ladybird/Libraries/LibWeb/CSS/StyleValues/CalculatedStyleValue.cpp

3617 lines
153 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <andreas@ladybird.org>
* Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org>
* Copyright (c) 2021-2025, Sam Atkins <sam@ladybird.org>
* Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "CalculatedStyleValue.h"
#include <AK/QuickSort.h>
#include <AK/TypeCasts.h>
#include <LibJS/Runtime/Realm.h>
#include <LibWeb/CSS/CSSMathClamp.h>
#include <LibWeb/CSS/CSSMathInvert.h>
#include <LibWeb/CSS/CSSMathMax.h>
#include <LibWeb/CSS/CSSMathMin.h>
#include <LibWeb/CSS/CSSMathNegate.h>
#include <LibWeb/CSS/CSSMathProduct.h>
#include <LibWeb/CSS/CSSMathSum.h>
#include <LibWeb/CSS/CSSNumericArray.h>
#include <LibWeb/CSS/CSSUnitValue.h>
#include <LibWeb/CSS/Percentage.h>
#include <LibWeb/CSS/PropertyID.h>
#include <LibWeb/CSS/StyleValues/AngleStyleValue.h>
#include <LibWeb/CSS/StyleValues/FlexStyleValue.h>
#include <LibWeb/CSS/StyleValues/FrequencyStyleValue.h>
#include <LibWeb/CSS/StyleValues/IntegerStyleValue.h>
#include <LibWeb/CSS/StyleValues/LengthStyleValue.h>
#include <LibWeb/CSS/StyleValues/NumberStyleValue.h>
#include <LibWeb/CSS/StyleValues/PercentageStyleValue.h>
#include <LibWeb/CSS/StyleValues/ResolutionStyleValue.h>
#include <LibWeb/CSS/StyleValues/TimeStyleValue.h>
namespace Web::CSS {
static Optional<NumericType> add_the_types(Vector<NonnullRefPtr<CalculationNode const>> const& nodes)
{
Optional<NumericType> left_type;
for (auto const& value : nodes) {
auto right_type = value->numeric_type();
if (!right_type.has_value())
return {};
if (left_type.has_value()) {
left_type = left_type->added_to(right_type.value());
} else {
left_type = right_type;
}
if (!left_type.has_value())
return {};
}
return left_type;
}
static Optional<NumericType> add_the_types(CalculationNode const& a, CalculationNode const& b)
2023-05-27 23:50:33 +02:00
{
auto a_type = a.numeric_type();
auto b_type = b.numeric_type();
if (!a_type.has_value() || !b_type.has_value())
return {};
return a_type->added_to(*b_type);
}
2023-05-27 23:50:33 +02:00
static Optional<NumericType> add_the_types(CalculationNode const& a, CalculationNode const& b, CalculationNode const& c)
{
auto a_type = a.numeric_type();
auto b_type = b.numeric_type();
auto c_type = c.numeric_type();
if (!a_type.has_value() || !b_type.has_value() || !c_type.has_value())
return {};
auto a_and_b_type = a_type->added_to(*b_type);
if (!a_and_b_type.has_value())
return {};
return a_and_b_type->added_to(*c_type);
}
static Optional<NumericType> multiply_the_types(Vector<NonnullRefPtr<CalculationNode const>> const& nodes)
{
// At a * sub-expression, multiply the types of the left and right arguments.
// The sub-expressions type is the returned result.
Optional<NumericType> left_type;
for (auto const& value : nodes) {
auto right_type = value->numeric_type();
if (!right_type.has_value())
return {};
if (left_type.has_value()) {
left_type = left_type->multiplied_by(right_type.value());
} else {
left_type = right_type;
}
if (!left_type.has_value())
return {};
}
return left_type;
}
template<typename T>
static NonnullRefPtr<CalculationNode const> simplify_children_vector(T const& original, CalculationContext const& context, CalculationResolutionContext const& resolution_context)
{
Vector<NonnullRefPtr<CalculationNode const>> simplified_children;
simplified_children.ensure_capacity(original.children().size());
bool any_changed = false;
for (auto const& child : original.children()) {
auto simplified = simplify_a_calculation_tree(child, context, resolution_context);
if (simplified != child)
any_changed = true;
simplified_children.append(move(simplified));
}
if (any_changed)
return T::create(move(simplified_children));
return original;
}
template<typename T>
static NonnullRefPtr<CalculationNode const> simplify_child(T const& original, NonnullRefPtr<CalculationNode const> const& child, CalculationContext const& context, CalculationResolutionContext const& resolution_context)
{
auto simplified = simplify_a_calculation_tree(child, context, resolution_context);
if (simplified != child)
return T::create(move(simplified));
return original;
}
template<typename T>
static NonnullRefPtr<CalculationNode const> simplify_2_children(T const& original, NonnullRefPtr<CalculationNode const> const& child_1, NonnullRefPtr<CalculationNode const> const& child_2, CalculationContext const& context, CalculationResolutionContext const& resolution_context)
{
auto simplified_1 = simplify_a_calculation_tree(child_1, context, resolution_context);
auto simplified_2 = simplify_a_calculation_tree(child_2, context, resolution_context);
if (simplified_1 != child_1 || simplified_2 != child_2)
return T::create(move(simplified_1), move(simplified_2));
return original;
}
static CalculationNode::NumericValue clamp_and_censor_numeric_value(NumericCalculationNode const& node, CalculationContext const& context)
{
auto value = node.value();
Optional<AcceptedTypeRange> accepted_range = value.visit(
[&](Number const&) { return context.resolve_numbers_as_integers ? context.accepted_type_ranges.get(ValueType::Integer) : context.accepted_type_ranges.get(ValueType::Number); },
[&](Angle const&) { return context.accepted_type_ranges.get(ValueType::Angle); },
[&](Flex const&) { return context.accepted_type_ranges.get(ValueType::Flex); },
[&](Frequency const&) { return context.accepted_type_ranges.get(ValueType::Frequency); },
[&](Length const&) { return context.accepted_type_ranges.get(ValueType::Length); },
[&](Percentage const&) { return context.accepted_type_ranges.get(ValueType::Percentage); },
[&](Resolution const&) { return context.accepted_type_ranges.get(ValueType::Resolution); },
[&](Time const&) { return context.accepted_type_ranges.get(ValueType::Time); });
if (!accepted_range.has_value()) {
dbgln_if(LIBWEB_CSS_DEBUG, "FIXME: Calculation context missing accepted type range {}", node.numeric_type());
// FIXME: Min and max values for Integer should be based on i32 rather than float
accepted_range = { AK::NumericLimits<float>::lowest(), AK::NumericLimits<float>::max() };
}
auto clamp_and_censor = [&](double value, double min, double max) {
// https://drafts.csswg.org/css-values/#calc-ieee
// NaN does not escape a top-level calculation; its censored into a zero value.
if (isnan(value))
value = 0;
// https://drafts.csswg.org/css-values/#calc-range
// the value resulting from a top-level calculation must be clamped to the range allowed in the target context.
// Clamping is performed on computed values to the extent possible, and also on used values if computation was
// unable to sufficiently simplify the expression to allow range-checking.
return clamp(value, min, max);
};
return value.visit(
[&](Number const& value) -> CalculationNode::NumericValue {
return Number { value.type(), clamp_and_censor(context.resolve_numbers_as_integers ? value.integer_value() : value.value(), accepted_range->min, accepted_range->max) };
},
[&](Angle const& value) -> CalculationNode::NumericValue {
return Angle { clamp_and_censor(value.raw_value(), accepted_range->min, accepted_range->max), value.unit() };
},
[&](Flex const& value) -> CalculationNode::NumericValue {
return Flex { clamp_and_censor(value.raw_value(), accepted_range->min, accepted_range->max), value.unit() };
},
[&](Frequency const& value) -> CalculationNode::NumericValue {
return Frequency { clamp_and_censor(value.raw_value(), accepted_range->min, accepted_range->max), value.unit() };
},
[&](Length const& value) -> CalculationNode::NumericValue {
return Length { clamp_and_censor(value.raw_value(), accepted_range->min, accepted_range->max), value.unit() };
},
[&](Percentage const& value) -> CalculationNode::NumericValue {
return Percentage { clamp_and_censor(value.value(), accepted_range->min, accepted_range->max) };
},
[&](Resolution const& value) -> CalculationNode::NumericValue {
return Resolution { clamp_and_censor(value.raw_value(), accepted_range->min, accepted_range->max), value.unit() };
},
[&](Time const& value) -> CalculationNode::NumericValue {
return Time { clamp_and_censor(value.raw_value(), accepted_range->min, accepted_range->max), value.unit() };
});
}
static GC::Ptr<CSSNumericArray> reify_children(JS::Realm& realm, ReadonlySpan<NonnullRefPtr<CalculationNode const>> children)
{
GC::RootVector<GC::Ref<CSSNumericValue>> reified_children { realm.heap() };
for (auto const& child : children) {
auto reified_child = child->reify(realm);
if (!reified_child)
return nullptr;
reified_children.append(reified_child.as_nonnull());
}
return CSSNumericArray::create(realm, move(reified_children));
}
static String serialize_a_calculation_tree(CalculationNode const&, CalculationContext const&, SerializationMode);
// https://drafts.csswg.org/css-values-4/#serialize-a-math-function
static String serialize_a_math_function(CalculationNode const& fn, CalculationContext const& context, SerializationMode serialization_mode)
{
// To serialize a math function fn:
// 1. If the root of the calculation tree fn represents is a numeric value (number, percentage, or dimension), and
// the serialization being produced is of a computed value or later, then clamp the value to the range allowed
// for its context (if necessary), then serialize the value as normal and return the result.
if (fn.type() == CalculationNode::Type::Numeric && serialization_mode == SerializationMode::ResolvedValue) {
auto clamped_value = clamp_and_censor_numeric_value(static_cast<NumericCalculationNode const&>(fn), context);
return clamped_value.visit([&](auto const& value) { return value.to_string(serialization_mode); });
}
// 2. If fn represents an infinite or NaN value:
if (fn.type() == CalculationNode::Type::Numeric) {
auto const& numeric_node = static_cast<NumericCalculationNode const&>(fn);
if (auto infinite_or_nan = numeric_node.infinite_or_nan_value(); infinite_or_nan.has_value()) {
// 1. Let s be the string "calc(".
StringBuilder builder;
builder.append("calc("sv);
// 2. Serialize the keyword infinity, -infinity, or NaN, as appropriate to represent the value, and append it to s.
switch (infinite_or_nan.value()) {
case NonFiniteValue::Infinity:
builder.append("infinity"sv);
break;
case NonFiniteValue::NegativeInfinity:
builder.append("-infinity"sv);
break;
case NonFiniteValue::NaN:
builder.append("NaN"sv);
break;
default:
VERIFY_NOT_REACHED();
}
// 3. If fns type is anything other than «[ ]» (empty, representing a <number>), append " * " to s.
// Create a numeric value in the canonical unit for fns type (such as px for <length>), with a value of 1.
// Serialize this numeric value and append it to s.
if (!numeric_node.value().has<Number>()) {
numeric_node.value().visit(
[&builder](Angle const&) { builder.append(" * 1deg"sv); },
[&builder](Flex const&) { builder.append(" * 1fr"sv); },
[&builder](Frequency const&) { builder.append(" * 1hz"sv); },
[&builder](Length const&) { builder.append(" * 1px"sv); },
[](Number const&) { VERIFY_NOT_REACHED(); },
[&builder](Percentage const&) { builder.append(" * 1%"sv); },
[&builder](Resolution const&) { builder.append(" * 1dppx"sv); },
[&builder](Time const&) { builder.append(" * 1s"sv); });
}
// 4. Append ")" to s, then return it.
builder.append(')');
return builder.to_string_without_validation();
}
}
// 3. If the calculation trees root node is a numeric value, or a calc-operator node, let s be a string initially
// containing "calc(".
// Otherwise, let s be a string initially containing the name of the root node, lowercased (such as "sin" or
// "max"), followed by a "(" (open parenthesis).
StringBuilder builder;
if (fn.type() == CalculationNode::Type::Numeric || fn.is_calc_operator_node()) {
builder.append("calc("sv);
} else {
builder.appendff("{}(", fn.name());
}
// 4. For each child of the root node, serialize the calculation tree.
// If a result of this serialization starts with a "(" (open parenthesis) and ends with a ")" (close parenthesis),
// remove those characters from the result.
// Concatenate all of the results using ", " (comma followed by space), then append the result to s.
auto serialized_tree_without_parentheses = [&](CalculationNode const& tree) {
auto tree_serialized = serialize_a_calculation_tree(tree, context, serialization_mode);
if (tree_serialized.starts_with('(') && tree_serialized.ends_with(')')) {
tree_serialized = MUST(tree_serialized.substring_from_byte_offset_with_shared_superstring(1, tree_serialized.byte_count() - 2));
}
return tree_serialized;
};
// Spec issue: https://github.com/w3c/csswg-drafts/issues/11783
// The three AD-HOCs in this step are mentioned there.
