2020-12-21 07:39:32 -08:00
/**************************************************************************/
/* gltf_accessor.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
# include "gltf_accessor.h"
2025-05-08 19:18:39 -07:00
# include "gltf_accessor.compat.inc"
2020-12-21 07:39:32 -08:00
2025-07-05 15:01:00 -07:00
# include "../gltf_state.h"
2020-12-21 07:39:32 -08:00
void GLTFAccessor : : _bind_methods ( ) {
2024-07-03 19:57:17 -07:00
BIND_ENUM_CONSTANT ( TYPE_SCALAR ) ;
BIND_ENUM_CONSTANT ( TYPE_VEC2 ) ;
BIND_ENUM_CONSTANT ( TYPE_VEC3 ) ;
BIND_ENUM_CONSTANT ( TYPE_VEC4 ) ;
BIND_ENUM_CONSTANT ( TYPE_MAT2 ) ;
BIND_ENUM_CONSTANT ( TYPE_MAT3 ) ;
BIND_ENUM_CONSTANT ( TYPE_MAT4 ) ;
2024-07-10 01:02:36 -07:00
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_NONE ) ;
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_SIGNED_BYTE ) ;
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_UNSIGNED_BYTE ) ;
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_SIGNED_SHORT ) ;
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_UNSIGNED_SHORT ) ;
2024-07-10 01:39:04 -07:00
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_SIGNED_INT ) ;
2024-07-10 01:02:36 -07:00
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_UNSIGNED_INT ) ;
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_SINGLE_FLOAT ) ;
2024-07-10 01:39:04 -07:00
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_DOUBLE_FLOAT ) ;
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_HALF_FLOAT ) ;
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_SIGNED_LONG ) ;
BIND_ENUM_CONSTANT ( COMPONENT_TYPE_UNSIGNED_LONG ) ;
2024-07-10 01:02:36 -07:00
2025-07-05 15:01:00 -07:00
ClassDB : : bind_static_method ( " GLTFAccessor " , D_METHOD ( " from_dictionary " , " dictionary " ) , & GLTFAccessor : : from_dictionary ) ;
ClassDB : : bind_method ( D_METHOD ( " to_dictionary " ) , & GLTFAccessor : : to_dictionary ) ;
2020-12-21 07:39:32 -08:00
ClassDB : : bind_method ( D_METHOD ( " get_buffer_view " ) , & GLTFAccessor : : get_buffer_view ) ;
ClassDB : : bind_method ( D_METHOD ( " set_buffer_view " , " buffer_view " ) , & GLTFAccessor : : set_buffer_view ) ;
ClassDB : : bind_method ( D_METHOD ( " get_byte_offset " ) , & GLTFAccessor : : get_byte_offset ) ;
ClassDB : : bind_method ( D_METHOD ( " set_byte_offset " , " byte_offset " ) , & GLTFAccessor : : set_byte_offset ) ;
ClassDB : : bind_method ( D_METHOD ( " get_component_type " ) , & GLTFAccessor : : get_component_type ) ;
ClassDB : : bind_method ( D_METHOD ( " set_component_type " , " component_type " ) , & GLTFAccessor : : set_component_type ) ;
ClassDB : : bind_method ( D_METHOD ( " get_normalized " ) , & GLTFAccessor : : get_normalized ) ;
ClassDB : : bind_method ( D_METHOD ( " set_normalized " , " normalized " ) , & GLTFAccessor : : set_normalized ) ;
ClassDB : : bind_method ( D_METHOD ( " get_count " ) , & GLTFAccessor : : get_count ) ;
ClassDB : : bind_method ( D_METHOD ( " set_count " , " count " ) , & GLTFAccessor : : set_count ) ;
2024-04-11 21:29:51 -07:00
ClassDB : : bind_method ( D_METHOD ( " get_accessor_type " ) , & GLTFAccessor : : get_accessor_type ) ;
ClassDB : : bind_method ( D_METHOD ( " set_accessor_type " , " accessor_type " ) , & GLTFAccessor : : set_accessor_type ) ;
2024-07-03 19:57:17 -07:00
ClassDB : : bind_method ( D_METHOD ( " get_type " ) , & GLTFAccessor : : get_type ) ;
ClassDB : : bind_method ( D_METHOD ( " set_type " , " type " ) , & GLTFAccessor : : set_type ) ;
2020-12-21 07:39:32 -08:00
ClassDB : : bind_method ( D_METHOD ( " get_min " ) , & GLTFAccessor : : get_min ) ;
ClassDB : : bind_method ( D_METHOD ( " set_min " , " min " ) , & GLTFAccessor : : set_min ) ;
ClassDB : : bind_method ( D_METHOD ( " get_max " ) , & GLTFAccessor : : get_max ) ;
ClassDB : : bind_method ( D_METHOD ( " set_max " , " max " ) , & GLTFAccessor : : set_max ) ;
ClassDB : : bind_method ( D_METHOD ( " get_sparse_count " ) , & GLTFAccessor : : get_sparse_count ) ;
ClassDB : : bind_method ( D_METHOD ( " set_sparse_count " , " sparse_count " ) , & GLTFAccessor : : set_sparse_count ) ;
ClassDB : : bind_method ( D_METHOD ( " get_sparse_indices_buffer_view " ) , & GLTFAccessor : : get_sparse_indices_buffer_view ) ;
ClassDB : : bind_method ( D_METHOD ( " set_sparse_indices_buffer_view " , " sparse_indices_buffer_view " ) , & GLTFAccessor : : set_sparse_indices_buffer_view ) ;
ClassDB : : bind_method ( D_METHOD ( " get_sparse_indices_byte_offset " ) , & GLTFAccessor : : get_sparse_indices_byte_offset ) ;
ClassDB : : bind_method ( D_METHOD ( " set_sparse_indices_byte_offset " , " sparse_indices_byte_offset " ) , & GLTFAccessor : : set_sparse_indices_byte_offset ) ;
ClassDB : : bind_method ( D_METHOD ( " get_sparse_indices_component_type " ) , & GLTFAccessor : : get_sparse_indices_component_type ) ;
ClassDB : : bind_method ( D_METHOD ( " set_sparse_indices_component_type " , " sparse_indices_component_type " ) , & GLTFAccessor : : set_sparse_indices_component_type ) ;
ClassDB : : bind_method ( D_METHOD ( " get_sparse_values_buffer_view " ) , & GLTFAccessor : : get_sparse_values_buffer_view ) ;
ClassDB : : bind_method ( D_METHOD ( " set_sparse_values_buffer_view " , " sparse_values_buffer_view " ) , & GLTFAccessor : : set_sparse_values_buffer_view ) ;
ClassDB : : bind_method ( D_METHOD ( " get_sparse_values_byte_offset " ) , & GLTFAccessor : : get_sparse_values_byte_offset ) ;
ClassDB : : bind_method ( D_METHOD ( " set_sparse_values_byte_offset " , " sparse_values_byte_offset " ) , & GLTFAccessor : : set_sparse_values_byte_offset ) ;
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " buffer_view " ) , " set_buffer_view " , " get_buffer_view " ) ; // GLTFBufferViewIndex
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " byte_offset " ) , " set_byte_offset " , " get_byte_offset " ) ; // int
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " component_type " ) , " set_component_type " , " get_component_type " ) ; // int
ADD_PROPERTY ( PropertyInfo ( Variant : : BOOL , " normalized " ) , " set_normalized " , " get_normalized " ) ; // bool
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " count " ) , " set_count " , " get_count " ) ; // int
2024-07-03 19:57:17 -07:00
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " accessor_type " ) , " set_accessor_type " , " get_accessor_type " ) ; // GLTFAccessor::GLTFAccessorType
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " type " , PROPERTY_HINT_NONE , " " , PROPERTY_USAGE_NONE ) , " set_type " , " get_type " ) ; // Deprecated, int for GLTFAccessor::GLTFAccessorType
2020-12-21 07:39:32 -08:00
ADD_PROPERTY ( PropertyInfo ( Variant : : PACKED_FLOAT64_ARRAY , " min " ) , " set_min " , " get_min " ) ; // Vector<real_t>
ADD_PROPERTY ( PropertyInfo ( Variant : : PACKED_FLOAT64_ARRAY , " max " ) , " set_max " , " get_max " ) ; // Vector<real_t>
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " sparse_count " ) , " set_sparse_count " , " get_sparse_count " ) ; // int
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " sparse_indices_buffer_view " ) , " set_sparse_indices_buffer_view " , " get_sparse_indices_buffer_view " ) ; // int
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " sparse_indices_byte_offset " ) , " set_sparse_indices_byte_offset " , " get_sparse_indices_byte_offset " ) ; // int
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " sparse_indices_component_type " ) , " set_sparse_indices_component_type " , " get_sparse_indices_component_type " ) ; // int
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " sparse_values_buffer_view " ) , " set_sparse_values_buffer_view " , " get_sparse_values_buffer_view " ) ; // int
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " sparse_values_byte_offset " ) , " set_sparse_values_byte_offset " , " get_sparse_values_byte_offset " ) ; // int
}
2025-07-05 15:01:00 -07:00
// Property getters and setters.
