go/src/cmd/compile/internal/noder/stmt.go

360 lines
8.6 KiB
Go
Raw Normal View History

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
func (g *irgen) stmts(stmts []syntax.Stmt) []ir.Node {
var nodes []ir.Node
for _, stmt := range stmts {
switch s := g.stmt(stmt).(type) {
case nil: // EmptyStmt
case *ir.BlockStmt:
nodes = append(nodes, s.List...)
default:
nodes = append(nodes, s)
}
}
return nodes
}
func (g *irgen) stmt(stmt syntax.Stmt) ir.Node {
switch stmt := stmt.(type) {
case nil, *syntax.EmptyStmt:
return nil
case *syntax.LabeledStmt:
return g.labeledStmt(stmt)
case *syntax.BlockStmt:
return ir.NewBlockStmt(g.pos(stmt), g.blockStmt(stmt))
case *syntax.ExprStmt:
return g.expr(stmt.X)
case *syntax.SendStmt:
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
n := ir.NewSendStmt(g.pos(stmt), g.expr(stmt.Chan), g.expr(stmt.Value))
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
if n.Chan.Type().HasTParam() || n.Value.Type().HasTParam() {
// Delay transforming the send if the channel or value
// have a type param.
n.SetTypecheck(3)
return n
}
transformSend(n)
n.SetTypecheck(1)
return n
case *syntax.DeclStmt:
return ir.NewBlockStmt(g.pos(stmt), g.decls(stmt.DeclList))
case *syntax.AssignStmt:
if stmt.Op != 0 && stmt.Op != syntax.Def {
op := g.op(stmt.Op, binOps[:])
var n *ir.AssignOpStmt
if stmt.Rhs == nil {
n = IncDec(g.pos(stmt), op, g.expr(stmt.Lhs))
} else {
n = ir.NewAssignOpStmt(g.pos(stmt), op, g.expr(stmt.Lhs), g.expr(stmt.Rhs))
}
if n.X.Typecheck() == 3 {
n.SetTypecheck(3)
return n
}
transformAsOp(n)
n.SetTypecheck(1)
return n
}
names, lhs := g.assignList(stmt.Lhs, stmt.Op == syntax.Def)
rhs := g.exprList(stmt.Rhs)
// We must delay transforming the assign statement if any of the
// lhs or rhs nodes are also delayed, since transformAssign needs
// to know the types of the left and right sides in various cases.
delay := false
for _, e := range lhs {
if e.Typecheck() == 3 {
delay = true
break
}
}
for _, e := range rhs {
if e.Typecheck() == 3 {
delay = true
break
}
}
if len(lhs) == 1 && len(rhs) == 1 {
n := ir.NewAssignStmt(g.pos(stmt), lhs[0], rhs[0])
n.Def = initDefn(n, names)
if delay {
n.SetTypecheck(3)
return n
}
lhs, rhs := []ir.Node{n.X}, []ir.Node{n.Y}
transformAssign(n, lhs, rhs)
n.X, n.Y = lhs[0], rhs[0]
n.SetTypecheck(1)
return n
}
n := ir.NewAssignListStmt(g.pos(stmt), ir.OAS2, lhs, rhs)
n.Def = initDefn(n, names)
if delay {
n.SetTypecheck(3)
return n
}
transformAssign(n, n.Lhs, n.Rhs)
n.SetTypecheck(1)
return n
case *syntax.BranchStmt:
return ir.NewBranchStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), branchOps[:]), g.name(stmt.Label))
case *syntax.CallStmt:
return ir.NewGoDeferStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), callOps[:]), g.expr(stmt.Call))
case *syntax.ReturnStmt:
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
n := ir.NewReturnStmt(g.pos(stmt), g.exprList(stmt.Results))
cmd/compile: fix various small bugs related to type lists Fix various small bugs related to delaying transformations due to type params. Most of these relate to the need to delay a transformation when an argument of an expression or statement has a type parameter that has a structural constraint. The structural constraint implies the operation should work, but the transformation can't happen until the actual value of the type parameter is known. - delay transformations for send statements and return statements if any args/values have type params. - similarly, delay transformation of a call where the function arg has type parameters. This is mainly important for the case where the function arg is a pure type parameter, but has a structural constraint that requires it to be a function. Move the setting of n.Use to transformCall(), since we may not know how many return values there are until then, if the function arg is a type parameter. - set the type of unary expressions from the type2 type (as we do with most other expressions), since that works better with expressions with type params. - deal with these delayed transformations in subster.node() and convert the CALL checks to a switch statement. - make sure ir.CurFunc is set properly during stenciling, including closures (needed for transforming return statements during stenciling). New test file typelist.go with tests for these cases. Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e Reviewed-on: https://go-review.googlesource.com/c/go/+/305729 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-29 08:28:01 -07:00
for _, e := range n.Results {
if e.Type().HasTParam() {
// Delay transforming the return statement if any of the
// return values have a type param.