// AD-HOC: Numeric nodes have no children and should serialize directly.
// AD-HOC: calc-operator nodes should also serialize directly, instead of separating their children by commas.#
if (fn.type() == CalculationNode::Type::Numeric || fn.is_calc_operator_node()) {
builder.append(serialized_tree_without_parentheses(fn));
} else {
Vector<String> serialized_children;
// AD-HOC: For `clamp()`, the first child is a <rounding-strategy>, which is incompatible with "serialize a calculation tree".
// So, we serialize it directly first, and hope for the best.
if (fn.type() == CalculationNode::Type::Round) {
auto rounding_strategy = static_cast<RoundCalculationNode const&>(fn).rounding_strategy();
serialized_children.append(MUST(String::from_utf8(CSS::to_string(rounding_strategy))));
}
for (auto const& child : fn.children()) {
serialized_children.append(serialized_tree_without_parentheses(child));
}
builder.join(", "sv, serialized_children);
}
// 5. Append ")" (close parenthesis) to s.
builder.append(')');
// 6. Return s.
return builder.to_string_without_validation();
}
// https://drafts.csswg.org/css-values-4/#sort-a-calculations-children
static Vector<NonnullRefPtr<CalculationNode const>> sort_a_calculations_children(Vector<NonnullRefPtr<CalculationNode const>> nodes)
{
// 1. Let ret be an empty list.
Vector<NonnullRefPtr<CalculationNode const>> ret;
// 2. If nodes contains a number, remove it from nodes and append it to ret.
auto index_of_number = nodes.find_first_index_if([](NonnullRefPtr<CalculationNode const> const& node) {
if (node->type() != CalculationNode::Type::Numeric)
return false;
return static_cast<NumericCalculationNode const&>(*node).value().has<Number>();
});
if (index_of_number.has_value()) {
ret.append(nodes.take(*index_of_number));
}
// 3. If nodes contains a percentage, remove it from nodes and append it to ret.
auto index_of_percentage = nodes.find_first_index_if([](NonnullRefPtr<CalculationNode const> const& node) {
if (node->type() != CalculationNode::Type::Numeric)
return false;
return static_cast<NumericCalculationNode const&>(*node).value().has<Percentage>();
});
if (index_of_percentage.has_value()) {
ret.append(nodes.take(*index_of_percentage));
}
// 4. If nodes contains any dimensions, remove them from nodes, sort them by their units, ordered ASCII
// case-insensitively, and append them to ret.
Vector<NonnullRefPtr<CalculationNode const>> dimensions;
dimensions.ensure_capacity(nodes.size());
auto next_dimension_index = [&nodes]() {
return nodes.find_first_index_if([](NonnullRefPtr<CalculationNode const> const& node) {
if (node->type() != CalculationNode::Type::Numeric)
return false;
return static_cast<NumericCalculationNode const&>(*node).value().visit(
[](Number const&) { return false; },
[](Percentage const&) { return false; },
[](auto const&) { return true; });
});
};
for (auto index_of_dimension = next_dimension_index(); index_of_dimension.has_value(); index_of_dimension = next_dimension_index()) {
dimensions.append(nodes.take(*index_of_dimension));
}
quick_sort(dimensions, [](NonnullRefPtr<CalculationNode const> const& a, NonnullRefPtr<CalculationNode const> const& b) {
auto get_unit = [](NonnullRefPtr<CalculationNode const> const& node) -> FlyString {
auto const& numeric_node = static_cast<NumericCalculationNode const&>(*node);
return numeric_node.value().visit(
[](Number const&) -> FlyString { VERIFY_NOT_REACHED(); },
[](Percentage const&) -> FlyString { VERIFY_NOT_REACHED(); },
[](auto const& dimension) -> FlyString { return dimension.unit_name(); });
};
auto a_unit = get_unit(a);
auto b_unit = get_unit(b);
// NOTE: Our unit name strings are always lowercase, so we don't have to do anything special for a case-insensitive match.
return a_unit < b_unit;
});
ret.extend(dimensions);
// 5. If nodes still contains any items, append them to ret in the same order.
if (!nodes.is_empty())
ret.extend(nodes);
// 6. Return ret.
return ret;
}
// https://drafts.csswg.org/css-values-4/#serialize-a-calculation-tree
static String serialize_a_calculation_tree(CalculationNode const& root, CalculationContext const& context, SerializationMode serialization_mode)
{
// 1. Let root be the root node of the calculation tree.
// NOTE: Already the case.
// 2. If root is a numeric value, or a non-math function, serialize root per the normal rules for it and return the result.
// FIXME: Support non-math functions in calculation trees.
if (root.type() == CalculationNode::Type::Numeric)
return static_cast<NumericCalculationNode const&>(root).value_to_string();
// 3. If root is anything but a Sum, Negate, Product, or Invert node, serialize a math function for the function
// corresponding to the node type, treating the nodes children as the functions comma-separated calculation
// arguments, and return the result.
if (!first_is_one_of(root.type(), CalculationNode::Type::Sum, CalculationNode::Type::Product, CalculationNode::Type::Negate, CalculationNode::Type::Invert)) {
return serialize_a_math_function(root, context, serialization_mode);
}
// 4. If root is a Negate node, let s be a string initially containing "(-1 * ".
if (root.type() == CalculationNode::Type::Negate) {
StringBuilder builder;
builder.append("(-1 * "sv);
// Serialize roots child, and append it to s.
builder.append(serialize_a_calculation_tree(root.children().first(), context, serialization_mode));
// Append ")" to s, then return it.
builder.append(')');
return builder.to_string_without_validation();
}
// 5. If root is an Invert node, let s be a string initially containing "(1 / ".
if (root.type() == CalculationNode::Type::Invert) {
StringBuilder builder;
builder.append("(1 / "sv);
// Serialize roots child, and append it to s.
builder.append(serialize_a_calculation_tree(root.children().first(), context, serialization_mode));
// Append ")" to s, then return it.
builder.append(')');
return builder.to_string_without_validation();
}
// 6. If root is a Sum node, let s be a string initially containing "(".
if (root.type() == CalculationNode::Type::Sum) {
StringBuilder builder;
builder.append('(');
auto sorted_children = sort_a_calculations_children(root.children());
// Serialize roots first child, and append it to s.
builder.append(serialize_a_calculation_tree(sorted_children.first(), context, serialization_mode));
// For each child of root beyond the first:
for (auto i = 1u; i < sorted_children.size(); ++i) {
auto& child = *sorted_children[i];
// 1. If child is a Negate node, append " - " to s, then serialize the Negates child and append the
// result to s.
if (child.type() == CalculationNode::Type::Negate) {
builder.append(" - "sv);
builder.append(serialize_a_calculation_tree(static_cast<NegateCalculationNode const&>(child).child(), context, serialization_mode));
}
// 2. If child is a negative numeric value, append " - " to s, then serialize the negation of child as
// normal and append the result to s.
else if (child.type() == CalculationNode::Type::Numeric && static_cast<NumericCalculationNode const&>(child).is_negative()) {
auto const& numeric_node = static_cast<NumericCalculationNode const&>(child);
builder.append(" - "sv);
builder.append(serialize_a_calculation_tree(numeric_node.negated(context), context, serialization_mode));
}
// 3. Otherwise, append " + " to s, then serialize child and append the result to s.
else {
builder.append(" + "sv);
builder.append(serialize_a_calculation_tree(child, context, serialization_mode));
}
}
// Finally, append ")" to s and return it.
builder.append(')');
return builder.to_string_without_validation();
}
// 7. If root is a Product node, let s be a string initially containing "(".
if (root.type() == CalculationNode::Type::Product) {
StringBuilder builder;
builder.append('(');
auto sorted_children = sort_a_calculations_children(root.children());
// Serialize roots first child, and append it to s.
builder.append(serialize_a_calculation_tree(sorted_children.first(), context, serialization_mode));
// For each child of root beyond the first:
for (auto i = 1u; i < sorted_children.size(); ++i) {
auto& child = *sorted_children[i];
// 1. If child is an Invert node, append " / " to s, then serialize the Inverts child and append the result to s.
if (child.type() == CalculationNode::Type::Invert) {
builder.append(" / "sv);
builder.append(serialize_a_calculation_tree(static_cast<InvertCalculationNode const&>(child).child(), context, serialization_mode));
}
// 2. Otherwise, append " * " to s, then serialize child and append the result to s.
else {
builder.append(" * "sv);
builder.append(serialize_a_calculation_tree(child, context, serialization_mode));
}
}
// Finally, append ")" to s and return it.
builder.append(')');
return builder.to_string_without_validation();
}
VERIFY_NOT_REACHED();
}
CalculationNode::CalculationNode(Type type, Optional<NumericType> numeric_type)
: m_type(type)
, m_numeric_type(move(numeric_type))
{
}
CalculationNode::~CalculationNode() = default;
StringView CalculationNode::name() const
{
switch (m_type) {
case Type::Min:
return "min"sv;
case Type::Max:
return "max"sv;
case Type::Clamp:
return "clamp"sv;
case Type::Abs:
return "abs"sv;
case Type::Sign:
return "sign"sv;
case Type::Sin:
return "sin"sv;
case Type::Cos:
return "cos"sv;
case Type::Tan:
return "tan"sv;
case Type::Asin:
return "asin"sv;
case Type::Acos:
return "acos"sv;
case Type::Atan:
return "atan"sv;
case Type::Atan2:
return "atan2"sv;
case Type::Pow:
return "pow"sv;
case Type::Sqrt:
return "sqrt"sv;
case Type::Hypot:
return "hypot"sv;
case Type::Log:
return "log"sv;
case Type::Exp:
return "exp"sv;
case Type::Round:
return "round"sv;
case Type::Mod:
return "mod"sv;
case Type::Rem:
return "rem"sv;
case Type::Numeric:
case Type::Sum:
case Type::Product:
case Type::Negate:
case Type::Invert:
return "calc"sv;
}
VERIFY_NOT_REACHED();
}
static NumericType numeric_type_from_calculated_style_value(CalculatedStyleValue::CalculationResult::Value const& value, CalculationContext const& context)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// Anything else is a terminal value, whose type is determined based on its CSS type.
// (Unless otherwise specified, the types associated percent hint is null.)
return value.visit(
[](Number const&) {
// -> <number>
// -> <integer>
// the type is «[ ]» (empty map)
return NumericType {};
},
[](Length const&) {
// -> <length>
// the type is «[ "length" → 1 ]»
return NumericType { NumericType::BaseType::Length, 1 };
},
[](Angle const&) {
// -> <angle>
// the type is «[ "angle" → 1 ]»
return NumericType { NumericType::BaseType::Angle, 1 };
},
[](Time const&) {
// -> <time>
// the type is «[ "time" → 1 ]»
return NumericType { NumericType::BaseType::Time, 1 };
},
[](Frequency const&) {
// -> <frequency>
// the type is «[ "frequency" → 1 ]»
return NumericType { NumericType::BaseType::Frequency, 1 };
},
[](Resolution const&) {
// -> <resolution>
// the type is «[ "resolution" → 1 ]»
return NumericType { NumericType::BaseType::Resolution, 1 };
},
[](Flex const&) {
// -> <flex>
// the type is «[ "flex" → 1 ]»
return NumericType { NumericType::BaseType::Flex, 1 };
},
// NOTE: <calc-constant> is a separate node type. (FIXME: Should it be?)
[&context](Percentage const&) {
// -> <percentage>
// If, in the context in which the math function containing this calculation is placed,
// <percentage>s are resolved relative to another type of value (such as in width,
// where <percentage> is resolved against a <length>), and that other type is not <number>,
// the type is determined as the other type, but with a percent hint set to that other type.
if (context.percentages_resolve_as.has_value() && context.percentages_resolve_as != ValueType::Number && context.percentages_resolve_as != ValueType::Percentage) {
auto base_type = NumericType::base_type_from_value_type(*context.percentages_resolve_as);
VERIFY(base_type.has_value());
auto result = NumericType { base_type.value(), 1 };
result.set_percent_hint(base_type);
return result;
}
// Otherwise, the type is «[ "percent" → 1 ]», with a percent hint of "percent".
auto result = NumericType { NumericType::BaseType::Percent, 1 };
// FIXME: Setting the percent hint to "percent" causes us to fail tests.