2025-05-08 19:18:39 -07:00
GLTFBufferViewIndex GLTFAccessor : : get_buffer_view ( ) const {
2020-12-21 07:39:32 -08:00
return buffer_view ;
}
void GLTFAccessor : : set_buffer_view ( GLTFBufferViewIndex p_buffer_view ) {
buffer_view = p_buffer_view ;
}
2025-05-08 19:18:39 -07:00
int64_t GLTFAccessor : : get_byte_offset ( ) const {
2020-12-21 07:39:32 -08:00
return byte_offset ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_byte_offset ( int64_t p_byte_offset ) {
2020-12-21 07:39:32 -08:00
byte_offset = p_byte_offset ;
}
2025-05-08 19:18:39 -07:00
GLTFAccessor : : GLTFComponentType GLTFAccessor : : get_component_type ( ) const {
2020-12-21 07:39:32 -08:00
return component_type ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_component_type ( GLTFComponentType p_component_type ) {
2024-07-10 01:02:36 -07:00
component_type = ( GLTFComponentType ) p_component_type ;
2020-12-21 07:39:32 -08:00
}
2025-05-08 19:18:39 -07:00
bool GLTFAccessor : : get_normalized ( ) const {
2020-12-21 07:39:32 -08:00
return normalized ;
}
void GLTFAccessor : : set_normalized ( bool p_normalized ) {
normalized = p_normalized ;
}
2025-05-08 19:18:39 -07:00
int64_t GLTFAccessor : : get_count ( ) const {
2020-12-21 07:39:32 -08:00
return count ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_count ( int64_t p_count ) {
2020-12-21 07:39:32 -08:00
count = p_count ;
}
2025-05-08 19:18:39 -07:00
GLTFAccessor : : GLTFAccessorType GLTFAccessor : : get_accessor_type ( ) const {
2024-07-03 19:57:17 -07:00
return accessor_type ;
}
void GLTFAccessor : : set_accessor_type ( GLTFAccessorType p_accessor_type ) {
accessor_type = p_accessor_type ;
}
2025-05-08 19:18:39 -07:00
int GLTFAccessor : : get_type ( ) const {
2024-04-11 21:29:51 -07:00
return ( int ) accessor_type ;
2020-12-21 07:39:32 -08:00
}
2024-07-03 19:57:17 -07:00
void GLTFAccessor : : set_type ( int p_accessor_type ) {
2024-04-11 21:29:51 -07:00
accessor_type = ( GLTFAccessorType ) p_accessor_type ; // TODO: Register enum
2020-12-21 07:39:32 -08:00
}
2025-05-08 19:18:39 -07:00
Vector < double > GLTFAccessor : : get_min ( ) const {
2025-09-26 15:22:45 -07:00
return Vector < double > ( min ) ;
2020-12-21 07:39:32 -08:00
}
2025-09-26 15:22:45 -07:00
void GLTFAccessor : : set_min ( const Vector < double > & p_min ) {
min = Vector < double > ( p_min ) ;
2020-12-21 07:39:32 -08:00
}
2025-05-08 19:18:39 -07:00
Vector < double > GLTFAccessor : : get_max ( ) const {
2025-09-26 15:22:45 -07:00
return Vector < double > ( max ) ;
2020-12-21 07:39:32 -08:00
}
2025-09-26 15:22:45 -07:00
void GLTFAccessor : : set_max ( const Vector < double > & p_max ) {
max = Vector < double > ( p_max ) ;
2020-12-21 07:39:32 -08:00
}
2025-05-08 19:18:39 -07:00
int64_t GLTFAccessor : : get_sparse_count ( ) const {
2020-12-21 07:39:32 -08:00
return sparse_count ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_sparse_count ( int64_t p_sparse_count ) {
2020-12-21 07:39:32 -08:00
sparse_count = p_sparse_count ;
}
2025-05-08 19:18:39 -07:00
GLTFBufferViewIndex GLTFAccessor : : get_sparse_indices_buffer_view ( ) const {
2020-12-21 07:39:32 -08:00
return sparse_indices_buffer_view ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_sparse_indices_buffer_view ( GLTFBufferViewIndex p_sparse_indices_buffer_view ) {
2020-12-21 07:39:32 -08:00
sparse_indices_buffer_view = p_sparse_indices_buffer_view ;
}
2025-05-08 19:18:39 -07:00
int64_t GLTFAccessor : : get_sparse_indices_byte_offset ( ) const {
2020-12-21 07:39:32 -08:00
return sparse_indices_byte_offset ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_sparse_indices_byte_offset ( int64_t p_sparse_indices_byte_offset ) {
2020-12-21 07:39:32 -08:00
sparse_indices_byte_offset = p_sparse_indices_byte_offset ;
}
2025-05-08 19:18:39 -07:00
GLTFAccessor : : GLTFComponentType GLTFAccessor : : get_sparse_indices_component_type ( ) const {
2020-12-21 07:39:32 -08:00
return sparse_indices_component_type ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_sparse_indices_component_type ( GLTFComponentType p_sparse_indices_component_type ) {
2024-07-10 01:02:36 -07:00
sparse_indices_component_type = ( GLTFComponentType ) p_sparse_indices_component_type ;
2020-12-21 07:39:32 -08:00
}
2025-05-08 19:18:39 -07:00
GLTFBufferViewIndex GLTFAccessor : : get_sparse_values_buffer_view ( ) const {
2020-12-21 07:39:32 -08:00
return sparse_values_buffer_view ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_sparse_values_buffer_view ( GLTFBufferViewIndex p_sparse_values_buffer_view ) {
2020-12-21 07:39:32 -08:00
sparse_values_buffer_view = p_sparse_values_buffer_view ;
}
2025-05-08 19:18:39 -07:00
int64_t GLTFAccessor : : get_sparse_values_byte_offset ( ) const {
2020-12-21 07:39:32 -08:00
return sparse_values_byte_offset ;
}
2025-05-08 19:18:39 -07:00
void GLTFAccessor : : set_sparse_values_byte_offset ( int64_t p_sparse_values_byte_offset ) {
2020-12-21 07:39:32 -08:00
sparse_values_byte_offset = p_sparse_values_byte_offset ;
}
2025-07-05 15:01:00 -07:00
// Trivial helper functions.