n.SetTypecheck(3)
return n
}
}
transformReturn(n)
n.SetTypecheck(1)
return n
case *syntax.IfStmt:
return g.ifStmt(stmt)
case *syntax.ForStmt:
return g.forStmt(stmt)
case *syntax.SelectStmt:
cmd/compile: getting more built-ins to work with generics For Builtin ops, we currently stay with using the old typechecker to transform the call to a more specific expression and possibly use more specific ops. However, for a bunch of the ops, we delay calling the old typechecker if any of the args have type params, for a variety of reasons. In the near future, we will start creating separate functions that do the same transformations as the old typechecker for calls, builtins, indexing, comparisons, etc. These functions can then be called at noder time for nodes with no type params, and at stenciling time for nodes with type params. Remove unnecessary calls to types1 typechecker for most kinds of statements (still need it for SendStmt, AssignStmt, ReturnStmt, and SelectStmt). In particular, we don't need it for RangeStmt, and this avoids some complaints by the types1 typechecker on generic code. Other small changes: - Fix check on whether to delay calling types1-typechecker on type conversions. Should check if HasTParam is true, rather than if the type is directly a TYPEPARAM. - Don't call types1-typechecker on an indexing operation if the left operand has a typeparam in its type and is not obviously a TMAP, TSLICE, or TARRAY. As above, we will eventually have to create a new function that can do the required transformations (for complicated cases) at noder time or stenciling time. - Copy n.BuiltinOp in subster.node() - The complex arithmetic example in absdiff.go now works. - Added new tests double.go and append.go - Added new example with a new() call in settable.go Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4 Reviewed-on: https://go-review.googlesource.com/c/go/+/301951 Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-12 11:36:02 -08:00
n := g.selectStmt(stmt)
transformSelect(n.(*ir.SelectStmt))
n.SetTypecheck(1)
return n
case *syntax.SwitchStmt:
return g.switchStmt(stmt)
default:
g.unhandled("statement", stmt)
panic("unreachable")
}
}
// TODO(mdempsky): Investigate replacing with switch statements or dense arrays.
var branchOps = [...]ir.Op{
syntax.Break: ir.OBREAK,
syntax.Continue: ir.OCONTINUE,
syntax.Fallthrough: ir.OFALL,
syntax.Goto: ir.OGOTO,
}
var callOps = [...]ir.Op{
syntax.Defer: ir.ODEFER,
syntax.Go: ir.OGO,
}
func (g *irgen) tokOp(tok int, ops []ir.Op) ir.Op {
// TODO(mdempsky): Validate.
return ops[tok]
}
func (g *irgen) op(op syntax.Operator, ops []ir.Op) ir.Op {
// TODO(mdempsky): Validate.
return ops[op]
}
func (g *irgen) assignList(expr syntax.Expr, def bool) ([]*ir.Name, []ir.Node) {
if !def {
return nil, g.exprList(expr)
}
var exprs []syntax.Expr
if list, ok := expr.(*syntax.ListExpr); ok {
exprs = list.ElemList
} else {
exprs = []syntax.Expr{expr}
}
var names []*ir.Name
res := make([]ir.Node, len(exprs))
for i, expr := range exprs {
expr := expr.(*syntax.Name)
if expr.Value == "_" {
res[i] = ir.BlankNode
continue
}
if obj, ok := g.info.Uses[expr]; ok {
res[i] = g.obj(obj)
continue
}
name, _ := g.def(expr)
names = append(names, name)
res[i] = name
}
return names, res
}
// initDefn marks the given names as declared by defn and populates
// its Init field with ODCL nodes. It then reports whether any names
// were so declared, which can be used to initialize defn.Def.