// result.set_percent_hint(NumericType::BaseType::Percent);
return result;
});
}
NonnullRefPtr<NumericCalculationNode const> NumericCalculationNode::create(NumericValue value, CalculationContext const& context)
{
auto numeric_type = numeric_type_from_calculated_style_value(value, context);
return adopt_ref(*new (nothrow) NumericCalculationNode(move(value), numeric_type));
}
RefPtr<NumericCalculationNode const> NumericCalculationNode::from_keyword(Keyword keyword, CalculationContext const& context)
{
switch (keyword) {
case Keyword::E:
// https://drafts.csswg.org/css-values-4/#valdef-calc-e
return create(Number { Number::Type::Number, AK::E<double> }, context);
case Keyword::Pi:
// https://drafts.csswg.org/css-values-4/#valdef-calc-pi
return create(Number { Number::Type::Number, AK::Pi<double> }, context);
case Keyword::Infinity:
// https://drafts.csswg.org/css-values-4/#valdef-calc-infinity
return create(Number { Number::Type::Number, AK::Infinity<double> }, context);
case Keyword::NegativeInfinity:
// https://drafts.csswg.org/css-values-4/#valdef-calc--infinity
return create(Number { Number::Type::Number, -AK::Infinity<double> }, context);
case Keyword::Nan:
// https://drafts.csswg.org/css-values-4/#valdef-calc-nan
return create(Number { Number::Type::Number, AK::NaN<double> }, context);
default:
return nullptr;
}
}
NumericCalculationNode::NumericCalculationNode(NumericValue value, NumericType numeric_type)
: CalculationNode(Type::Numeric, move(numeric_type))
, m_value(move(value))
{
}
NumericCalculationNode::~NumericCalculationNode() = default;
String NumericCalculationNode::value_to_string() const
{
return m_value.visit([](auto& value) { return value.to_string(); });
}
bool NumericCalculationNode::contains_percentage() const
{
return m_value.has<Percentage>();
}
bool NumericCalculationNode::is_in_canonical_unit() const
{
return m_value.visit(
[](Angle const& angle) { return angle.unit() == AngleUnit::Deg; },
[](Flex const& flex) { return flex.unit() == FlexUnit::Fr; },
[](Frequency const& frequency) { return frequency.unit() == FrequencyUnit::Hz; },
[](Length const& length) { return length.unit() == LengthUnit::Px; },
[](Number const&) { return true; },
[](Percentage const&) { return true; },
[](Resolution const& resolution) { return resolution.unit() == ResolutionUnit::Dppx; },
[](Time const& time) { return time.unit() == TimeUnit::S; });
}
static Optional<CalculatedStyleValue::CalculationResult> try_get_value_with_canonical_unit(CalculationNode const& child, CalculationContext const& context, CalculationResolutionContext const& resolution_context)
{
if (child.type() != CalculationNode::Type::Numeric)
return {};
auto const& numeric_child = as<NumericCalculationNode>(child);
// Can't run with non-canonical units or unresolved percentages.
// We've already attempted to resolve both in with_simplified_children().
if (!numeric_child.is_in_canonical_unit()
|| (numeric_child.value().has<Percentage>() && context.percentages_resolve_as.has_value()))
return {};
// Can't run if a child has an invalid type.
if (!numeric_child.numeric_type().has_value())
return {};
return CalculatedStyleValue::CalculationResult::from_value(numeric_child.value(), resolution_context, numeric_child.numeric_type());
}
static Optional<double> try_get_number(CalculationNode const& child)
{
if (child.type() != CalculationNode::Type::Numeric)
return {};
auto const* maybe_number = as<NumericCalculationNode>(child).value().get_pointer<Number>();
if (!maybe_number)
return {};
return maybe_number->value();
}
CalculatedStyleValue::CalculationResult NumericCalculationNode::resolve(CalculationResolutionContext const& context) const
{
if (m_value.has<Percentage>()) {
// NOTE: Depending on whether percentage_basis is set, the caller of resolve() is expecting a raw percentage or
// resolved type.
return context.percentage_basis.visit(
[&](Empty const&) {
VERIFY(numeric_type_from_calculated_style_value(m_value, {}) == numeric_type());
return CalculatedStyleValue::CalculationResult::from_value(m_value, context, numeric_type());
},
[&](auto const& value) {
auto const calculated_value = value.percentage_of(m_value.get<Percentage>());
return CalculatedStyleValue::CalculationResult::from_value(calculated_value, context, numeric_type_from_calculated_style_value(calculated_value, {}));
});
}
return CalculatedStyleValue::CalculationResult::from_value(m_value, context, numeric_type());
}
RefPtr<StyleValue const> NumericCalculationNode::to_style_value(CalculationContext const& context) const
{
// TODO: Clamp values to the range allowed by the context.
return m_value.visit(
[&](Number const& number) -> RefPtr<StyleValue const> {
// FIXME: Returning infinity or NaN as a NumberStyleValue isn't valid.
// This is a temporary fix until value-clamping is implemented here.
// In future, we can remove these two lines and return NonnullRefPtr again.
if (!isfinite(number.value()))
return nullptr;
if (context.resolve_numbers_as_integers)
return IntegerStyleValue::create(llround(number.value()));
return NumberStyleValue::create(number.value());
},
[](Angle const& angle) -> RefPtr<StyleValue const> { return AngleStyleValue::create(angle); },
[](Flex const& flex) -> RefPtr<StyleValue const> { return FlexStyleValue::create(flex); },
[](Frequency const& frequency) -> RefPtr<StyleValue const> { return FrequencyStyleValue::create(frequency); },
[](Length const& length) -> RefPtr<StyleValue const> { return LengthStyleValue::create(length); },
[](Percentage const& percentage) -> RefPtr<StyleValue const> { return PercentageStyleValue::create(percentage); },
[](Resolution const& resolution) -> RefPtr<StyleValue const> { return ResolutionStyleValue::create(resolution); },
[](Time const& time) -> RefPtr<StyleValue const> { return TimeStyleValue::create(time); });
}
Optional<NonFiniteValue> NumericCalculationNode::infinite_or_nan_value() const
{
auto raw_value = m_value.visit(
[](Number const& number) { return number.value(); },
[](Percentage const& percentage) { return percentage.as_fraction(); },
[](auto const& dimension) { return dimension.raw_value(); });
if (isnan(raw_value))
return NonFiniteValue::NaN;
if (!isfinite(raw_value)) {
if (raw_value < 0)
return NonFiniteValue::NegativeInfinity;
return NonFiniteValue::Infinity;
}
return {};
}
bool NumericCalculationNode::is_negative() const
{
return m_value.visit(
[&](Number const& number) { return number.value() < 0; },
[](Percentage const& percentage) { return percentage.value() < 0; },
[](auto const& dimension) { return dimension.raw_value() < 0; });
}
NonnullRefPtr<NumericCalculationNode const> NumericCalculationNode::negated(CalculationContext const& context) const
{
return value().visit(
[&](Percentage const& percentage) {
return create(Percentage(-percentage.value()), context);
},
[&](Number const& number) {
return create(Number(number.type(), -number.value()), context);
},
[&]<typename T>(T const& value) {
return create(T(-value.raw_value(), value.unit()), context);
});
}
void NumericCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}NUMERIC({})\n", "", indent, m_value.visit([](auto& it) { return it.to_string(); }));
}
bool NumericCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value == static_cast<NumericCalculationNode const&>(other).m_value;
}
GC::Ptr<CSSNumericValue> NumericCalculationNode::reify(JS::Realm& realm) const
{
return m_value.visit(
[&realm](Number const& number) { return CSSUnitValue::create(realm, number.value(), "number"_fly_string); },
[&realm](Percentage const& percentage) { return CSSUnitValue::create(realm, percentage.value(), "percent"_fly_string); },
[&realm](auto const& dimension) { return CSSUnitValue::create(realm, dimension.raw_value(), dimension.unit_name()); });
}
NonnullRefPtr<SumCalculationNode const> SumCalculationNode::create(Vector<NonnullRefPtr<CalculationNode const>> values)
{
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// At a + or - sub-expression, attempt to add the types of the left and right arguments.
// If this returns failure, the entire calculations type is failure.
// Otherwise, the sub-expressions type is the returned type.
auto numeric_type = add_the_types(values);
return adopt_ref(*new (nothrow) SumCalculationNode(move(values), move(numeric_type)));
}
SumCalculationNode::SumCalculationNode(Vector<NonnullRefPtr<CalculationNode const>> values, Optional<NumericType> numeric_type)
: CalculationNode(Type::Sum, move(numeric_type))
, m_values(move(values))
{
VERIFY(!m_values.is_empty());
}
SumCalculationNode::~SumCalculationNode() = default;
bool SumCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult SumCalculationNode::resolve(CalculationResolutionContext const& context) const
{
Optional<CalculatedStyleValue::CalculationResult> total;
for (auto& additional_product : m_values) {
auto additional_value = additional_product->resolve(context);
if (!total.has_value()) {
total = additional_value;
continue;
}
total->add(additional_value);
}
return total.value();
}
NonnullRefPtr<CalculationNode const> SumCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_children_vector(*this, context, resolution_context);
}
void SumCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}SUM:\n", "", indent);
for (auto const& item : m_values)
item->dump(builder, indent + 2);
}
bool SumCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
if (m_values.size() != static_cast<SumCalculationNode const&>(other).m_values.size())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<SumCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
GC::Ptr<CSSNumericValue> SumCalculationNode::reify(JS::Realm& realm) const
{
auto reified_children = reify_children(realm, m_values);
if (!reified_children)
return nullptr;
return CSSMathSum::create(realm, numeric_type().value(), reified_children.as_nonnull());
}
NonnullRefPtr<ProductCalculationNode const> ProductCalculationNode::create(Vector<NonnullRefPtr<CalculationNode const>> values)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// At a * sub-expression, multiply the types of the left and right arguments.
// The sub-expressions type is the returned result.
auto numeric_type = multiply_the_types(values);
return adopt_ref(*new (nothrow) ProductCalculationNode(move(values), move(numeric_type)));
}
ProductCalculationNode::ProductCalculationNode(Vector<NonnullRefPtr<CalculationNode const>> values, Optional<NumericType> numeric_type)
: CalculationNode(Type::Product, move(numeric_type))
, m_values(move(values))
{
VERIFY(!m_values.is_empty());
}
ProductCalculationNode::~ProductCalculationNode() = default;
bool ProductCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult ProductCalculationNode::resolve(CalculationResolutionContext const& context) const
{
Optional<CalculatedStyleValue::CalculationResult> total;
for (auto& additional_product : m_values) {
auto additional_value = additional_product->resolve(context);
if (!total.has_value()) {
total = additional_value;
continue;
}
total->multiply_by(additional_value);
}
return total.value();
}
NonnullRefPtr<CalculationNode const> ProductCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_children_vector(*this, context, resolution_context);
}
void ProductCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}PRODUCT:\n", "", indent);
for (auto const& item : m_values)
item->dump(builder, indent + 2);
}
bool ProductCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
if (m_values.size() != static_cast<ProductCalculationNode const&>(other).m_values.size())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<ProductCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
GC::Ptr<CSSNumericValue> ProductCalculationNode::reify(JS::Realm& realm) const
{
auto reified_children = reify_children(realm, m_values);
if (!reified_children)
return nullptr;
return CSSMathProduct::create(realm, numeric_type().value(), reified_children.as_nonnull());
}
NonnullRefPtr<NegateCalculationNode const> NegateCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
{
return adopt_ref(*new (nothrow) NegateCalculationNode(move(value)));
}
NegateCalculationNode::NegateCalculationNode(NonnullRefPtr<CalculationNode const> value)
// NOTE: `- foo` doesn't change the type
: CalculationNode(Type::Negate, value->numeric_type())
, m_value(move(value))
{
}
NegateCalculationNode::~NegateCalculationNode() = default;
bool NegateCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult NegateCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto child_value = m_value->resolve(context);
child_value.negate();
return child_value;
}
NonnullRefPtr<CalculationNode const> NegateCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
void NegateCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}NEGATE:\n", "", indent);
m_value->dump(builder, indent + 2);
}
bool NegateCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<NegateCalculationNode const&>(other).m_value);
}
GC::Ptr<CSSNumericValue> NegateCalculationNode::reify(JS::Realm& realm) const
{
auto reified_value = m_value->reify(realm);
if (!reified_value)
return nullptr;
return CSSMathNegate::create(realm, numeric_type().value(), reified_value.as_nonnull());
}
NonnullRefPtr<InvertCalculationNode const> InvertCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// At a / sub-expression, let left type be the result of finding the types of its left argument,
// and right type be the result of finding the types of its right argument and then inverting it.
// The sub-expressions type is the result of multiplying the left type and right type.