2025-07-20 07:39:40 -07:00
void GLTFAccessor : : _calculate_min_and_max ( const PackedFloat64Array & p_numbers ) {
const int64_t vector_size = _get_vector_size ( ) ;
ERR_FAIL_COND ( vector_size < = 0 | | p_numbers . size ( ) % vector_size ! = 0 ) ;
min . resize ( vector_size ) ;
max . resize ( vector_size ) ;
// Initialize min and max with the first vector element values.
for ( int64_t in_vec = 0 ; in_vec < vector_size ; in_vec + + ) {
min . write [ in_vec ] = p_numbers [ in_vec ] ;
max . write [ in_vec ] = p_numbers [ in_vec ] ;
}
// Iterate over the rest of the vectors.
for ( int64_t which_vec = vector_size ; which_vec < p_numbers . size ( ) ; which_vec + = vector_size ) {
for ( int64_t in_vec = 0 ; in_vec < vector_size ; in_vec + + ) {
min . write [ in_vec ] = MIN ( p_numbers [ which_vec + in_vec ] , min [ in_vec ] ) ;
max . write [ in_vec ] = MAX ( p_numbers [ which_vec + in_vec ] , max [ in_vec ] ) ;
}
}
// 3.6.2.5: For floating-point components, JSON-stored minimum and maximum values represent single precision
// floats and SHOULD be rounded to single precision before usage to avoid any potential boundary mismatches.
// https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#accessors-bounds
if ( component_type = = GLTFAccessor : : COMPONENT_TYPE_SINGLE_FLOAT ) {
for ( int64_t i = 0 ; i < min . size ( ) ; i + + ) {
min . write [ i ] = ( double ) ( float ) min [ i ] ;
max . write [ i ] = ( double ) ( float ) max [ i ] ;
}
}
}
void GLTFAccessor : : _determine_pad_skip ( int64_t & r_skip_every , int64_t & r_skip_bytes ) const {
// 3.6.2.4. Accessors of matrix type have data stored in column-major order. The start of each column MUST be aligned to 4-byte boundaries.
// https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#data-alignment
switch ( component_type ) {
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_BYTE :
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_BYTE : {
if ( accessor_type = = GLTFAccessor : : TYPE_MAT2 ) {
r_skip_every = 2 ;
r_skip_bytes = 2 ;
}
if ( accessor_type = = GLTFAccessor : : TYPE_MAT3 ) {
r_skip_every = 3 ;
r_skip_bytes = 1 ;
}
} break ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_SHORT :
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_SHORT : {
if ( accessor_type = = GLTFAccessor : : TYPE_MAT3 ) {
r_skip_every = 6 ;
r_skip_bytes = 2 ;
}
} break ;
default : {
} break ;
}
}
int64_t GLTFAccessor : : _determine_padded_byte_count ( int64_t p_raw_byte_size ) const {
// 3.6.2.4. Accessors of matrix type have data stored in column-major order. The start of each column MUST be aligned to 4-byte boundaries.
// https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#data-alignment
switch ( component_type ) {
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_BYTE :
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_BYTE : {
if ( accessor_type = = GLTFAccessor : : TYPE_MAT2 ) {
return p_raw_byte_size * 2 ;
}
if ( accessor_type = = GLTFAccessor : : TYPE_MAT3 ) {
return p_raw_byte_size * 4 / 3 ;
}
} break ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_SHORT :
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_SHORT : {
if ( accessor_type = = GLTFAccessor : : TYPE_MAT3 ) {
return p_raw_byte_size * 4 / 3 ;
}
} break ;
default : {
} break ;
}
return p_raw_byte_size ;
}
PackedFloat64Array GLTFAccessor : : _filter_numbers ( const PackedFloat64Array & p_numbers ) const {
PackedFloat64Array filtered_numbers = p_numbers ;
for ( int64_t i = 0 ; i < p_numbers . size ( ) ; i + + ) {
const double num = p_numbers [ i ] ;
if ( ! Math : : is_finite ( num ) ) {
// 3.6.2.2. "Values of NaN, +Infinity, and -Infinity MUST NOT be present."
// https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#accessor-data-types
filtered_numbers . set ( i , 0.0 ) ;
} else if ( component_type = = GLTFAccessor : : COMPONENT_TYPE_SINGLE_FLOAT ) {
filtered_numbers . set ( i , ( double ) ( float ) num ) ;
}
}
return filtered_numbers ;
}
String GLTFAccessor : : _get_component_type_name ( const GLTFComponentType p_component ) {
// These names are only for debugging and printing error messages, glTF uses the numeric values.
switch ( p_component ) {
case GLTFAccessor : : COMPONENT_TYPE_NONE :
return " None " ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_BYTE :
return " Byte " ;
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_BYTE :
return " UByte " ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_SHORT :
return " Short " ;
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_SHORT :
return " UShort " ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_INT :
return " Int " ;
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_INT :
return " UInt " ;
case GLTFAccessor : : COMPONENT_TYPE_SINGLE_FLOAT :
return " Float " ;
case GLTFAccessor : : COMPONENT_TYPE_DOUBLE_FLOAT :
return " Double " ;
case GLTFAccessor : : COMPONENT_TYPE_HALF_FLOAT :
return " Half " ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_LONG :
return " Long " ;
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_LONG :
return " ULong " ;
}
return " <Error> " ;
}
GLTFAccessor : : GLTFComponentType GLTFAccessor : : _get_indices_component_type_for_size ( const int64_t p_size ) {
ERR_FAIL_COND_V ( p_size < 0 , GLTFAccessor : : COMPONENT_TYPE_NONE ) ;
// 3.7.2.1. indices accessor MUST NOT contain the maximum possible value for the component type used
// (i.e., 255 for unsigned bytes, 65535 for unsigned shorts, 4294967295 for unsigned ints).
// https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview
if ( unlikely ( p_size > 4294967294LL ) ) {
return GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_LONG ;
}
if ( p_size > 65534LL ) {
return GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_INT ;
}
if ( p_size > 254LL ) {
return GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_SHORT ;
}
return GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_BYTE ;
}
2025-07-05 15:01:00 -07:00
GLTFAccessor : : GLTFAccessorType GLTFAccessor : : _get_accessor_type_from_str ( const String & p_string ) {
if ( p_string = = " SCALAR " ) {
return GLTFAccessor : : TYPE_SCALAR ;
}
if ( p_string = = " VEC2 " ) {
return GLTFAccessor : : TYPE_VEC2 ;
}
if ( p_string = = " VEC3 " ) {
return GLTFAccessor : : TYPE_VEC3 ;
}
if ( p_string = = " VEC4 " ) {
return GLTFAccessor : : TYPE_VEC4 ;
}
if ( p_string = = " MAT2 " ) {
return GLTFAccessor : : TYPE_MAT2 ;
}
if ( p_string = = " MAT3 " ) {
return GLTFAccessor : : TYPE_MAT3 ;
}
if ( p_string = = " MAT4 " ) {
return GLTFAccessor : : TYPE_MAT4 ;
}
ERR_FAIL_V ( GLTFAccessor : : TYPE_SCALAR ) ;
}
String GLTFAccessor : : _get_accessor_type_name ( ) const {
switch ( accessor_type ) {
case GLTFAccessor : : TYPE_SCALAR :
return " SCALAR " ;
case GLTFAccessor : : TYPE_VEC2 :
return " VEC2 " ;
case GLTFAccessor : : TYPE_VEC3 :
return " VEC3 " ;
case GLTFAccessor : : TYPE_VEC4 :
return " VEC4 " ;
case GLTFAccessor : : TYPE_MAT2 :
return " MAT2 " ;
case GLTFAccessor : : TYPE_MAT3 :
return " MAT3 " ;
case GLTFAccessor : : TYPE_MAT4 :
return " MAT4 " ;
default :
break ;
}
ERR_FAIL_V ( " SCALAR " ) ;
}
2025-07-20 07:39:40 -07:00
int64_t GLTFAccessor : : _get_vector_size ( ) const {
switch ( accessor_type ) {
case GLTFAccessor : : TYPE_SCALAR :
return 1 ;
case GLTFAccessor : : TYPE_VEC2 :
return 2 ;
case GLTFAccessor : : TYPE_VEC3 :
return 3 ;
case GLTFAccessor : : TYPE_VEC4 :
return 4 ;
case GLTFAccessor : : TYPE_MAT2 :
return 4 ;
case GLTFAccessor : : TYPE_MAT3 :
return 9 ;
case GLTFAccessor : : TYPE_MAT4 :
return 16 ;
default :
break ;
}
ERR_FAIL_V ( 0 ) ;
}
int64_t GLTFAccessor : : _get_bytes_per_component ( const GLTFComponentType p_component_type ) {
switch ( p_component_type ) {
case GLTFAccessor : : COMPONENT_TYPE_NONE :
ERR_FAIL_V ( 0 ) ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_BYTE :
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_BYTE :
return 1 ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_SHORT :
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_SHORT :
case GLTFAccessor : : COMPONENT_TYPE_HALF_FLOAT :
return 2 ;
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_INT :
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_INT :
case GLTFAccessor : : COMPONENT_TYPE_SINGLE_FLOAT :
return 4 ;
case GLTFAccessor : : COMPONENT_TYPE_DOUBLE_FLOAT :
case GLTFAccessor : : COMPONENT_TYPE_SIGNED_LONG :
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_LONG :
return 8 ;
}
ERR_FAIL_V ( 0 ) ;
}
int64_t GLTFAccessor : : _get_bytes_per_vector ( ) const {
const int64_t raw_byte_size = _get_bytes_per_component ( component_type ) * _get_vector_size ( ) ;
return _determine_padded_byte_count ( raw_byte_size ) ;
}
bool GLTFAccessor : : is_equal_exact ( const Ref < GLTFAccessor > & p_other ) const {
if ( p_other . is_null ( ) ) {
return false ;
}
return ( buffer_view = = p_other - > buffer_view & &
byte_offset = = p_other - > byte_offset & &
component_type = = p_other - > component_type & &
normalized = = p_other - > normalized & &
count = = p_other - > count & &
accessor_type = = p_other - > accessor_type & &
min = = p_other - > min & &
max = = p_other - > max & &
sparse_count = = p_other - > sparse_count & &
sparse_indices_buffer_view = = p_other - > sparse_indices_buffer_view & &
sparse_indices_byte_offset = = p_other - > sparse_indices_byte_offset & &
sparse_indices_component_type = = p_other - > sparse_indices_component_type & &
sparse_values_buffer_view = = p_other - > sparse_values_buffer_view & &
sparse_values_byte_offset = = p_other - > sparse_values_byte_offset ) ;
}
// Private encode functions.