func initDefn(defn ir.InitNode, names []*ir.Name) bool {
if len(names) == 0 {
return false
}
init := make([]ir.Node, len(names))
for i, name := range names {
name.Defn = defn
init[i] = ir.NewDecl(name.Pos(), ir.ODCL, name)
}
defn.SetInit(init)
return true
}
func (g *irgen) blockStmt(stmt *syntax.BlockStmt) []ir.Node {
return g.stmts(stmt.List)
}
func (g *irgen) ifStmt(stmt *syntax.IfStmt) ir.Node {
init := g.stmt(stmt.Init)
n := ir.NewIfStmt(g.pos(stmt), g.expr(stmt.Cond), g.blockStmt(stmt.Then), nil)
if stmt.Else != nil {
e := g.stmt(stmt.Else)
if e.Op() == ir.OBLOCK {
e := e.(*ir.BlockStmt)
n.Else = e.List
} else {
n.Else = []ir.Node{e}
}
}
return g.init(init, n)
}
// unpackTwo returns the first two nodes in list. If list has fewer
// than 2 nodes, then the missing nodes are replaced with nils.
func unpackTwo(list []ir.Node) (fst, snd ir.Node) {
switch len(list) {
case 0:
return nil, nil
case 1:
return list[0], nil
default:
return list[0], list[1]
}
}
func (g *irgen) forStmt(stmt *syntax.ForStmt) ir.Node {
if r, ok := stmt.Init.(*syntax.RangeClause); ok {
names, lhs := g.assignList(r.Lhs, r.Def)
key, value := unpackTwo(lhs)
n := ir.NewRangeStmt(g.pos(r), key, value, g.expr(r.X), g.blockStmt(stmt.Body))
n.Def = initDefn(n, names)
return n
}
return ir.NewForStmt(g.pos(stmt), g.stmt(stmt.Init), g.expr(stmt.Cond), g.stmt(stmt.Post), g.blockStmt(stmt.Body))
}
func (g *irgen) selectStmt(stmt *syntax.SelectStmt) ir.Node {
body := make([]*ir.CommClause, len(stmt.Body))
for i, clause := range stmt.Body {
body[i] = ir.NewCommStmt(g.pos(clause), g.stmt(clause.Comm), g.stmts(clause.Body))
}
return ir.NewSelectStmt(g.pos(stmt), body)
}
func (g *irgen) switchStmt(stmt *syntax.SwitchStmt) ir.Node {
pos := g.pos(stmt)
init := g.stmt(stmt.Init)
var expr ir.Node
switch tag := stmt.Tag.(type) {
case *syntax.TypeSwitchGuard:
var ident *ir.Ident
if tag.Lhs != nil {
ident = ir.NewIdent(g.pos(tag.Lhs), g.name(tag.Lhs))
}
expr = ir.NewTypeSwitchGuard(pos, ident, g.expr(tag.X))
default:
expr = g.expr(tag)
}
body := make([]*ir.CaseClause, len(stmt.Body))
for i, clause := range stmt.Body {
// Check for an implicit clause variable before
// visiting body, because it may contain function
// literals that reference it, and then it'll be
// associated to the wrong function.
//
// Also, override its position to the clause's colon, so that
// dwarfgen can find the right scope for it later.
// TODO(mdempsky): We should probably just store the scope
// directly in the ir.Name.
var cv *ir.Name
if obj, ok := g.info.Implicits[clause]; ok {
cv = g.obj(obj)
cv.SetPos(g.makeXPos(clause.Colon))
}
body[i] = ir.NewCaseStmt(g.pos(clause), g.exprList(clause.Cases), g.stmts(clause.Body))
body[i].Var = cv
}
return g.init(init, ir.NewSwitchStmt(pos, expr, body))
}
func (g *irgen) labeledStmt(label *syntax.LabeledStmt) ir.Node {
sym := g.name(label.Label)
lhs := ir.NewLabelStmt(g.pos(label), sym)
ls := g.stmt(label.Stmt)
// Attach label directly to control statement too.
switch ls := ls.(type) {
case *ir.ForStmt:
ls.Label = sym
case *ir.RangeStmt:
ls.Label = sym
case *ir.SelectStmt:
ls.Label = sym
case *ir.SwitchStmt:
ls.Label = sym
}
l := []ir.Node{lhs}
if ls != nil {
if ls.Op() == ir.OBLOCK {
ls := ls.(*ir.BlockStmt)
l = append(l, ls.List...)
} else {
l = append(l, ls)
}
}
return ir.NewBlockStmt(src.NoXPos, l)
}
func (g *irgen) init(init ir.Node, stmt ir.InitNode) ir.InitNode {
if init != nil {
stmt.SetInit([]ir.Node{init})
}
return stmt
}
func (g *irgen) name(name *syntax.Name) *types.Sym {
if name == nil {
return nil
}
return typecheck.Lookup(name.Value)
}