// NOTE: An InvertCalculationNode only represents the right argument here, and the multiplication
// is handled in the parent ProductCalculationNode.
auto numeric_type = value->numeric_type().map([](auto& it) { return it.inverted(); });
return adopt_ref(*new (nothrow) InvertCalculationNode(move(value), move(numeric_type)));
}
InvertCalculationNode::InvertCalculationNode(NonnullRefPtr<CalculationNode const> value, Optional<NumericType> numeric_type)
: CalculationNode(Type::Invert, move(numeric_type))
, m_value(move(value))
{
}
InvertCalculationNode::~InvertCalculationNode() = default;
bool InvertCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult InvertCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto child_value = m_value->resolve(context);
child_value.invert();
return child_value;
}
NonnullRefPtr<CalculationNode const> InvertCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
void InvertCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}INVERT:\n", "", indent);
m_value->dump(builder, indent + 2);
}
bool InvertCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<InvertCalculationNode const&>(other).m_value);
}
GC::Ptr<CSSNumericValue> InvertCalculationNode::reify(JS::Realm& realm) const
{
auto reified_value = m_value->reify(realm);
if (!reified_value)
return nullptr;
return CSSMathInvert::create(realm, numeric_type().value(), reified_value.as_nonnull());
}
NonnullRefPtr<MinCalculationNode const> MinCalculationNode::create(Vector<NonnullRefPtr<CalculationNode const>> values)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(values);
return adopt_ref(*new (nothrow) MinCalculationNode(move(values), move(numeric_type)));
}
MinCalculationNode::MinCalculationNode(Vector<NonnullRefPtr<CalculationNode const>> values, Optional<NumericType> numeric_type)
: CalculationNode(Type::Min, move(numeric_type))
, m_values(move(values))
{
}
MinCalculationNode::~MinCalculationNode() = default;
bool MinCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult MinCalculationNode::resolve(CalculationResolutionContext const& context) const
{
CalculatedStyleValue::CalculationResult smallest_node = m_values.first()->resolve(context);
auto smallest_value = smallest_node.value();
for (size_t i = 1; i < m_values.size(); i++) {
auto child_resolved = m_values[i]->resolve(context);
auto child_value = child_resolved.value();
if (child_value < smallest_value) {
smallest_value = child_value;
smallest_node = child_resolved;
}
}
return smallest_node;
}
NonnullRefPtr<CalculationNode const> MinCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_children_vector(*this, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-min
enum class MinOrMax {
Min,
Max,
};
static Optional<CalculatedStyleValue::CalculationResult> run_min_or_max_operation_if_possible(Vector<NonnullRefPtr<CalculationNode const>> const& children, CalculationContext const& context, CalculationResolutionContext const& resolution_context, MinOrMax min_or_max)
{
// The min() or max() functions contain one or more comma-separated calculations, and represent the smallest
// (most negative) or largest (most positive) of them, respectively.
Optional<CalculatedStyleValue::CalculationResult> result;
for (auto const& child : children) {
auto child_value = try_get_value_with_canonical_unit(child, context, resolution_context);
if (!child_value.has_value())
return {};
if (!result.has_value()) {
result = child_value.release_value();
} else {
auto consistent_type = result->type()->consistent_type(child_value->type().value());
if (!consistent_type.has_value())
return {};
// https://drafts.csswg.org/css-values-4/#calc-ieee
// Any operation with at least one NaN argument produces NaN.
if (isnan(child_value->value()) || isnan(result->value())) {
result = CalculatedStyleValue::CalculationResult { AK::NaN<double>, consistent_type };
continue;
}
if (min_or_max == MinOrMax::Min) {
if (child_value->value() < result->value()) {
result = CalculatedStyleValue::CalculationResult { child_value->value(), consistent_type };
} else {
result = CalculatedStyleValue::CalculationResult { result->value(), consistent_type };
}
} else {
if (child_value->value() > result->value()) {
result = CalculatedStyleValue::CalculationResult { child_value->value(), consistent_type };
} else {
result = CalculatedStyleValue::CalculationResult { result->value(), consistent_type };
}
}
}
}
return result;
}
// https://drafts.csswg.org/css-values-4/#funcdef-min
Optional<CalculatedStyleValue::CalculationResult> MinCalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return run_min_or_max_operation_if_possible(m_values, context, resolution_context, MinOrMax::Min);
}
void MinCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}MIN:\n", "", indent);
for (auto const& value : m_values)
value->dump(builder, indent + 2);
}
bool MinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
if (m_values.size() != static_cast<MinCalculationNode const&>(other).m_values.size())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<MinCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
GC::Ptr<CSSNumericValue> MinCalculationNode::reify(JS::Realm& realm) const
{
auto reified_children = reify_children(realm, m_values);
if (!reified_children)
return nullptr;
return CSSMathMin::create(realm, numeric_type().value(), reified_children.as_nonnull());
}
NonnullRefPtr<MaxCalculationNode const> MaxCalculationNode::create(Vector<NonnullRefPtr<CalculationNode const>> values)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(values);
return adopt_ref(*new (nothrow) MaxCalculationNode(move(values), move(numeric_type)));
}
MaxCalculationNode::MaxCalculationNode(Vector<NonnullRefPtr<CalculationNode const>> values, Optional<NumericType> numeric_type)
: CalculationNode(Type::Max, move(numeric_type))
, m_values(move(values))
{
}
MaxCalculationNode::~MaxCalculationNode() = default;
bool MaxCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult MaxCalculationNode::resolve(CalculationResolutionContext const& context) const
{
CalculatedStyleValue::CalculationResult largest_node = m_values.first()->resolve(context);
auto largest_value = largest_node.value();
for (size_t i = 1; i < m_values.size(); i++) {
auto child_resolved = m_values[i]->resolve(context);
auto child_value = child_resolved.value();
if (child_value > largest_value) {
largest_value = child_value;
largest_node = child_resolved;
}
}
return largest_node;
}
NonnullRefPtr<CalculationNode const> MaxCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_children_vector(*this, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-max
Optional<CalculatedStyleValue::CalculationResult> MaxCalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return run_min_or_max_operation_if_possible(m_values, context, resolution_context, MinOrMax::Max);
}
void MaxCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}MAX:\n", "", indent);
for (auto const& value : m_values)
value->dump(builder, indent + 2);
}
bool MaxCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
if (m_values.size() != static_cast<MaxCalculationNode const&>(other).m_values.size())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<MaxCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
GC::Ptr<CSSNumericValue> MaxCalculationNode::reify(JS::Realm& realm) const
{
auto reified_children = reify_children(realm, m_values);
if (!reified_children)
return nullptr;
return CSSMathMax::create(realm, numeric_type().value(), reified_children.as_nonnull());
}
NonnullRefPtr<ClampCalculationNode const> ClampCalculationNode::create(NonnullRefPtr<CalculationNode const> min, NonnullRefPtr<CalculationNode const> center, NonnullRefPtr<CalculationNode const> max)
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(*min, *center, *max);
return adopt_ref(*new (nothrow) ClampCalculationNode(move(min), move(center), move(max), move(numeric_type)));
}
ClampCalculationNode::ClampCalculationNode(NonnullRefPtr<CalculationNode const> min, NonnullRefPtr<CalculationNode const> center, NonnullRefPtr<CalculationNode const> max, Optional<NumericType> numeric_type)
: CalculationNode(Type::Clamp, move(numeric_type))
, m_min_value(move(min))
, m_center_value(move(center))
, m_max_value(move(max))
{
}
ClampCalculationNode::~ClampCalculationNode() = default;
bool ClampCalculationNode::contains_percentage() const
{
return m_min_value->contains_percentage() || m_center_value->contains_percentage() || m_max_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult ClampCalculationNode::resolve(CalculationResolutionContext const& context) const
{
auto min_node = m_min_value->resolve(context);
auto center_node = m_center_value->resolve(context);
auto max_node = m_max_value->resolve(context);
auto min_value = min_node.value();
auto center_value = center_node.value();
auto max_value = max_node.value();
// NOTE: The value should be returned as "max(MIN, min(VAL, MAX))"
auto chosen_value = max(min_value, min(center_value, max_value));
if (chosen_value == min_value)
return min_node;
if (chosen_value == center_value)
return center_node;
if (chosen_value == max_value)
return max_node;
// NOTE: Non-finite values end up here.
return CalculatedStyleValue::CalculationResult { chosen_value, numeric_type() };
}
NonnullRefPtr<CalculationNode const> ClampCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
auto simplified_min = simplify_a_calculation_tree(m_min_value, context, resolution_context);
auto simplified_center = simplify_a_calculation_tree(m_center_value, context, resolution_context);
auto simplified_max = simplify_a_calculation_tree(m_max_value, context, resolution_context);
if (simplified_min != m_min_value || simplified_center != m_center_value || simplified_max != m_max_value)
return create(move(simplified_min), move(simplified_center), move(simplified_max));
return *this;
}
// https://drafts.csswg.org/css-values-4/#funcdef-clamp
Optional<CalculatedStyleValue::CalculationResult> ClampCalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
// The clamp() function takes three calculations — a minimum value, a central value, and a maximum value — and
// represents its central calculation, clamped according to its min and max calculations, favoring the min
// calculation if it conflicts with the max. (That is, given clamp(MIN, VAL, MAX), it represents exactly the
// same value as max(MIN, min(VAL, MAX))).
//
// Either the min or max calculations (or even both) can instead be the keyword none, which indicates the value
// is not clamped from that side. (That is, clamp(MIN, VAL, none) is equivalent to max(MIN, VAL), clamp(none,
// VAL, MAX) is equivalent to min(VAL, MAX), and clamp(none, VAL, none) is equivalent to just calc(VAL).)
//
// For all three functions, the argument calculations can resolve to any <number>, <dimension>, or <percentage>,
// but must have a consistent type or else the function is invalid; the results type will be the consistent type.
auto min_result = try_get_value_with_canonical_unit(m_min_value, context, resolution_context);
if (!min_result.has_value())
return {};
auto center_result = try_get_value_with_canonical_unit(m_center_value, context, resolution_context);
if (!center_result.has_value())
return {};
auto max_result = try_get_value_with_canonical_unit(m_max_value, context, resolution_context);
if (!max_result.has_value())
return {};
auto consistent_type = min_result->type()->consistent_type(center_result->type().value()).map([&](auto& it) { return it.consistent_type(max_result->type().value()); });
if (!consistent_type.has_value())
return {};
// https://drafts.csswg.org/css-values-4/#calc-ieee
// Any operation with at least one NaN argument produces NaN.
if (isnan(min_result->value()) || isnan(center_result->value()) || isnan(max_result->value()))
return CalculatedStyleValue::CalculationResult { AK::NaN<double>, consistent_type.release_value() };
auto chosen_value = max(min_result->value(), min(center_result->value(), max_result->value()));
return CalculatedStyleValue::CalculationResult { chosen_value, consistent_type.release_value() };
}
void ClampCalculationNode::dump(StringBuilder& builder, int indent) const
{
builder.appendff("{: >{}}CLAMP:\n", "", indent);
m_min_value->dump(builder, indent + 2);
m_center_value->dump(builder, indent + 2);
m_max_value->dump(builder, indent + 2);
}
bool ClampCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_min_value->equals(*static_cast<ClampCalculationNode const&>(other).m_min_value)
&& m_center_value->equals(*static_cast<ClampCalculationNode const&>(other).m_center_value)
&& m_max_value->equals(*static_cast<ClampCalculationNode const&>(other).m_max_value);
}
GC::Ptr<CSSNumericValue> ClampCalculationNode::reify(JS::Realm& realm) const
{
auto lower = m_min_value->reify(realm);
auto value = m_center_value->reify(realm);
auto upper = m_max_value->reify(realm);
if (!lower || !value || !upper)
return nullptr;
return CSSMathClamp::create(realm, numeric_type().value(), lower.as_nonnull(), value.as_nonnull(), upper.as_nonnull());
}
NonnullRefPtr<AbsCalculationNode const> AbsCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-27 22:56:41 +02:00
{
return adopt_ref(*new (nothrow) AbsCalculationNode(move(value)));
2023-05-27 22:56:41 +02:00
}
AbsCalculationNode::AbsCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// The type of its contained calculation.