PackedFloat64Array GLTFAccessor : : _encode_variants_as_floats ( const Array & p_input_data , Variant : : Type p_variant_type ) const {
const int64_t vector_size = _get_vector_size ( ) ;
const int64_t input_size = p_input_data . size ( ) ;
PackedFloat64Array numbers ;
numbers . resize ( input_size * vector_size ) ;
for ( int64_t input_index = 0 ; input_index < input_size ; input_index + + ) {
Variant variant = p_input_data [ input_index ] ;
const int64_t vector_offset = input_index * vector_size ;
switch ( p_variant_type ) {
case Variant : : NIL :
case Variant : : BOOL :
case Variant : : INT :
case Variant : : FLOAT : {
// For scalar values, just append them. Variant can convert all of these to double. Some padding may also be needed.
numbers . set ( vector_offset , variant ) ;
if ( unlikely ( vector_size > 1 ) ) {
for ( int64_t i = 1 ; i < vector_size ; i + + ) {
numbers . set ( vector_offset + i , 0.0 ) ;
}
}
} break ;
case Variant : : PLANE :
case Variant : : QUATERNION :
case Variant : : RECT2 : {
// Evil hack that relies on the structure of Variant, but it's the
// only way to accomplish this without a ton of code duplication.
* ( Variant : : Type * ) & variant = Variant : : VECTOR4 ;
}
[[fallthrough]] ;
case Variant : : VECTOR2 :
case Variant : : VECTOR3 :
case Variant : : VECTOR4 : {
// Variant can handle converting Vector2/3/4 to Vector4 for us.
Vector4 vec = variant ;
for ( int64_t i = 0 ; i < vector_size ; i + + ) {
numbers . set ( vector_offset + i , vec [ i ] ) ;
}
if ( unlikely ( vector_size > 4 ) ) {
for ( int64_t i = 4 ; i < vector_size ; i + + ) {
numbers . set ( vector_offset + i , 0.0 ) ;
}
}
} break ;
case Variant : : RECT2I : {
* ( Variant : : Type * ) & variant = Variant : : VECTOR4I ;
}
[[fallthrough]] ;
case Variant : : VECTOR2I :
case Variant : : VECTOR3I :
case Variant : : VECTOR4I : {
// Variant can handle converting Vector2i/3i/4i to Vector4i for us.
Vector4i vec = variant ;
for ( int64_t i = 0 ; i < vector_size ; i + + ) {
numbers . set ( vector_offset + i , vec [ i ] ) ;
}
if ( unlikely ( vector_size > 4 ) ) {
for ( int64_t i = 4 ; i < vector_size ; i + + ) {
numbers . set ( vector_offset + i , 0.0 ) ;
}
}
} break ;
case Variant : : COLOR : {
Color c = variant ;
for ( int64_t i = 0 ; i < vector_size ; i + + ) {
numbers . set ( vector_offset + i , c [ i ] ) ;
}
if ( unlikely ( vector_size > 4 ) ) {
for ( int64_t i = 4 ; i < vector_size ; i + + ) {
numbers . set ( vector_offset + i , 0.0 ) ;
}
}
} break ;
case Variant : : TRANSFORM2D :
case Variant : : BASIS :
case Variant : : TRANSFORM3D :
case Variant : : PROJECTION : {
// Variant can handle converting Transform2D/Transform3D/Basis to Projection for us.
Projection p = variant ;
if ( vector_size = = 16 ) {
for ( int64_t i = 0 ; i < 4 ; i + + ) {
numbers . set ( vector_offset + 4 * i , p . columns [ i ] [ 0 ] ) ;
numbers . set ( vector_offset + 4 * i + 1 , p . columns [ i ] [ 1 ] ) ;
numbers . set ( vector_offset + 4 * i + 2 , p . columns [ i ] [ 2 ] ) ;
numbers . set ( vector_offset + 4 * i + 3 , p . columns [ i ] [ 3 ] ) ;
}
} else if ( vector_size = = 9 ) {
for ( int64_t i = 0 ; i < 3 ; i + + ) {
numbers . set ( vector_offset + 3 * i , p . columns [ i ] [ 0 ] ) ;
numbers . set ( vector_offset + 3 * i + 1 , p . columns [ i ] [ 1 ] ) ;
numbers . set ( vector_offset + 3 * i + 2 , p . columns [ i ] [ 2 ] ) ;
}
} else if ( vector_size = = 4 ) {
numbers . set ( vector_offset , p . columns [ 0 ] [ 0 ] ) ;
numbers . set ( vector_offset + 1 , p . columns [ 0 ] [ 1 ] ) ;
numbers . set ( vector_offset + 2 , p . columns [ 1 ] [ 0 ] ) ;
numbers . set ( vector_offset + 3 , p . columns [ 1 ] [ 1 ] ) ;
}
} break ;
default : {
ERR_FAIL_V_MSG ( PackedFloat64Array ( ) , " glTF export: Cannot encode accessor from Variant of type " + Variant : : get_type_name ( p_variant_type ) + " . " ) ;
}
}
}
return numbers ;
}
void GLTFAccessor : : _store_sparse_indices_into_state ( const Ref < GLTFState > & p_gltf_state , const PackedInt64Array & p_sparse_indices , const bool p_deduplicate ) {
// The byte offset of a sparse accessor's indices buffer view MUST be a multiple of the indices primitive componentType.
