
state.update(i);
EncodeUint(state, v);
}
}
func encInt64(i *encInstr, state *EncState, p unsafe.Pointer) {
v := *(*int64)(p);
if v != 0 {
state.update(i);
EncodeInt(state, v);
}
}
func encUint64(i *encInstr, state *EncState, p unsafe.Pointer) {
v := *(*uint64)(p);
if v != 0 {
state.update(i);
EncodeUint(state, v);
}
}
// Floating-point numbers are transmitted as uint64s holding the bits
// of the underlying representation. They are sent byte-reversed, with
// the exponent end coming out first, so integer floating point numbers
// (for example) transmit more compactly. This routine does the
// swizzling.
func floatBits(f float64) uint64 {
u := math.Float64bits(f);
var v uint64;
for i := 0; i < 8; i++ {
v <<= 8;
v |= u & 0xFF;
u >>= 8;
}
return v;
}
func encFloat(i *encInstr, state *EncState, p unsafe.Pointer) {
f := float(*(*float)(p));
if f != 0 {
v := floatBits(float64(f));
state.update(i);
EncodeUint(state, v);
}
}
func encFloat32(i *encInstr, state *EncState, p unsafe.Pointer) {
f := float32(*(*float32)(p));
if f != 0 {
v := floatBits(float64(f));
state.update(i);
EncodeUint(state, v);
}
}
func encFloat64(i *encInstr, state *EncState, p unsafe.Pointer) {
f := *(*float64)(p);
if f != 0 {
state.update(i);
v := floatBits(f);
EncodeUint(state, v);
}
}
// Byte arrays are encoded as an unsigned count followed by the raw bytes.
func encUint8Array(i *encInstr, state *EncState, p unsafe.Pointer) {
b := *(*[]byte)(p);
if len(b) > 0 {
state.update(i);
EncodeUint(state, uint64(len(b)));
state.w.Write(b);
}
}
// Strings are encoded as an unsigned count followed by the raw bytes.
func encString(i *encInstr, state *EncState, p unsafe.Pointer) {
s := *(*string)(p);
if len(s) > 0 {
state.update(i);
EncodeUint(state, uint64(len(s)));
io.WriteString(state.w, s);
}
}
// The end of a struct is marked by a delta field number of 0.
func encStructTerminator(i *encInstr, state *EncState, p unsafe.Pointer) {
EncodeUint(state, 0);
}
// Execution engine
// The encoder engine is an array of instructions indexed by field number of the encoding
// data, typically a struct. It is executed top to bottom, walking the struct.
type encEngine struct {
instr []encInstr
}
func encodeStruct(engine *encEngine, w io.Writer, basep uintptr) os.Error {
state := new(EncState);
state.w = w;
state.fieldnum = -1;
for i := 0; i < len(engine.instr); i++ {
instr := &engine.instr[i];
p := unsafe.Pointer(basep+instr.offset);
if instr.indir > 0 {
if p = encIndirect(p, instr.indir); p == nil {
state.fieldnum = i;
continue
}
}
instr.op(instr, state, p);
if state.err != nil {
break
}
}
return state.err
}
func encodeArray(w io.Writer, p uintptr, op encOp, elemWid int, length int, elemIndir int) os.Error {
state := new(EncState);
state.w = w;
state.fieldnum = -1;
EncodeUint(state, uint64(length));
for i := 0; i < length && state.err == nil; i++ {
up := unsafe.Pointer(p);
if elemIndir > 0 {
if up = encIndirect(up, elemIndir); up == nil {
state.err = os.ErrorString("encodeArray: nil element");
break
}
p = uintptr(up);
}
op(nil, state, unsafe.Pointer(p));
p += uintptr(elemWid);
}
return state.err
}
var encEngineMap = make(map[reflect.Type] *encEngine)
var encOpMap = map[int] encOp {
reflect.BoolKind: encBool,
reflect.IntKind: encInt,
reflect.Int8Kind: encInt8,
reflect.Int16Kind: encInt16,
reflect.Int32Kind: encInt32,
reflect.Int64Kind: encInt64,
reflect.UintKind: encUint,
reflect.Uint8Kind: encUint8,
reflect.Uint16Kind: encUint16,
reflect.Uint32Kind: encUint32,
reflect.Uint64Kind: encUint64,
reflect.FloatKind: encFloat,
reflect.Float32Kind: encFloat32,
reflect.Float64Kind: encFloat64,
reflect.StringKind: encString,
}
func getEncEngine(rt reflect.Type) *encEngine
func encOpFor(typ reflect.Type) encOp {
op, ok := encOpMap[typ.Kind()];
if !ok {
// Special cases
if typ.Kind() == reflect.ArrayKind {
atyp := typ.(reflect.ArrayType);
switch {
case atyp.Elem().Kind() == reflect.Uint8Kind:
op = encUint8Array
case atyp.IsSlice():
// Slices have a header; we decode it to find the underlying array.