: CalculationNode(Type::Abs, value->numeric_type())
2023-05-27 22:56:41 +02:00
, m_value(move(value))
{
}
AbsCalculationNode::~AbsCalculationNode() = default;
bool AbsCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AbsCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-27 22:56:41 +02:00
{
auto node_a = m_value->resolve(context);
if (node_a.value() < 0)
node_a.negate();
2023-05-27 22:56:41 +02:00
return node_a;
}
NonnullRefPtr<CalculationNode const> AbsCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-abs
Optional<CalculatedStyleValue::CalculationResult> AbsCalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
// The abs(A) function contains one calculation A, and returns the absolute value of A, as the same type as the input:
// if As numeric value is positive or 0⁺, just A again; otherwise -1 * A.
auto child_value = try_get_value_with_canonical_unit(m_value, context, resolution_context);
if (!child_value.has_value())
return {};
return CalculatedStyleValue::CalculationResult { fabs(child_value->value()), child_value->type() };
}
void AbsCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 22:56:41 +02:00
{
builder.appendff("{: >{}}ABS:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-27 22:56:41 +02:00
}
bool AbsCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AbsCalculationNode const&>(other).m_value);
}
NonnullRefPtr<SignCalculationNode const> SignCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-27 23:02:39 +02:00
{
return adopt_ref(*new (nothrow) SignCalculationNode(move(value)));
2023-05-27 23:02:39 +02:00
}
SignCalculationNode::SignCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Sign, NumericType {})
2023-05-27 23:02:39 +02:00
, m_value(move(value))
{
}
SignCalculationNode::~SignCalculationNode() = default;
bool SignCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult SignCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-27 23:02:39 +02:00
{
auto node_a = m_value->resolve(context);
auto node_a_value = node_a.value();
2023-05-27 23:02:39 +02:00
if (node_a_value < 0)
return { -1, NumericType {} };
2023-05-27 23:02:39 +02:00
if (node_a_value > 0)
return { 1, NumericType {} };
2023-05-27 23:02:39 +02:00
return { 0, NumericType {} };
2023-05-27 23:02:39 +02:00
}
NonnullRefPtr<CalculationNode const> SignCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-sign
Optional<CalculatedStyleValue::CalculationResult> SignCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
// The sign(A) function contains one calculation A, and returns -1 if As numeric value is negative,
// +1 if As numeric value is positive, 0⁺ if As numeric value is 0⁺, and 0⁻ if As numeric value is 0⁻.
// The return type is a <number>, made consistent with the input calculations type.
if (m_value->type() != CalculationNode::Type::Numeric)
return {};
auto const& numeric_child = as<NumericCalculationNode>(*m_value);
double raw_value = numeric_child.value().visit(
[](Number const& number) { return number.value(); },
[](Percentage const& percentage) { return percentage.as_fraction(); },
[](auto const& dimension) { return dimension.raw_value(); });
double sign = 0;
if (raw_value < 0) {
sign = -1;
} else if (raw_value > 0) {
sign = 1;
} else {
FloatExtractor<double> const extractor { .d = raw_value };
sign = extractor.sign ? -0.0 : 0.0;
}
return CalculatedStyleValue::CalculationResult { sign, NumericType {}.made_consistent_with(numeric_child.numeric_type().value_or({})) };
}
void SignCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 23:02:39 +02:00
{
builder.appendff("{: >{}}SIGN:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-27 23:02:39 +02:00
}
bool SignCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SignCalculationNode const&>(other).m_value);
}
NonnullRefPtr<SinCalculationNode const> SinCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-27 23:50:33 +02:00
{
return adopt_ref(*new (nothrow) SinCalculationNode(move(value)));
2023-05-27 23:50:33 +02:00
}
SinCalculationNode::SinCalculationNode(NonnullRefPtr<CalculationNode const> value)
// «[ ]» (empty map).
: CalculationNode(Type::Sin, NumericType {})
2023-05-27 23:50:33 +02:00
, m_value(move(value))
{
}
SinCalculationNode::~SinCalculationNode() = default;
bool SinCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult SinCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-27 23:50:33 +02:00
{
auto node_a = m_value->resolve(context);
auto node_a_value = AK::to_radians(node_a.value());
2023-05-27 23:50:33 +02:00
auto result = sin(node_a_value);
return { result, NumericType {} };
2023-05-27 23:50:33 +02:00
}
NonnullRefPtr<CalculationNode const> SinCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
enum class SinCosOrTan {
Sin,
Cos,
Tan,
};
static Optional<CalculatedStyleValue::CalculationResult> run_sin_cos_or_tan_operation_if_possible(CalculationNode const& child, SinCosOrTan trig_function)
{
// The sin(A), cos(A), and tan(A) functions all contain a single calculation which must resolve to either a <number>
// or an <angle>, and compute their corresponding function by interpreting the result of their argument as radians.
// (That is, sin(45deg), sin(.125turn), and sin(3.14159 / 4) all represent the same value, approximately .707.) They
// all represent a <number>, with the return type made consistent with the input calculations type. sin() and cos()
// will always return a number between 1 and 1, while tan() can return any number between −∞ and +∞.
// (See § 10.9 Type Checking for details on how math functions handle ∞.)
if (child.type() != CalculationNode::Type::Numeric)
return {};
auto const& numeric_child = as<NumericCalculationNode>(child);
auto radians = numeric_child.value().visit(
[](Angle const& angle) { return angle.to_radians(); },
[](Number const& number) { return number.value(); },
[](auto const&) -> double { VERIFY_NOT_REACHED(); });
double result = 0;
switch (trig_function) {
case SinCosOrTan::Sin:
result = sin(radians);
break;
case SinCosOrTan::Cos:
result = cos(radians);
break;
case SinCosOrTan::Tan:
result = tan(radians);
break;
}
return CalculatedStyleValue::CalculationResult { result, NumericType {}.made_consistent_with(child.numeric_type().value()) };
}
// https://drafts.csswg.org/css-values-4/#funcdef-sin
Optional<CalculatedStyleValue::CalculationResult> SinCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
return run_sin_cos_or_tan_operation_if_possible(m_value, SinCosOrTan::Sin);
}
void SinCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 23:50:33 +02:00
{
builder.appendff("{: >{}}SIN:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-27 23:50:33 +02:00
}
bool SinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SinCalculationNode const&>(other).m_value);
}
NonnullRefPtr<CosCalculationNode const> CosCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-27 23:57:01 +02:00
{
return adopt_ref(*new (nothrow) CosCalculationNode(move(value)));
2023-05-27 23:57:01 +02:00
}
CosCalculationNode::CosCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Cos, NumericType {})
2023-05-27 23:57:01 +02:00
, m_value(move(value))
{
}
CosCalculationNode::~CosCalculationNode() = default;
bool CosCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult CosCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-27 23:57:01 +02:00
{
auto node_a = m_value->resolve(context);
auto node_a_value = AK::to_radians(node_a.value());
2023-05-27 23:57:01 +02:00
auto result = cos(node_a_value);
return { result, NumericType {} };
2023-05-27 23:57:01 +02:00
}
NonnullRefPtr<CalculationNode const> CosCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-cos
Optional<CalculatedStyleValue::CalculationResult> CosCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
return run_sin_cos_or_tan_operation_if_possible(m_value, SinCosOrTan::Cos);
}
void CosCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 23:57:01 +02:00
{
builder.appendff("{: >{}}COS:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-27 23:57:01 +02:00
}
bool CosCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<CosCalculationNode const&>(other).m_value);
}
NonnullRefPtr<TanCalculationNode const> TanCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-28 00:02:43 +02:00
{
return adopt_ref(*new (nothrow) TanCalculationNode(move(value)));
2023-05-28 00:02:43 +02:00
}
TanCalculationNode::TanCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Tan, NumericType {})
2023-05-28 00:02:43 +02:00
, m_value(move(value))
{
}
TanCalculationNode::~TanCalculationNode() = default;
bool TanCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult TanCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 00:02:43 +02:00
{
auto node_a = m_value->resolve(context);
auto node_a_value = AK::to_radians(node_a.value());
2023-05-28 00:02:43 +02:00
auto result = tan(node_a_value);
return { result, NumericType {} };
2023-05-28 00:02:43 +02:00
}
NonnullRefPtr<CalculationNode const> TanCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-tan
Optional<CalculatedStyleValue::CalculationResult> TanCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
return run_sin_cos_or_tan_operation_if_possible(m_value, SinCosOrTan::Tan);
}
void TanCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 00:02:43 +02:00
{
builder.appendff("{: >{}}TAN:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-28 00:02:43 +02:00
}
bool TanCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<TanCalculationNode const&>(other).m_value);
}
NonnullRefPtr<AsinCalculationNode const> AsinCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-28 10:55:52 +02:00
{
return adopt_ref(*new (nothrow) AsinCalculationNode(move(value)));
2023-05-28 10:55:52 +02:00
}
AsinCalculationNode::AsinCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ "angle" → 1 ]».
: CalculationNode(Type::Asin, NumericType { NumericType::BaseType::Angle, 1 })
2023-05-28 10:55:52 +02:00
, m_value(move(value))
{
}
AsinCalculationNode::~AsinCalculationNode() = default;
bool AsinCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AsinCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 10:55:52 +02:00
{
auto node_a = m_value->resolve(context);
auto result = AK::to_degrees(asin(node_a.value()));
return { result, NumericType { NumericType::BaseType::Angle, 1 } };
2023-05-28 10:55:52 +02:00
}
NonnullRefPtr<CalculationNode const> AsinCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
enum class AsinAcosOrAtan {
Asin,
Acos,
Atan,
};
static Optional<CalculatedStyleValue::CalculationResult> run_asin_acos_or_atan_operation_if_possible(CalculationNode const& child, AsinAcosOrAtan trig_function)
{
// The asin(A), acos(A), and atan(A) functions are the "arc" or "inverse" trigonometric functions, representing
// the inverse function to their corresponding "normal" trig functions. All of them contain a single calculation
// which must resolve to a <number>, and compute their corresponding function, interpreting their result as a
// number of radians, representing an <angle> with the return type made consistent with the input calculations
// type. The angle returned by asin() must be normalized to the range [-90deg, 90deg]; the angle returned by acos()
// to the range [0deg, 180deg]; and the angle returned by atan() to the range [-90deg, 90deg].
auto maybe_number = try_get_number(child);
if (!maybe_number.has_value())
return {};
auto number = maybe_number.release_value();
auto normalize_angle = [](double radians, double min_degrees, double max_degrees) -> double {
auto degrees = AK::to_degrees(radians);
while (degrees < min_degrees)
degrees += 360;
while (degrees > max_degrees)
degrees -= 360;
return degrees;
};
double result = 0;
switch (trig_function) {
case AsinAcosOrAtan::Asin:
result = normalize_angle(asin(number), -90, 90);
break;
case AsinAcosOrAtan::Acos:
result = normalize_angle(acos(number), 0, 180);
break;
case AsinAcosOrAtan::Atan:
result = normalize_angle(atan(number), -90, 90);
break;
}
return CalculatedStyleValue::CalculationResult { result, NumericType { NumericType::BaseType::Angle, 1 }.made_consistent_with(child.numeric_type().value()) };
}
// https://drafts.csswg.org/css-values-4/#funcdef-asin
Optional<CalculatedStyleValue::CalculationResult> AsinCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
return run_asin_acos_or_atan_operation_if_possible(m_value, AsinAcosOrAtan::Asin);
}
void AsinCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 10:55:52 +02:00
{
builder.appendff("{: >{}}ASIN:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-28 10:55:52 +02:00
}
bool AsinCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AsinCalculationNode const&>(other).m_value);
}
NonnullRefPtr<AcosCalculationNode const> AcosCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-28 11:00:35 +02:00
{
return adopt_ref(*new (nothrow) AcosCalculationNode(move(value)));
2023-05-28 11:00:35 +02:00
}
AcosCalculationNode::AcosCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ "angle" → 1 ]».
: CalculationNode(Type::Acos, NumericType { NumericType::BaseType::Angle, 1 })
2023-05-28 11:00:35 +02:00
, m_value(move(value))
{
}
AcosCalculationNode::~AcosCalculationNode() = default;
bool AcosCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AcosCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 11:00:35 +02:00
{
auto node_a = m_value->resolve(context);
auto result = AK::to_degrees(acos(node_a.value()));
return { result, NumericType { NumericType::BaseType::Angle, 1 } };
2023-05-28 11:00:35 +02:00
}
NonnullRefPtr<CalculationNode const> AcosCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-acos
Optional<CalculatedStyleValue::CalculationResult> AcosCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
return run_asin_acos_or_atan_operation_if_possible(m_value, AsinAcosOrAtan::Acos);
}
void AcosCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:00:35 +02:00
{
builder.appendff("{: >{}}ACOS:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-28 11:00:35 +02:00
}
bool AcosCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AcosCalculationNode const&>(other).m_value);
}
NonnullRefPtr<AtanCalculationNode const> AtanCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-28 11:04:57 +02:00
{
return adopt_ref(*new (nothrow) AtanCalculationNode(move(value)));
2023-05-28 11:04:57 +02:00
}
AtanCalculationNode::AtanCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ "angle" → 1 ]».