// https://github.com/KhronosGroup/glTF/blob/main/specification/2.0/schema/accessor.sparse.indices.schema.json
const int64_t bytes_per_index = _get_bytes_per_component ( sparse_indices_component_type ) ;
PackedByteArray indices_bytes ;
indices_bytes . resize ( bytes_per_index * p_sparse_indices . size ( ) ) ;
uint8_t * ret_write = indices_bytes . ptrw ( ) ;
int64_t ret_byte_offset = 0 ;
for ( int64_t i = 0 ; i < p_sparse_indices . size ( ) ; i + + ) {
switch ( sparse_indices_component_type ) {
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_BYTE : {
* ( uint8_t * ) & ret_write [ ret_byte_offset ] = p_sparse_indices [ i ] ;
} break ;
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_SHORT : {
* ( uint16_t * ) & ret_write [ ret_byte_offset ] = p_sparse_indices [ i ] ;
} break ;
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_INT : {
* ( uint32_t * ) & ret_write [ ret_byte_offset ] = p_sparse_indices [ i ] ;
} break ;
case GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_LONG : {
* ( uint64_t * ) & ret_write [ ret_byte_offset ] = p_sparse_indices [ i ] ;
} break ;
default : {
ERR_FAIL_MSG ( " glTF export: Invalid sparse indices component type ' " + _get_component_type_name ( sparse_indices_component_type ) + " ' for sparse accessor indices. " ) ;
} break ;
}
ret_byte_offset + = bytes_per_index ;
}
const GLTFBufferViewIndex buffer_view_index = GLTFBufferView : : write_new_buffer_view_into_state ( p_gltf_state , indices_bytes , bytes_per_index , GLTFBufferView : : TARGET_NONE , - 1 , 0 , p_deduplicate ) ;
ERR_FAIL_COND_MSG ( buffer_view_index = = - 1 , " glTF export: Failed to write sparse indices into glTF state. " ) ;
set_sparse_indices_buffer_view ( buffer_view_index ) ;
}
// Low-level encode functions.
GLTFAccessor : : GLTFComponentType GLTFAccessor : : get_minimal_integer_component_type_from_ints ( const PackedInt64Array & p_numbers ) {
bool has_negative = false ;
for ( int64_t i = 0 ; i < p_numbers . size ( ) ; i + + ) {
if ( p_numbers [ i ] < 0 ) {
has_negative = true ;
break ;
}
}
if ( has_negative ) {
GLTFComponentType ret = GLTFAccessor : : COMPONENT_TYPE_SIGNED_BYTE ;
for ( int64_t i = 0 ; i < p_numbers . size ( ) ; i + + ) {
const int64_t num = p_numbers [ i ] ;
if ( ret = = GLTFAccessor : : COMPONENT_TYPE_SIGNED_BYTE & & ( num < - 128LL | | num > 127LL ) ) {
ret = GLTFAccessor : : COMPONENT_TYPE_SIGNED_SHORT ;
}
if ( ret = = GLTFAccessor : : COMPONENT_TYPE_SIGNED_SHORT & & ( num < - 32768LL | | num > 32767LL ) ) {
ret = GLTFAccessor : : COMPONENT_TYPE_SIGNED_INT ;
}
if ( ret = = GLTFAccessor : : COMPONENT_TYPE_SIGNED_INT & & ( num < - 2147483648LL | | num > 2147483647LL ) ) {
return GLTFAccessor : : COMPONENT_TYPE_SIGNED_LONG ;
}
}
return ret ;
}
GLTFComponentType ret = GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_BYTE ;
for ( int64_t i = 0 ; i < p_numbers . size ( ) ; i + + ) {
const int64_t num = p_numbers [ i ] ;
// 3.7.2.1. indices accessor MUST NOT contain the maximum possible value for the component type used
// (i.e., 255 for unsigned bytes, 65535 for unsigned shorts, 4294967295 for unsigned ints).
// https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview
if ( ret = = GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_BYTE & & num > 254LL ) {
ret = GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_SHORT ;
}
if ( ret = = GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_SHORT & & num > 65534LL ) {
ret = GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_INT ;
}
if ( ret = = GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_INT & & num > 4294967294LL ) {
return GLTFAccessor : : COMPONENT_TYPE_UNSIGNED_LONG ;
}
}
return ret ;
}
PackedByteArray GLTFAccessor : : encode_floats_as_bytes ( const PackedFloat64Array & p_input_numbers ) {
// Filter and update `count`, `min`, and `max` based on the given data.
PackedFloat64Array filtered_numbers = _filter_numbers ( p_input_numbers ) ;
count = filtered_numbers . size ( ) / _get_vector_size ( ) ;
_calculate_min_and_max ( filtered_numbers ) ;
// Actually encode the data.
const int64_t input_size = filtered_numbers . size ( ) ;
const int64_t bytes_per_component = _get_bytes_per_component ( component_type ) ;
int64_t raw_byte_size = _determine_padded_byte_count ( bytes_per_component * input_size ) ;
int64_t skip_every = 0 ;
int64_t skip_bytes = 0 ;
_determine_pad_skip ( skip_every , skip_bytes ) ;
PackedByteArray ret ;
ret . resize ( raw_byte_size ) ;
uint8_t * ret_write = ret . ptrw ( ) ;
int64_t ret_byte_offset = 0 ;
for ( int64_t i = 0 ; i < input_size ; i + + ) {
switch ( component_type ) {
case COMPONENT_TYPE_NONE : {
ERR_FAIL_V_MSG ( ret , " glTF export: Invalid component type 'NONE' for glTF accessor. " ) ;
} break ;
case COMPONENT_TYPE_SIGNED_BYTE : {
* ( int8_t * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_UNSIGNED_BYTE : {
* ( uint8_t * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_SIGNED_SHORT : {
* ( int16_t * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_UNSIGNED_SHORT : {
* ( uint16_t * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_SIGNED_INT : {
* ( int32_t * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_UNSIGNED_INT : {
* ( uint32_t * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_SINGLE_FLOAT : {
* ( float * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_DOUBLE_FLOAT : {
* ( double * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_HALF_FLOAT : {
* ( uint16_t * ) & ret_write [ ret_byte_offset ] = Math : : make_half_float ( filtered_numbers [ i ] ) ;
} break ;
case COMPONENT_TYPE_SIGNED_LONG : {
// Note: This can potentially result in precision loss because int64_t can store some values that double can't.
* ( int64_t * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_UNSIGNED_LONG : {
// Note: This can potentially result in precision loss because uint64_t can store some values that double can't.
* ( uint64_t * ) & ret_write [ ret_byte_offset ] = filtered_numbers [ i ] ;
} break ;
default : {
ERR_FAIL_V_MSG ( ret , " glTF export: Godot does not support writing glTF accessor components of type ' " + itos ( component_type ) + " '. " ) ;
} break ;
}
ret_byte_offset + = bytes_per_component ;
if ( unlikely ( skip_every > 0 ) ) {
if ( ( i + 1 ) % skip_every = = 0 ) {
ret_byte_offset + = skip_bytes ;
}
}
}
ERR_FAIL_COND_V_MSG ( ret_byte_offset ! = raw_byte_size , ret , " glTF export: Accessor encoded data did not write exactly the expected number of bytes. " ) ;
return ret ;
}
PackedByteArray GLTFAccessor : : encode_ints_as_bytes ( const PackedInt64Array & p_input_numbers ) {
// Filter and update `count`, `min`, and `max` based on the given data.
count = p_input_numbers . size ( ) / _get_vector_size ( ) ;
_calculate_min_and_max ( Variant ( p_input_numbers ) ) ;
// Actually encode the data.