elemOp := encOpFor(atyp.Elem());
_, indir := indirect(atyp.Elem());
op = func(i *encInstr, state *EncState, p unsafe.Pointer) {
slice := *(*reflect.SliceHeader)(p);
if slice.Len == 0 {
return
}
state.update(i);
state.err = encodeArray(state.w, slice.Data, elemOp, atyp.Elem().Size(), int(slice.Len), indir);
};
case !atyp.IsSlice():
// True arrays have size in the type.
elemOp := encOpFor(atyp.Elem());
_, indir := indirect(atyp.Elem());
op = func(i *encInstr, state *EncState, p unsafe.Pointer) {
state.update(i);
state.err = encodeArray(state.w, uintptr(p), elemOp, atyp.Elem().Size(), atyp.Len(), indir);
};
}
}
if typ.Kind() == reflect.StructKind {
// Generate a closure that calls out to the engine for the nested type.
engine := getEncEngine(typ);
op = func(i *encInstr, state *EncState, p unsafe.Pointer) {
state.update(i);
state.err = encodeStruct(engine, state.w, uintptr(p));
};
}
}
if op == nil {
panicln("encode can't handle type", typ.String());
}
return op
}
// The local Type was compiled from the actual value, so we know
// it's compatible.
// TODO(r): worth checking? typ is unused here.
func compileEnc(rt reflect.Type, typ Type) *encEngine {
srt, ok := rt.(reflect.StructType);
if !ok {
panicln("TODO: can't handle non-structs");
}
engine := new(encEngine);
engine.instr = make([]encInstr, srt.Len()+1); // +1 for terminator
for fieldnum := 0; fieldnum < srt.Len(); fieldnum++ {
_name, ftyp, _tag, offset := srt.Field(fieldnum);
// How many indirections to the underlying data?
indir := 0;
for {
pt, ok := ftyp.(reflect.PtrType);
if !ok {
break
}
ftyp = pt.Sub();
indir++;
}
op := encOpFor(ftyp);
engine.instr[fieldnum] = encInstr{op, fieldnum, indir, uintptr(offset)};
}
engine.instr[srt.Len()] = encInstr{encStructTerminator, 0, 0, 0};
return engine;
}
// typeLock must be held.
func getEncEngine(rt reflect.Type) *encEngine {
engine, ok := encEngineMap[rt];
if !ok {
engine = compileEnc(rt, newType(rt.Name(), rt));
encEngineMap[rt] = engine;
}
return engine
}
func Encode(w io.Writer, e interface{}) os.Error {
// Dereference down to the underlying object.
rt, indir := indirect(reflect.Typeof(e));
v := reflect.NewValue(e);
for i := 0; i < indir; i++ {
v = reflect.Indirect(v);
}
if v.Kind() != reflect.StructKind {
return os.ErrorString("encode can't handle " + v.Type().String())
}
typeLock.Lock();
engine := getEncEngine(rt);
typeLock.Unlock();
return encodeStruct(engine, w, uintptr(v.(reflect.StructValue).Addr()));
}