: CalculationNode(Type::Atan, NumericType { NumericType::BaseType::Angle, 1 })
2023-05-28 11:04:57 +02:00
, m_value(move(value))
{
}
AtanCalculationNode::~AtanCalculationNode() = default;
bool AtanCalculationNode::contains_percentage() const
{
return m_value->contains_percentage();
}
CalculatedStyleValue::CalculationResult AtanCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 11:04:57 +02:00
{
auto node_a = m_value->resolve(context);
auto result = AK::to_degrees(atan(node_a.value()));
return { result, NumericType { NumericType::BaseType::Angle, 1 } };
2023-05-28 11:04:57 +02:00
}
NonnullRefPtr<CalculationNode const> AtanCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-atan
Optional<CalculatedStyleValue::CalculationResult> AtanCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
return run_asin_acos_or_atan_operation_if_possible(m_value, AsinAcosOrAtan::Atan);
}
void AtanCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:04:57 +02:00
{
builder.appendff("{: >{}}ATAN:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-28 11:04:57 +02:00
}
bool AtanCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<AtanCalculationNode const&>(other).m_value);
}
NonnullRefPtr<Atan2CalculationNode const> Atan2CalculationNode::create(NonnullRefPtr<CalculationNode const> y, NonnullRefPtr<CalculationNode const> x)
2023-05-28 11:19:10 +02:00
{
return adopt_ref(*new (nothrow) Atan2CalculationNode(move(y), move(x)));
2023-05-28 11:19:10 +02:00
}
Atan2CalculationNode::Atan2CalculationNode(NonnullRefPtr<CalculationNode const> y, NonnullRefPtr<CalculationNode const> x)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ "angle" → 1 ]».
: CalculationNode(Type::Atan2, NumericType { NumericType::BaseType::Angle, 1 })
2023-05-28 11:19:10 +02:00
, m_y(move(y))
, m_x(move(x))
{
}
Atan2CalculationNode::~Atan2CalculationNode() = default;
bool Atan2CalculationNode::contains_percentage() const
{
return m_y->contains_percentage() || m_x->contains_percentage();
}
CalculatedStyleValue::CalculationResult Atan2CalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 11:19:10 +02:00
{
auto node_a = m_y->resolve(context);
auto node_b = m_x->resolve(context);
auto result = AK::to_degrees(atan2(node_a.value(), node_b.value()));
return { result, NumericType { NumericType::BaseType::Angle, 1 } };
2023-05-28 11:19:10 +02:00
}
NonnullRefPtr<CalculationNode const> Atan2CalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_2_children(*this, m_x, m_y, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-atan2
Optional<CalculatedStyleValue::CalculationResult> Atan2CalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
// The atan2(A, B) function contains two comma-separated calculations, A and B. A and B can resolve to any <number>,
// <dimension>, or <percentage>, but must have a consistent type or else the function is invalid. The function
// returns the <angle> between the positive X-axis and the point (B,A), with the return type made consistent with the
// input calculations type. The returned angle must be normalized to the interval (-180deg, 180deg] (that is,
// greater than -180deg, and less than or equal to 180deg).
auto x_value = try_get_value_with_canonical_unit(m_x, context, resolution_context);
if (!x_value.has_value())
return {};
auto y_value = try_get_value_with_canonical_unit(m_y, context, resolution_context);
if (!y_value.has_value())
return {};
auto input_consistent_type = x_value->type()->consistent_type(y_value->type().value());
if (!input_consistent_type.has_value())
return {};
auto degrees = AK::to_degrees(atan2(y_value->value(), x_value->value()));
while (degrees <= -180)
degrees += 360;
while (degrees > 180)
degrees -= 360;
return CalculatedStyleValue::CalculationResult { degrees, NumericType { NumericType::BaseType::Angle, 1 }.made_consistent_with(*input_consistent_type) };
}
void Atan2CalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:19:10 +02:00
{
builder.appendff("{: >{}}ATAN2:\n", "", indent);
m_x->dump(builder, indent + 2);
m_y->dump(builder, indent + 2);
2023-05-28 11:19:10 +02:00
}
bool Atan2CalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<Atan2CalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<Atan2CalculationNode const&>(other).m_y);
}
NonnullRefPtr<PowCalculationNode const> PowCalculationNode::create(NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y)
2023-05-28 11:26:42 +02:00
{
return adopt_ref(*new (nothrow) PowCalculationNode(move(x), move(y)));
2023-05-28 11:26:42 +02:00
}
PowCalculationNode::PowCalculationNode(NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Pow, NumericType {})
2023-05-28 11:26:42 +02:00
, m_x(move(x))
, m_y(move(y))
{
}
PowCalculationNode::~PowCalculationNode() = default;
CalculatedStyleValue::CalculationResult PowCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 11:26:42 +02:00
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
auto result = pow(node_a.value(), node_b.value());
return { result, NumericType {} };
2023-05-28 11:26:42 +02:00
}
NonnullRefPtr<CalculationNode const> PowCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_2_children(*this, m_x, m_y, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-pow
Optional<CalculatedStyleValue::CalculationResult> PowCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
// The pow(A, B) function contains two comma-separated calculations A and B, both of which must resolve to <number>s,
// and returns the result of raising A to the power of B, returning the value as a <number>. The input calculations
// must have a consistent type or else the function is invalid; the results type will be the consistent type.
auto a = try_get_number(m_x);
auto b = try_get_number(m_y);
if (!a.has_value() || !b.has_value())
return {};
auto consistent_type = m_x->numeric_type()->consistent_type(m_y->numeric_type().value());
if (!consistent_type.has_value())
return {};
return CalculatedStyleValue::CalculationResult { pow(*a, *b), consistent_type };
}
void PowCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:26:42 +02:00
{
builder.appendff("{: >{}}POW:\n", "", indent);
m_x->dump(builder, indent + 2);
m_y->dump(builder, indent + 2);
2023-05-28 11:26:42 +02:00
}
bool PowCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<PowCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<PowCalculationNode const&>(other).m_y);
}
NonnullRefPtr<SqrtCalculationNode const> SqrtCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-28 11:31:50 +02:00
{
return adopt_ref(*new (nothrow) SqrtCalculationNode(move(value)));
2023-05-28 11:31:50 +02:00
}
SqrtCalculationNode::SqrtCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Sqrt, NumericType {})
2023-05-28 11:31:50 +02:00
, m_value(move(value))
{
}
SqrtCalculationNode::~SqrtCalculationNode() = default;
CalculatedStyleValue::CalculationResult SqrtCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 11:31:50 +02:00
{
auto node_a = m_value->resolve(context);
auto result = sqrt(node_a.value());
return { result, NumericType {} };
2023-05-28 11:31:50 +02:00
}
NonnullRefPtr<CalculationNode const> SqrtCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-sqrt
Optional<CalculatedStyleValue::CalculationResult> SqrtCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
// The sqrt(A) function contains a single calculation which must resolve to a <number>, and returns the square root
// of the value as a <number>, with the return type made consistent with the input calculations type.
// (sqrt(X) and pow(X, .5) are basically equivalent, differing only in some error-handling; sqrt() is a common enough
// function that it is provided as a convenience.)
auto number = try_get_number(m_value);
if (!number.has_value())
return {};
auto consistent_type = NumericType {}.made_consistent_with(m_value->numeric_type().value());
if (!consistent_type.has_value())
return {};
return CalculatedStyleValue::CalculationResult { sqrt(*number), consistent_type };
}
void SqrtCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:31:50 +02:00
{
builder.appendff("{: >{}}SQRT:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-28 11:31:50 +02:00
}
bool SqrtCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<SqrtCalculationNode const&>(other).m_value);
}
NonnullRefPtr<HypotCalculationNode const> HypotCalculationNode::create(Vector<NonnullRefPtr<CalculationNode const>> values)
2023-05-28 11:43:04 +02:00
{
// https://drafts.csswg.org/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(values);
return adopt_ref(*new (nothrow) HypotCalculationNode(move(values), move(numeric_type)));
2023-05-28 11:43:04 +02:00
}
HypotCalculationNode::HypotCalculationNode(Vector<NonnullRefPtr<CalculationNode const>> values, Optional<NumericType> numeric_type)
: CalculationNode(Type::Hypot, move(numeric_type))
2023-05-28 11:43:04 +02:00
, m_values(move(values))
{
}
HypotCalculationNode::~HypotCalculationNode() = default;
bool HypotCalculationNode::contains_percentage() const
{
for (auto const& value : m_values) {
if (value->contains_percentage())
return true;
}
return false;
}
CalculatedStyleValue::CalculationResult HypotCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 11:43:04 +02:00
{
double square_sum = 0.0;
Optional<NumericType> result_type;
2023-05-28 11:43:04 +02:00
for (auto const& value : m_values) {
auto child_resolved = value->resolve(context);
auto child_value = child_resolved.value();
2023-05-28 11:43:04 +02:00
square_sum += child_value * child_value;
if (result_type.has_value()) {
result_type = result_type->consistent_type(*child_resolved.type());
} else {
result_type = child_resolved.type();
}
2023-05-28 11:43:04 +02:00
}
auto result = sqrt(square_sum);
return { result, result_type };
2023-05-28 11:43:04 +02:00
}
NonnullRefPtr<CalculationNode const> HypotCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_children_vector(*this, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-hypot
Optional<CalculatedStyleValue::CalculationResult> HypotCalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
// The hypot(A, …) function contains one or more comma-separated calculations, and returns the length of an
// N-dimensional vector with components equal to each of the calculations. (That is, the square root of the sum of
// the squares of its arguments.) The argument calculations can resolve to any <number>, <dimension>, or
// <percentage>, but must have a consistent type or else the function is invalid; the results type will be the
// consistent type.
Optional<NumericType> consistent_type;
double value = 0;
for (auto const& child : m_values) {
auto canonical_child = try_get_value_with_canonical_unit(child, context, resolution_context);
if (!canonical_child.has_value())
return {};
if (!consistent_type.has_value())
consistent_type = canonical_child->type();
else
consistent_type = consistent_type->consistent_type(canonical_child->type().value());
if (!consistent_type.has_value())
return {};
value += canonical_child->value() * canonical_child->value();
}
if (!consistent_type.has_value())
return {};
return CalculatedStyleValue::CalculationResult { sqrt(value), consistent_type };
}
void HypotCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:43:04 +02:00
{
builder.appendff("{: >{}}HYPOT:\n", "", indent);
2023-05-28 11:43:04 +02:00
for (auto const& value : m_values)
value->dump(builder, indent + 2);
2023-05-28 11:43:04 +02:00
}
bool HypotCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
for (size_t i = 0; i < m_values.size(); ++i) {
if (!m_values[i]->equals(*static_cast<HypotCalculationNode const&>(other).m_values[i]))
return false;
}
return true;
}
NonnullRefPtr<LogCalculationNode const> LogCalculationNode::create(NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y)
2023-05-28 11:53:57 +02:00
{
return adopt_ref(*new (nothrow) LogCalculationNode(move(x), move(y)));
2023-05-28 11:53:57 +02:00
}
LogCalculationNode::LogCalculationNode(NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Log, NumericType {})
2023-05-28 11:53:57 +02:00
, m_x(move(x))
, m_y(move(y))
{
}
LogCalculationNode::~LogCalculationNode() = default;
CalculatedStyleValue::CalculationResult LogCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 11:53:57 +02:00
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
auto result = log2(node_a.value()) / log2(node_b.value());
return { result, NumericType {} };
2023-05-28 11:53:57 +02:00
}
NonnullRefPtr<CalculationNode const> LogCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_2_children(*this, m_x, m_y, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-log
Optional<CalculatedStyleValue::CalculationResult> LogCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
// The log(A, B?) function contains one or two calculations (representing the value to be logarithmed, and the
// base of the logarithm, defaulting to e), which must resolve to <number>s, and returns the logarithm base B of
// the value A, as a <number> with the return type made consistent with the input calculations type.
auto number = try_get_number(m_x);
auto base = try_get_number(m_y);
if (!number.has_value() || !base.has_value())
return {};
auto consistent_type = NumericType {}.made_consistent_with(m_x->numeric_type().value());
if (!consistent_type.has_value())
return {};
return CalculatedStyleValue::CalculationResult { log(*number) / log(*base), consistent_type };
}
void LogCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:53:57 +02:00
{
builder.appendff("{: >{}}LOG:\n", "", indent);
m_x->dump(builder, indent + 2);
m_y->dump(builder, indent + 2);
2023-05-28 11:53:57 +02:00
}
bool LogCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<LogCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<LogCalculationNode const&>(other).m_y);
}
NonnullRefPtr<ExpCalculationNode const> ExpCalculationNode::create(NonnullRefPtr<CalculationNode const> value)
2023-05-28 11:58:30 +02:00
{
return adopt_ref(*new (nothrow) ExpCalculationNode(move(value)));
2023-05-28 11:58:30 +02:00
}
ExpCalculationNode::ExpCalculationNode(NonnullRefPtr<CalculationNode const> value)
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// «[ ]» (empty map).