const int64_t input_size = p_input_numbers . size ( ) ;
const int64_t bytes_per_component = _get_bytes_per_component ( component_type ) ;
int64_t raw_byte_size = _determine_padded_byte_count ( bytes_per_component * input_size ) ;
int64_t skip_every = 0 ;
int64_t skip_bytes = 0 ;
_determine_pad_skip ( skip_every , skip_bytes ) ;
PackedByteArray ret ;
ret . resize ( raw_byte_size ) ;
uint8_t * ret_write = ret . ptrw ( ) ;
int64_t ret_byte_offset = 0 ;
for ( int64_t i = 0 ; i < input_size ; i + + ) {
switch ( component_type ) {
case COMPONENT_TYPE_NONE : {
ERR_FAIL_V_MSG ( ret , " glTF export: Invalid component type 'NONE' for glTF accessor. " ) ;
} break ;
case COMPONENT_TYPE_SIGNED_BYTE : {
* ( int8_t * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_UNSIGNED_BYTE : {
* ( uint8_t * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_SIGNED_SHORT : {
* ( int16_t * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_UNSIGNED_SHORT : {
* ( uint16_t * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_SIGNED_INT : {
* ( int32_t * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_UNSIGNED_INT : {
* ( uint32_t * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_SINGLE_FLOAT : {
* ( float * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_DOUBLE_FLOAT : {
* ( double * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_HALF_FLOAT : {
* ( uint16_t * ) & ret_write [ ret_byte_offset ] = Math : : make_half_float ( p_input_numbers [ i ] ) ;
} break ;
case COMPONENT_TYPE_SIGNED_LONG : {
* ( int64_t * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
case COMPONENT_TYPE_UNSIGNED_LONG : {
* ( uint64_t * ) & ret_write [ ret_byte_offset ] = p_input_numbers [ i ] ;
} break ;
default : {
ERR_FAIL_V_MSG ( ret , " glTF export: Godot does not support writing glTF accessor components of type ' " + itos ( component_type ) + " '. " ) ;
} break ;
}
ret_byte_offset + = bytes_per_component ;
if ( unlikely ( skip_every > 0 ) ) {
if ( ( i + 1 ) % skip_every = = 0 ) {
ret_byte_offset + = skip_bytes ;
}
}
}
ERR_FAIL_COND_V_MSG ( ret_byte_offset ! = raw_byte_size , ret , " glTF export: Accessor encoded data did not write exactly the expected number of bytes. " ) ;
return ret ;
}
PackedByteArray GLTFAccessor : : encode_variants_as_bytes ( const Array & p_input_data , Variant : : Type p_variant_type ) {
const int64_t bytes_per_vec = _get_bytes_per_vector ( ) ;
ERR_FAIL_COND_V_MSG ( bytes_per_vec = = 0 , PackedByteArray ( ) , " glTF export: Cannot encode an accessor of this type. " ) ;
PackedFloat64Array numbers = _encode_variants_as_floats ( p_input_data , p_variant_type ) ;
return encode_floats_as_bytes ( numbers ) ;
}
GLTFAccessorIndex GLTFAccessor : : store_accessor_data_into_state ( const Ref < GLTFState > & p_gltf_state , const PackedByteArray & p_data_bytes , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const GLTFBufferIndex p_buffer_index , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_data_bytes . is_empty ( ) , - 1 , " glTF export: Cannot store nothing. " ) ;
// Update `count` based on the size of the data. It's possible that `count` may already be correct, but this function is public, so this prevents footguns.
const int64_t bytes_per_vec = _get_bytes_per_vector ( ) ;
ERR_FAIL_COND_V_MSG ( bytes_per_vec = = 0 | | p_data_bytes . size ( ) % bytes_per_vec ! = 0 , - 1 , " glTF export: Tried to store an accessor with data that is not a multiple of the accessor's bytes per vector. " ) ;
count = p_data_bytes . size ( ) / bytes_per_vec ;
// 3.6.2.4. The byte offset of an accessor's buffer view MUST be a multiple of the accessor's primitive size.
// https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#data-alignment
const int64_t alignment = _get_bytes_per_component ( component_type ) ;
// 3.6.2.4. Each element of a vertex attribute MUST be aligned to 4-byte boundaries inside a bufferView.
int64_t byte_stride = - 1 ;
if ( p_buffer_view_target = = GLTFBufferView : : TARGET_ARRAY_BUFFER ) {
byte_stride = bytes_per_vec ;
ERR_FAIL_COND_V_MSG ( byte_stride < 4 | | byte_stride % 4 ! = 0 , - 1 , " glTF export: Vertex attributes using TARGET_ARRAY_BUFFER must have a byte stride that is a multiple of 4 as required by section 3.6.2.4 of the glTF specification. " ) ;
}
// Write the data into a new buffer view.
const GLTFBufferViewIndex buffer_view_index = GLTFBufferView : : write_new_buffer_view_into_state ( p_gltf_state , p_data_bytes , alignment , p_buffer_view_target , byte_stride , 0 , p_deduplicate ) ;
ERR_FAIL_COND_V_MSG ( buffer_view_index = = - 1 , - 1 , " glTF export: Accessor failed to write new buffer view into glTF state. " ) ;
set_buffer_view ( buffer_view_index ) ;
// Add the new accessor to the state, but check for duplicates first.
TypedArray < GLTFAccessor > state_accessors = p_gltf_state - > get_accessors ( ) ;
const GLTFAccessorIndex accessor_count = state_accessors . size ( ) ;
for ( GLTFAccessorIndex i = 0 ; i < accessor_count ; i + + ) {
Ref < GLTFAccessor > existing_accessor = state_accessors [ i ] ;
if ( is_equal_exact ( existing_accessor ) ) {
// An identical accessor already exists in the state, so just return the index.
return i ;
}
}
Ref < GLTFAccessor > self = this ;
state_accessors . append ( self ) ;
p_gltf_state - > set_accessors ( state_accessors ) ;
return accessor_count ;
}
Ref < GLTFAccessor > GLTFAccessor : : make_new_accessor_without_data ( GLTFAccessorType p_accessor_type , GLTFComponentType p_component_type ) {
Ref < GLTFAccessor > accessor ;
accessor . instantiate ( ) ;
accessor - > set_accessor_type ( p_accessor_type ) ;
accessor - > set_component_type ( p_component_type ) ;
return accessor ;
}
// High-level encode functions.
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_colors ( const Ref < GLTFState > & p_gltf_state , const PackedColorArray & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
PackedFloat64Array numbers ;
numbers . resize ( p_input_data . size ( ) * 4 ) ;
for ( int64_t i = 0 ; i < p_input_data . size ( ) ; i + + ) {
const Color & color = p_input_data [ i ] ;
numbers . set ( i * 4 , color . r ) ;
numbers . set ( i * 4 + 1 , color . g ) ;
numbers . set ( i * 4 + 2 , color . b ) ;
numbers . set ( i * 4 + 3 , color . a ) ;
}
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_VEC4 , COMPONENT_TYPE_SINGLE_FLOAT ) ;
PackedByteArray encoded_bytes = accessor - > encode_floats_as_bytes ( numbers ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_float64s ( const Ref < GLTFState > & p_gltf_state , const PackedFloat64Array & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_SCALAR , COMPONENT_TYPE_SINGLE_FLOAT ) ;
PackedByteArray encoded_bytes = accessor - > encode_floats_as_bytes ( p_input_data ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_int32s ( const Ref < GLTFState > & p_gltf_state , const PackedInt32Array & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
PackedInt64Array numbers ;
numbers . resize ( p_input_data . size ( ) ) ;
for ( int64_t i = 0 ; i < p_input_data . size ( ) ; i + + ) {
numbers . set ( i , p_input_data [ i ] ) ;
}
const GLTFComponentType component_type = get_minimal_integer_component_type_from_ints ( numbers ) ;
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_SCALAR , component_type ) ;
PackedByteArray encoded_bytes = accessor - > encode_ints_as_bytes ( numbers ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_int64s ( const Ref < GLTFState > & p_gltf_state , const PackedInt64Array & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
const GLTFComponentType component_type = get_minimal_integer_component_type_from_ints ( p_input_data ) ;
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_SCALAR , component_type ) ;
PackedByteArray encoded_bytes = accessor - > encode_ints_as_bytes ( p_input_data ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_quaternions ( const Ref < GLTFState > & p_gltf_state , const Vector < Quaternion > & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
PackedFloat64Array numbers ;
numbers . resize ( p_input_data . size ( ) * 4 ) ;
for ( int64_t i = 0 ; i < p_input_data . size ( ) ; i + + ) {
const Quaternion & quat = p_input_data [ i ] ;
numbers . set ( i * 4 , quat . x ) ;
numbers . set ( i * 4 + 1 , quat . y ) ;
numbers . set ( i * 4 + 2 , quat . z ) ;
numbers . set ( i * 4 + 3 , quat . w ) ;
}
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_VEC4 , COMPONENT_TYPE_SINGLE_FLOAT ) ;
PackedByteArray encoded_bytes = accessor - > encode_floats_as_bytes ( numbers ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_variants ( const Ref < GLTFState > & p_gltf_state , const Array & p_input_data , Variant : : Type p_variant_type , GLTFAccessorType p_accessor_type , GLTFComponentType p_component_type , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( p_accessor_type , p_component_type ) ;
// Write the data into a new buffer view.
PackedByteArray encoded_bytes = accessor - > encode_variants_as_bytes ( p_input_data , p_variant_type ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_vector2s ( const Ref < GLTFState > & p_gltf_state , const PackedVector2Array & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
PackedFloat64Array numbers ;
numbers . resize ( p_input_data . size ( ) * 2 ) ;
for ( int64_t i = 0 ; i < p_input_data . size ( ) ; i + + ) {
const Vector2 & vec = p_input_data [ i ] ;
numbers . set ( i * 2 , vec . x ) ;
numbers . set ( i * 2 + 1 , vec . y ) ;
}
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_VEC2 , COMPONENT_TYPE_SINGLE_FLOAT ) ;
PackedByteArray encoded_bytes = accessor - > encode_floats_as_bytes ( numbers ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_vector3s ( const Ref < GLTFState > & p_gltf_state , const PackedVector3Array & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
PackedFloat64Array numbers ;
numbers . resize ( p_input_data . size ( ) * 3 ) ;
for ( int64_t i = 0 ; i < p_input_data . size ( ) ; i + + ) {
const Vector3 & vec = p_input_data [ i ] ;
numbers . set ( i * 3 , vec . x ) ;
numbers . set ( i * 3 + 1 , vec . y ) ;
numbers . set ( i * 3 + 2 , vec . z ) ;
}
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_VEC3 , COMPONENT_TYPE_SINGLE_FLOAT ) ;
PackedByteArray encoded_bytes = accessor - > encode_floats_as_bytes ( numbers ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_vector4s ( const Ref < GLTFState > & p_gltf_state , const PackedVector4Array & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
PackedFloat64Array numbers ;
numbers . resize ( p_input_data . size ( ) * 4 ) ;
for ( int64_t i = 0 ; i < p_input_data . size ( ) ; i + + ) {
const Vector4 & vec = p_input_data [ i ] ;
numbers . set ( i * 4 , vec . x ) ;
numbers . set ( i * 4 + 1 , vec . y ) ;
numbers . set ( i * 4 + 2 , vec . z ) ;
numbers . set ( i * 4 + 3 , vec . w ) ;
}
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_VEC4 , COMPONENT_TYPE_SINGLE_FLOAT ) ;
PackedByteArray encoded_bytes = accessor - > encode_floats_as_bytes ( numbers ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_accessor_from_vector4is ( const Ref < GLTFState > & p_gltf_state , const Vector < Vector4i > & p_input_data , const GLTFBufferView : : ArrayBufferTarget p_buffer_view_target , const bool p_deduplicate ) {
ERR_FAIL_COND_V_MSG ( p_input_data . is_empty ( ) , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
PackedInt64Array numbers ;
numbers . resize ( p_input_data . size ( ) * 4 ) ;
for ( int64_t i = 0 ; i < p_input_data . size ( ) ; i + + ) {
const Vector4i & vec = p_input_data [ i ] ;
numbers . set ( i * 4 , vec . x ) ;
numbers . set ( i * 4 + 1 , vec . y ) ;
numbers . set ( i * 4 + 2 , vec . z ) ;
numbers . set ( i * 4 + 3 , vec . w ) ;
}
const GLTFComponentType component_type = get_minimal_integer_component_type_from_ints ( numbers ) ;
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_VEC4 , component_type ) ;
PackedByteArray encoded_bytes = accessor - > encode_ints_as_bytes ( numbers ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_buffer_view_target , 0 , p_deduplicate ) ;
}
GLTFAccessorIndex GLTFAccessor : : encode_new_sparse_accessor_from_vec3s ( const Ref < GLTFState > & p_gltf_state , const PackedVector3Array & p_input_data , const PackedVector3Array & p_base_reference_data , const double p_tolerance_multiplier , const GLTFBufferView : : ArrayBufferTarget p_main_buffer_view_target , const bool p_deduplicate ) {
const int64_t input_size = p_input_data . size ( ) ;
ERR_FAIL_COND_V_MSG ( input_size = = 0 , - 1 , " glTF export: Cannot encode an accessor from an empty array. " ) ;
const bool is_base_empty = p_base_reference_data . is_empty ( ) ;
ERR_FAIL_COND_V_MSG ( ! is_base_empty & & p_base_reference_data . size ( ) ! = input_size , - 1 , " glTF export: Base reference data must either be empty, or have the same size as the main input data. " ) ;
PackedInt64Array sparse_indices ;
PackedFloat64Array sparse_values ;
PackedFloat64Array dense_values ;
int64_t highest_index = 0 ;
dense_values . resize ( input_size * 3 ) ;
for ( int64_t i = 0 ; i < input_size ; i + + ) {
Vector3 vec = p_input_data [ i ] ;
Vector3 base_ref_vec ;
Vector3 displacement ;
if ( is_base_empty ) {
base_ref_vec = Vector3 ( ) ;
displacement = vec ;
} else {
base_ref_vec = p_base_reference_data [ i ] ;
displacement = vec - base_ref_vec ;
}
if ( ( displacement * p_tolerance_multiplier ) . is_zero_approx ( ) ) {
vec = base_ref_vec ;
} else {
highest_index = i ;
sparse_indices . append ( i ) ;
sparse_values . append ( vec . x ) ;
sparse_values . append ( vec . y ) ;
sparse_values . append ( vec . z ) ;
}
dense_values . set ( i * 3 , vec . x ) ;
dense_values . set ( i * 3 + 1 , vec . y ) ;
dense_values . set ( i * 3 + 2 , vec . z ) ;
}
// Check if the sparse accessor actually saves space, or if it's better to just use a normal accessor.
const int64_t sparse_count = sparse_indices . size ( ) ;
const int64_t bytes_per_value_component = _get_bytes_per_component ( COMPONENT_TYPE_SINGLE_FLOAT ) ;
const GLTFComponentType indices_component_type = _get_indices_component_type_for_size ( highest_index ) ;
const int64_t sparse_data_bytes = _get_bytes_per_component ( indices_component_type ) * sparse_count + bytes_per_value_component * sparse_values . size ( ) ;
const int64_t dense_data_bytes = bytes_per_value_component * 3 * input_size ;
// Sparse accessors require more JSON, a bit under 200 characters when minified, so factor that in.
constexpr int64_t sparse_json_fluff = 200 ;
Ref < GLTFAccessor > accessor = make_new_accessor_without_data ( TYPE_VEC3 , COMPONENT_TYPE_SINGLE_FLOAT ) ;
if ( sparse_data_bytes + sparse_json_fluff > = dense_data_bytes ) {
// Sparse accessor is not worth it, just use a normal accessor instead.
// However, note that we use the calculated dense values instead of the original input data.
// This way, regardless of the underlying storage layout, the data is the same in both cases.