: CalculationNode(Type::Exp, NumericType {})
2023-05-28 11:58:30 +02:00
, m_value(move(value))
{
}
ExpCalculationNode::~ExpCalculationNode() = default;
CalculatedStyleValue::CalculationResult ExpCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-28 11:58:30 +02:00
{
auto node_a = m_value->resolve(context);
auto result = exp(node_a.value());
return { result, NumericType {} };
2023-05-28 11:58:30 +02:00
}
NonnullRefPtr<CalculationNode const> ExpCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_child(*this, m_value, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-exp
Optional<CalculatedStyleValue::CalculationResult> ExpCalculationNode::run_operation_if_possible(CalculationContext const&, CalculationResolutionContext const&) const
{
// The exp(A) function contains one calculation which must resolve to a <number>, and returns the same value as
// pow(e, A) as a <number> with the return type made consistent with the input calculations type.
auto number = try_get_number(m_value);
if (!number.has_value())
return {};
auto consistent_type = NumericType {}.made_consistent_with(m_value->numeric_type().value());
if (!consistent_type.has_value())
return {};
return CalculatedStyleValue::CalculationResult { exp(*number), consistent_type };
}
void ExpCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-28 11:58:30 +02:00
{
builder.appendff("{: >{}}EXP:\n", "", indent);
m_value->dump(builder, indent + 2);
2023-05-28 11:58:30 +02:00
}
bool ExpCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_value->equals(*static_cast<ExpCalculationNode const&>(other).m_value);
}
NonnullRefPtr<RoundCalculationNode const> RoundCalculationNode::create(RoundingStrategy strategy, NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y)
2023-05-27 16:07:50 +02:00
{
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(*x, *y);
return adopt_ref(*new (nothrow) RoundCalculationNode(strategy, move(x), move(y), move(numeric_type)));
2023-05-27 16:07:50 +02:00
}
RoundCalculationNode::RoundCalculationNode(RoundingStrategy mode, NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y, Optional<NumericType> numeric_type)
: CalculationNode(Type::Round, move(numeric_type))
, m_strategy(mode)
2023-05-27 16:07:50 +02:00
, m_x(move(x))
, m_y(move(y))
{
}
RoundCalculationNode::~RoundCalculationNode() = default;
bool RoundCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult RoundCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-27 16:07:50 +02:00
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
2023-05-27 16:07:50 +02:00
auto node_a_value = node_a.value();
auto node_b_value = node_b.value();
2023-05-27 16:07:50 +02:00
auto upper_b = ceil(node_a_value / node_b_value) * node_b_value;
auto lower_b = floor(node_a_value / node_b_value) * node_b_value;
auto resolved_type = node_a.type()->consistent_type(*node_b.type());
if (m_strategy == RoundingStrategy::Nearest) {
2023-05-27 16:07:50 +02:00
auto upper_diff = fabs(upper_b - node_a_value);
auto lower_diff = fabs(node_a_value - lower_b);
auto rounded_value = upper_diff < lower_diff ? upper_b : lower_b;
return { rounded_value, resolved_type };
2023-05-27 16:07:50 +02:00
}
if (m_strategy == RoundingStrategy::Up) {
return { upper_b, resolved_type };
2023-05-27 16:07:50 +02:00
}
if (m_strategy == RoundingStrategy::Down) {
return { lower_b, resolved_type };
2023-05-27 16:07:50 +02:00
}
if (m_strategy == RoundingStrategy::ToZero) {
2023-05-27 16:07:50 +02:00
auto upper_diff = fabs(upper_b);
auto lower_diff = fabs(lower_b);
auto rounded_value = upper_diff < lower_diff ? upper_b : lower_b;
return { rounded_value, resolved_type };
2023-05-27 16:07:50 +02:00
}
VERIFY_NOT_REACHED();
}
NonnullRefPtr<CalculationNode const> RoundCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
auto simplified_x = simplify_a_calculation_tree(m_x, context, resolution_context);
auto simplified_y = simplify_a_calculation_tree(m_y, context, resolution_context);
if (simplified_x != m_x || simplified_y != m_y)
return create(m_strategy, move(simplified_x), move(simplified_y));
return *this;
}
// https://drafts.csswg.org/css-values-4/#funcdef-round
Optional<CalculatedStyleValue::CalculationResult> RoundCalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
// The round(<rounding-strategy>?, A, B?) function contains an optional rounding strategy, and two calculations A
// and B, and returns the value of A, rounded according to the rounding strategy, to the nearest integer multiple of
// B either above or below A. The argument calculations can resolve to any <number>, <dimension>, or <percentage>,
// but must have a consistent type or else the function is invalid; the results type will be the consistent type.
auto maybe_a = try_get_value_with_canonical_unit(m_x, context, resolution_context);
auto maybe_b = try_get_value_with_canonical_unit(m_y, context, resolution_context);
if (!maybe_a.has_value() || !maybe_b.has_value())
return {};
auto consistent_type = maybe_a->type()->made_consistent_with(maybe_b->type().value());
if (!consistent_type.has_value())
return {};
auto a = maybe_a->value();
auto b = maybe_b->value();
// https://drafts.csswg.org/css-values-4/#round-infinities
// In round(A, B), if B is 0, the result is NaN. If A and B are both infinite, the result is NaN.
if (b == 0 || (isinf(a) && isinf(b)))
return CalculatedStyleValue::CalculationResult { AK::NaN<double>, consistent_type };
// If A is infinite but B is finite, the result is the same infinity.
if (isinf(a) && isfinite(b))
return CalculatedStyleValue::CalculationResult { a, consistent_type };
// If A is finite but B is infinite, the result depends on the <rounding-strategy> and the sign of A:
if (isfinite(a) && isinf(b)) {
FloatExtractor<double> const extractor { .d = a };
switch (m_strategy) {
// nearest, to-zero:
case RoundingStrategy::Nearest:
case RoundingStrategy::ToZero: {
// If A is positive or 0⁺, return 0⁺. Otherwise, return 0⁻.
return CalculatedStyleValue::CalculationResult { !extractor.sign ? 0.0 : -0.0, consistent_type };
}
// up:
case RoundingStrategy::Up: {
double result;
if (a > 0) {
// If A is positive(not zero), return +∞.
result = AK::Infinity<double>;
} else {
// If A is 0⁺, return 0⁺. Otherwise, return 0⁻.
result = !extractor.sign ? 0.0 : -0.0;
}
return CalculatedStyleValue::CalculationResult { result, consistent_type };
}
// down:
case RoundingStrategy::Down: {
double result;
if (a < 0) {
// If A is negative (not zero), return −∞.
result = -AK::Infinity<double>;
} else {
// If A is 0⁻, return 0⁻. Otherwise, return 0⁺.
result = extractor.sign ? -0.0 : 0.0;
}
return CalculatedStyleValue::CalculationResult { result, consistent_type };
}
}
}
// If A is exactly equal to an integer multiple of B, round() resolves to A exactly (preserving whether A is 0⁻ or
// 0⁺, if relevant).
if (fmod(a, b) == 0)
return maybe_a.release_value();
// Otherwise, there are two integer multiples of B that are potentially "closest" to A, lower B which is closer to
// −∞ and upper B which is closer to +∞. The following <rounding-strategy>s dictate how to choose between them:
// FIXME: If lower B would be zero, it is specifically equal to 0⁺;
// if upper B would be zero, it is specifically equal to 0⁻.
auto get_lower_b = [&]() {
return floor(a / b) * b;
};
auto get_upper_b = [&]() {
return ceil(a / b) * b;
};
double rounded = 0;
switch (m_strategy) {
// -> nearest
case RoundingStrategy::Nearest: {
// Choose whichever of lower B and upper B that has the smallest absolute difference from A.
// If both have an equal difference (A is exactly between the two values), choose upper B.
auto lower_b = get_lower_b();
auto upper_b = get_upper_b();
auto lower_diff = fabs(lower_b - a);
auto upper_diff = fabs(upper_b - a);
rounded = upper_diff <= lower_diff ? upper_b : lower_b;
break;
}
// -> up
case RoundingStrategy::Up:
// Choose upper B.
rounded = get_upper_b();
break;
// -> down
case RoundingStrategy::Down:
// Choose lower B.
rounded = get_lower_b();
break;
// -> to-zero
case RoundingStrategy::ToZero: {
// Choose whichever of lower B and upper B that has the smallest absolute difference from 0.
auto lower_b = get_lower_b();
auto upper_b = get_upper_b();
rounded = fabs(upper_b) < fabs(lower_b) ? upper_b : lower_b;
break;
}
}
return CalculatedStyleValue::CalculationResult { rounded, consistent_type };
}
void RoundCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 16:07:50 +02:00
{
builder.appendff("{: >{}}ROUND: {}\n", "", indent, CSS::to_string(m_strategy));
m_x->dump(builder, indent + 2);
m_y->dump(builder, indent + 2);
2023-05-27 16:07:50 +02:00
}
bool RoundCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_strategy == static_cast<RoundCalculationNode const&>(other).m_strategy
&& m_x->equals(*static_cast<RoundCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<RoundCalculationNode const&>(other).m_y);
}
NonnullRefPtr<ModCalculationNode const> ModCalculationNode::create(NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y)
2023-05-27 19:03:07 +02:00
{
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(*x, *y);
return adopt_ref(*new (nothrow) ModCalculationNode(move(x), move(y), move(numeric_type)));
2023-05-27 19:03:07 +02:00
}
ModCalculationNode::ModCalculationNode(NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y, Optional<NumericType> numeric_type)
: CalculationNode(Type::Mod, move(numeric_type))
2023-05-27 19:03:07 +02:00
, m_x(move(x))
, m_y(move(y))
{
}
ModCalculationNode::~ModCalculationNode() = default;
bool ModCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult ModCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-27 19:03:07 +02:00
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
2023-05-27 19:03:07 +02:00
auto node_a_value = node_a.value();
auto node_b_value = node_b.value();
2023-05-27 19:03:07 +02:00
auto quotient = floor(node_a_value / node_b_value);
auto value = node_a_value - (node_b_value * quotient);
return { value, node_a.type() };
2023-05-27 19:03:07 +02:00
}
NonnullRefPtr<CalculationNode const> ModCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_2_children(*this, m_x, m_y, context, resolution_context);
}
enum class ModOrRem {
Mod,
Rem,
};
// https://drafts.csswg.org/css-values-4/#funcdef-mod
static Optional<CalculatedStyleValue::CalculationResult> run_mod_or_rem_operation_if_possible(CalculationNode const& numerator, CalculationNode const& denominator, CalculationContext const& context, CalculationResolutionContext const& resolution_context, ModOrRem mod_or_rem)
{
// The modulus functions mod(A, B) and rem(A, B) similarly contain two calculations A and B, and return the
// difference between A and the nearest integer multiple of B either above or below A. The argument calculations
// can resolve to any <number>, <dimension>, or <percentage>, but must have the same type, or else the function
// is invalid; the result will have the same type as the arguments.
auto numerator_value = try_get_value_with_canonical_unit(numerator, context, resolution_context);
auto denominator_value = try_get_value_with_canonical_unit(denominator, context, resolution_context);
if (!numerator_value.has_value() || !denominator_value.has_value())
return {};
if (numerator_value->type() != denominator_value->type())
return {};
// The two functions are very similar, and in fact return identical results if both arguments are positive or both
// are negative: the value of the function is equal to the value of A shifted by the integer multiple of B that
// brings the value between zero and B. (Specifically, the range includes zero and excludes B.More specifically,
// if B is positive the range starts at 0⁺, and if B is negative it starts at 0⁻.)