PackedByteArray encoded_bytes = accessor - > encode_floats_as_bytes ( dense_values ) ;
ERR_FAIL_COND_V_MSG ( encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , encoded_bytes , p_main_buffer_view_target , 0 , p_deduplicate ) ;
}
// Encode as a sparse accessor.
if ( sparse_count > 0 ) {
accessor - > set_sparse_count ( sparse_count ) ;
accessor - > set_sparse_indices_component_type ( indices_component_type ) ;
accessor - > _store_sparse_indices_into_state ( p_gltf_state , sparse_indices , p_deduplicate ) ;
const PackedByteArray sparse_values_encoded_bytes = accessor - > encode_floats_as_bytes ( sparse_values ) ;
ERR_FAIL_COND_V_MSG ( sparse_values_encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode sparse values as bytes. " ) ;
// Note: Sparse values always use TARGET_NONE, it does NOT match the target of the main buffer view.
const GLTFBufferViewIndex sparse_values_buffer_view_index = GLTFBufferView : : write_new_buffer_view_into_state ( p_gltf_state , sparse_values_encoded_bytes , bytes_per_value_component , GLTFBufferView : : TARGET_NONE , - 1 , 0 , p_deduplicate ) ;
accessor - > set_sparse_values_buffer_view ( sparse_values_buffer_view_index ) ;
}
// If the base reference data is empty, just directly add the accessor with only sparse data.
if ( is_base_empty ) {
// This is similar to `encode_floats_as_bytes` + `store_accessor_data_into_state` but we don't write a buffer view.
// Filter and update `count`, `min`, and `max` based on the given data.
accessor - > set_count ( input_size ) ;
const PackedFloat64Array filtered_numbers = accessor - > _filter_numbers ( dense_values ) ;
accessor - > _calculate_min_and_max ( filtered_numbers ) ;
// Add the new accessor to the state, but check for duplicates first.
TypedArray < GLTFAccessor > state_accessors = p_gltf_state - > get_accessors ( ) ;
const GLTFAccessorIndex accessor_count = state_accessors . size ( ) ;
for ( GLTFAccessorIndex i = 0 ; i < accessor_count ; i + + ) {
Ref < GLTFAccessor > existing_accessor = state_accessors [ i ] ;
if ( accessor - > is_equal_exact ( existing_accessor ) ) {
// An identical accessor already exists in the state, so just return the index.
return i ;
}
}
state_accessors . append ( accessor ) ;
p_gltf_state - > set_accessors ( state_accessors ) ;
return accessor_count ;
}
// Encode the base reference alongside the sparse data.
PackedFloat64Array base_reference_values ;
base_reference_values . resize ( input_size * 3 ) ;
for ( int64_t i = 0 ; i < input_size ; i + + ) {
const Vector3 & base_ref_vec = p_base_reference_data [ i ] ;
base_reference_values . set ( i * 3 , base_ref_vec . x ) ;
base_reference_values . set ( i * 3 + 1 , base_ref_vec . y ) ;
base_reference_values . set ( i * 3 + 2 , base_ref_vec . z ) ;
}
const PackedByteArray base_reference_encoded_bytes = accessor - > encode_floats_as_bytes ( base_reference_values ) ;
ERR_FAIL_COND_V_MSG ( base_reference_encoded_bytes . is_empty ( ) , - 1 , " glTF export: Accessor failed to encode data as bytes (was the input data empty?). " ) ;
return accessor - > store_accessor_data_into_state ( p_gltf_state , base_reference_encoded_bytes , p_main_buffer_view_target , 0 , p_deduplicate ) ;
}
2025-07-05 15:01:00 -07:00
// Dictionary conversion.
Ref < GLTFAccessor > GLTFAccessor : : from_dictionary ( const Dictionary & p_dict ) {
// See https://github.com/KhronosGroup/glTF/blob/main/specification/2.0/schema/accessor.schema.json
Ref < GLTFAccessor > accessor ;
accessor . instantiate ( ) ;
if ( p_dict . has ( " bufferView " ) ) {
// bufferView is optional. If not present, the accessor is considered to be zero-initialized.
accessor - > buffer_view = p_dict [ " bufferView " ] ;
}
if ( p_dict . has ( " byteOffset " ) ) {
accessor - > byte_offset = p_dict [ " byteOffset " ] ;
}
if ( p_dict . has ( " componentType " ) ) {
accessor - > component_type = ( GLTFAccessor : : GLTFComponentType ) ( int32_t ) p_dict [ " componentType " ] ;
}
if ( p_dict . has ( " count " ) ) {
accessor - > count = p_dict [ " count " ] ;
}
if ( accessor - > count < = 0 ) {
ERR_PRINT ( " glTF import: Invalid accessor count " + itos ( accessor - > count ) + " for accessor. Accessor count must be greater than 0. " ) ;
}
if ( p_dict . has ( " max " ) ) {
accessor - > max = p_dict [ " max " ] ;
}
if ( p_dict . has ( " min " ) ) {
accessor - > min = p_dict [ " min " ] ;
}
if ( p_dict . has ( " normalized " ) ) {
accessor - > normalized = p_dict [ " normalized " ] ;
}
if ( p_dict . has ( " sparse " ) ) {
// See https://github.com/KhronosGroup/glTF/blob/main/specification/2.0/schema/accessor.sparse.schema.json
const Dictionary & sparse_dict = p_dict [ " sparse " ] ;
ERR_FAIL_COND_V ( ! sparse_dict . has ( " count " ) , accessor ) ;
accessor - > sparse_count = sparse_dict [ " count " ] ;
ERR_FAIL_COND_V ( ! sparse_dict . has ( " indices " ) , accessor ) ;
const Dictionary & sparse_indices_dict = sparse_dict [ " indices " ] ;
ERR_FAIL_COND_V ( ! sparse_indices_dict . has ( " bufferView " ) , accessor ) ;
accessor - > sparse_indices_buffer_view = sparse_indices_dict [ " bufferView " ] ;
ERR_FAIL_COND_V ( ! sparse_indices_dict . has ( " componentType " ) , accessor ) ;
accessor - > sparse_indices_component_type = ( GLTFAccessor : : GLTFComponentType ) ( int32_t ) sparse_indices_dict [ " componentType " ] ;
if ( sparse_indices_dict . has ( " byteOffset " ) ) {
accessor - > sparse_indices_byte_offset = sparse_indices_dict [ " byteOffset " ] ;
}
ERR_FAIL_COND_V ( ! sparse_dict . has ( " values " ) , accessor ) ;
const Dictionary & sparse_values_dict = sparse_dict [ " values " ] ;
ERR_FAIL_COND_V ( ! sparse_values_dict . has ( " bufferView " ) , accessor ) ;
accessor - > sparse_values_buffer_view = sparse_values_dict [ " bufferView " ] ;
if ( sparse_values_dict . has ( " byteOffset " ) ) {
accessor - > sparse_values_byte_offset = sparse_values_dict [ " byteOffset " ] ;
}
}
accessor - > accessor_type = _get_accessor_type_from_str ( p_dict [ " type " ] ) ;
return accessor ;
}
Dictionary GLTFAccessor : : to_dictionary ( ) const {
Dictionary dict ;
if ( buffer_view ! = - 1 ) {
// bufferView may be omitted to zero-initialize the buffer. When this happens, byteOffset MUST also be omitted.
if ( byte_offset > 0 ) {
dict [ " byteOffset " ] = byte_offset ;
}
dict [ " bufferView " ] = buffer_view ;
}
dict [ " componentType " ] = component_type ;
dict [ " count " ] = count ;
dict [ " max " ] = max ;
dict [ " min " ] = min ;
dict [ " normalized " ] = normalized ;
dict [ " type " ] = _get_accessor_type_name ( ) ;
if ( sparse_count > 0 ) {
Dictionary sparse_indices_dict ;
sparse_indices_dict [ " bufferView " ] = sparse_indices_buffer_view ;
sparse_indices_dict [ " componentType " ] = sparse_indices_component_type ;
if ( sparse_indices_byte_offset > 0 ) {
sparse_indices_dict [ " byteOffset " ] = sparse_indices_byte_offset ;
}
Dictionary sparse_values_dict ;
sparse_values_dict [ " bufferView " ] = sparse_values_buffer_view ;
if ( sparse_values_byte_offset > 0 ) {
sparse_values_dict [ " byteOffset " ] = sparse_values_byte_offset ;
}
Dictionary sparse_dict ;
sparse_dict [ " count " ] = sparse_count ;
sparse_dict [ " indices " ] = sparse_indices_dict ;
sparse_dict [ " values " ] = sparse_values_dict ;
dict [ " sparse " ] = sparse_dict ;
}
return dict ;
}