//
// Their behavior diverges if the A value and the B step are on opposite sides of zero: mod() (short for “modulus”)
// continues to choose the integer multiple of B that puts the value between zero and B, as above (guaranteeing
// that the result will either be zero or share the sign of B, not A), while rem() (short for "remainder") chooses
// the integer multiple of B that puts the value between zero and -B, avoiding changing the sign of the value.
double result = 0;
if (mod_or_rem == ModOrRem::Mod) {
auto quotient = floor(numerator_value->value() / denominator_value->value());
result = numerator_value->value() - (denominator_value->value() * quotient);
} else {
result = fmod(numerator_value->value(), denominator_value->value());
}
return CalculatedStyleValue::CalculationResult { result, numerator_value->type() };
}
// https://drafts.csswg.org/css-values-4/#funcdef-mod
Optional<CalculatedStyleValue::CalculationResult> ModCalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return run_mod_or_rem_operation_if_possible(m_x, m_y, context, resolution_context, ModOrRem::Mod);
}
void ModCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 19:03:07 +02:00
{
builder.appendff("{: >{}}MOD:\n", "", indent);
m_x->dump(builder, indent + 2);
m_y->dump(builder, indent + 2);
2023-05-27 19:03:07 +02:00
}
bool ModCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<ModCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<ModCalculationNode const&>(other).m_y);
}
NonnullRefPtr<RemCalculationNode const> RemCalculationNode::create(NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y)
2023-05-27 19:08:07 +02:00
{
// https://www.w3.org/TR/css-values-4/#determine-the-type-of-a-calculation
// The result of adding the types of its comma-separated calculations.
auto numeric_type = add_the_types(*x, *y);
return adopt_ref(*new (nothrow) RemCalculationNode(move(x), move(y), move(numeric_type)));
2023-05-27 19:08:07 +02:00
}
RemCalculationNode::RemCalculationNode(NonnullRefPtr<CalculationNode const> x, NonnullRefPtr<CalculationNode const> y, Optional<NumericType> numeric_type)
: CalculationNode(Type::Rem, move(numeric_type))
2023-05-27 19:08:07 +02:00
, m_x(move(x))
, m_y(move(y))
{
}
RemCalculationNode::~RemCalculationNode() = default;
bool RemCalculationNode::contains_percentage() const
{
return m_x->contains_percentage() || m_y->contains_percentage();
}
CalculatedStyleValue::CalculationResult RemCalculationNode::resolve(CalculationResolutionContext const& context) const
2023-05-27 19:08:07 +02:00
{
auto node_a = m_x->resolve(context);
auto node_b = m_y->resolve(context);
auto value = fmod(node_a.value(), node_b.value());
return { value, node_a.type() };
2023-05-27 19:08:07 +02:00
}
NonnullRefPtr<CalculationNode const> RemCalculationNode::with_simplified_children(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return simplify_2_children(*this, m_x, m_y, context, resolution_context);
}
// https://drafts.csswg.org/css-values-4/#funcdef-mod
Optional<CalculatedStyleValue::CalculationResult> RemCalculationNode::run_operation_if_possible(CalculationContext const& context, CalculationResolutionContext const& resolution_context) const
{
return run_mod_or_rem_operation_if_possible(m_x, m_y, context, resolution_context, ModOrRem::Rem);
}
void RemCalculationNode::dump(StringBuilder& builder, int indent) const
2023-05-27 19:08:07 +02:00
{
builder.appendff("{: >{}}REM:\n", "", indent);
m_x->dump(builder, indent + 2);
m_y->dump(builder, indent + 2);
2023-05-27 19:08:07 +02:00
}
bool RemCalculationNode::equals(CalculationNode const& other) const
{
if (this == &other)
return true;
if (type() != other.type())
return false;
return m_x->equals(*static_cast<RemCalculationNode const&>(other).m_x)
&& m_y->equals(*static_cast<RemCalculationNode const&>(other).m_y);
}
CalculatedStyleValue::CalculationResult CalculatedStyleValue::CalculationResult::from_value(Value const& value, CalculationResolutionContext const& context, Optional<NumericType> numeric_type)
{
auto number = value.visit(
[](Number const& number) { return number.value(); },
[](Angle const& angle) { return angle.to_degrees(); },
[](Flex const& flex) { return flex.to_fr(); },
[](Frequency const& frequency) { return frequency.to_hertz(); },
[&context](Length const& length) {
// Handle some common cases first, so we can resolve more without a context
if (length.is_absolute())
return length.absolute_length_to_px_without_rounding();
// If we don't have a context, we cant resolve the length, so return NAN
if (!context.length_resolution_context.has_value()) {
dbgln("Failed to resolve length `{}`, likely due to calc() being used with relative units and a property not taking it into account", length.to_string());
return AK::NaN<double>;
}
return length.to_px(context.length_resolution_context.value()).to_double();
},
[](Resolution const& resolution) { return resolution.to_dots_per_pixel(); },
[](Time const& time) { return time.to_seconds(); },
[](Percentage const& percentage) { return percentage.value(); });
return CalculationResult { number, move(numeric_type) };
}
void CalculatedStyleValue::CalculationResult::add(CalculationResult const& other)
{
m_value = m_value + other.m_value;
m_type = m_type.has_value() && other.m_type.has_value() ? m_type->added_to(*other.m_type) : OptionalNone {};
}
void CalculatedStyleValue::CalculationResult::subtract(CalculationResult const& other)
{
m_value = m_value - other.m_value;
m_type = m_type.has_value() && other.m_type.has_value() ? m_type->added_to(*other.m_type) : OptionalNone {};
}
void CalculatedStyleValue::CalculationResult::multiply_by(CalculationResult const& other)
{
m_value = m_value * other.m_value;
m_type = m_type.has_value() && other.m_type.has_value() ? m_type->multiplied_by(*other.m_type) : OptionalNone {};
}
void CalculatedStyleValue::CalculationResult::divide_by(CalculationResult const& other)
{
auto other_copy = other;
other_copy.invert();
m_value = m_value * other_copy.m_value;
m_type = m_type.has_value() && other.m_type.has_value() ? m_type->multiplied_by(*other.m_type) : OptionalNone {};
}
void CalculatedStyleValue::CalculationResult::negate()
{
m_value = 0 - m_value;
}
void CalculatedStyleValue::CalculationResult::invert()
{
// FIXME: Correctly handle division by zero.
m_value = 1.0 / m_value;
if (m_type.has_value())
m_type = m_type->inverted();
}
String CalculatedStyleValue::to_string(SerializationMode serialization_mode) const
{
return serialize_a_math_function(m_calculation, m_context, serialization_mode);
}
ValueComparingNonnullRefPtr<StyleValue const> CalculatedStyleValue::absolutized(CSSPixelRect const& viewport_rect, Length::FontMetrics const& font_metrics, Length::FontMetrics const& root_font_metrics) const
{
Length::ResolutionContext length_resolution_context {
.viewport_rect = viewport_rect,
.font_metrics = font_metrics,
.root_font_metrics = root_font_metrics
};
auto simplified_calculation_tree = simplify_a_calculation_tree(m_calculation, m_context, { .length_resolution_context = length_resolution_context });
auto const simplified_percentage_dimension_mix = [&]() -> Optional<ValueComparingNonnullRefPtr<StyleValue const>> {
// NOTE: A percentage dimension mix is a SumCalculationNode with two NumericCalculationNode children which have
// matching base types - only the first of which has a percent hint.
if (simplified_calculation_tree->type() != CalculationNode::Type::Sum)
return {};
auto const& sum_node = as<SumCalculationNode>(*simplified_calculation_tree);
if (sum_node.children()[0]->type() != CalculationNode::Type::Numeric || sum_node.children()[1]->type() != CalculationNode::Type::Numeric)
return {};
auto const& first_node = as<NumericCalculationNode>(*sum_node.children()[0]);
auto const& second_node = as<NumericCalculationNode>(*sum_node.children()[1]);
auto first_base_type = first_node.numeric_type()->entry_with_value_1_while_all_others_are_0();
auto second_base_type = second_node.numeric_type()->entry_with_value_1_while_all_others_are_0();
if (!first_base_type.has_value() || first_base_type != second_base_type)
return {};
if (!first_node.numeric_type()->percent_hint().has_value() || second_node.numeric_type()->percent_hint().has_value())
return {};
auto dimension_component = try_get_value_with_canonical_unit(second_node, m_context, {});
// https://drafts.csswg.org/css-values-4/#combine-mixed
// The computed value of a percentage-dimension mix is defined as
// - a computed percentage if the dimension component is zero
if (dimension_component->value() == 0)
return PercentageStyleValue::create(first_node.value().get<Percentage>());
return {};
}();
if (simplified_percentage_dimension_mix.has_value())
return simplified_percentage_dimension_mix.value();
return CalculatedStyleValue::create(simplified_calculation_tree, m_resolved_type, m_context);
}
bool CalculatedStyleValue::equals(StyleValue const& other) const
{
if (type() != other.type())
return false;
return m_calculation->equals(*other.as_calculated().m_calculation);
}
// https://drafts.csswg.org/css-values-4/#calc-computed-value
Optional<CalculatedStyleValue::ResolvedValue> CalculatedStyleValue::resolve_value(CalculationResolutionContext const& resolution_context) const
{
// The calculation tree is again simplified at used value time; with used value time information.
auto simplified_tree = simplify_a_calculation_tree(m_calculation, m_context, resolution_context);
if (!is<NumericCalculationNode>(*simplified_tree))
return {};
auto value = try_get_value_with_canonical_unit(simplified_tree, m_context, resolution_context);
VERIFY(value.has_value());
auto raw_value = value->value();
// https://drafts.csswg.org/css-values/#calc-ieee
// NaN does not escape a top-level calculation; its censored into a zero value.
if (isnan(raw_value))
raw_value = 0;
// https://drafts.csswg.org/css-values/#calc-range
// the value resulting from a top-level calculation must be clamped to the range allowed in the target context.
// Clamping is performed on computed values to the extent possible, and also on used values if computation was
// unable to sufficiently simplify the expression to allow range-checking.
Optional<AcceptedTypeRange> accepted_range;
if (value->type()->matches_number(m_context.percentages_resolve_as))
accepted_range = m_context.resolve_numbers_as_integers ? m_context.accepted_type_ranges.get(ValueType::Integer) : m_context.accepted_type_ranges.get(ValueType::Number);
else if (value->type()->matches_angle(m_context.percentages_resolve_as))
accepted_range = m_context.accepted_type_ranges.get(ValueType::Angle);
else if (value->type()->matches_flex(m_context.percentages_resolve_as))
accepted_range = m_context.accepted_type_ranges.get(ValueType::Flex);
else if (value->type()->matches_frequency(m_context.percentages_resolve_as))
accepted_range = m_context.accepted_type_ranges.get(ValueType::Frequency);
else if (value->type()->matches_length(m_context.percentages_resolve_as))
accepted_range = m_context.accepted_type_ranges.get(ValueType::Length);
else if (value->type()->matches_percentage())
accepted_range = m_context.accepted_type_ranges.get(ValueType::Percentage);
else if (value->type()->matches_resolution(m_context.percentages_resolve_as))
accepted_range = m_context.accepted_type_ranges.get(ValueType::Resolution);
else if (value->type()->matches_time(m_context.percentages_resolve_as))
accepted_range = m_context.accepted_type_ranges.get(ValueType::Time);
if (!accepted_range.has_value()) {
dbgln_if(LIBWEB_CSS_DEBUG, "FIXME: Calculation context missing accepted type range {}", value->type());
// FIXME: Infinity for integers should be i32 max rather than float max
accepted_range = { AK::NumericLimits<float>::lowest(), AK::NumericLimits<float>::max() };
}
raw_value = clamp(raw_value, accepted_range->min, accepted_range->max);
return ResolvedValue { raw_value, value->type() };
}
Optional<Angle> CalculatedStyleValue::resolve_angle(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_angle(m_context.percentages_resolve_as))
return Angle::make_degrees(result->value);
return {};
}
Optional<Flex> CalculatedStyleValue::resolve_flex(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_flex(m_context.percentages_resolve_as))
return Flex::make_fr(result->value);
return {};
}
Optional<Frequency> CalculatedStyleValue::resolve_frequency(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_frequency(m_context.percentages_resolve_as))
return Frequency::make_hertz(result->value);
return {};
}
Optional<Length> CalculatedStyleValue::resolve_length_deprecated(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_length(m_context.percentages_resolve_as))
return Length::make_px(result.value());
return {};
}
Optional<Length> CalculatedStyleValue::resolve_length(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_length(m_context.percentages_resolve_as))
return Length::make_px(result->value);
return {};
}
Optional<Percentage> CalculatedStyleValue::resolve_percentage_deprecated(CalculationResolutionContext const& context) const
{
auto result = m_calculation->resolve(context);
if (result.type().has_value() && result.type()->matches_percentage())
return Percentage { result.value() };
return {};
}
Optional<Percentage> CalculatedStyleValue::resolve_percentage(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_percentage())
return Percentage { result->value };
return {};
}
Optional<Resolution> CalculatedStyleValue::resolve_resolution(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_resolution(m_context.percentages_resolve_as))
return Resolution::make_dots_per_pixel(result->value);
return {};
}
Optional<Time> CalculatedStyleValue::resolve_time(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_time(m_context.percentages_resolve_as))
return Time::make_seconds(result->value);
return {};
}
Optional<double> CalculatedStyleValue::resolve_number(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_number(m_context.percentages_resolve_as))
return result->value;
return {};
}
Optional<i64> CalculatedStyleValue::resolve_integer(CalculationResolutionContext const& context) const
{
auto result = resolve_value(context);
if (result.has_value() && result->type.has_value() && result->type->matches_number(m_context.percentages_resolve_as))
return llround(result->value);
return {};
}
bool CalculatedStyleValue::contains_percentage() const
{
return m_calculation->contains_percentage();
}
String CalculatedStyleValue::dump() const
{
StringBuilder builder;
m_calculation->dump(builder, 0);
return builder.to_string_without_validation();
}
// https://drafts.css-houdini.org/css-typed-om-1/#reify-a-math-expression
GC::Ref<CSSStyleValue> CalculatedStyleValue::reify(JS::Realm& realm, String const& associated_property) const
{
// NB: This spec algorithm isn't really implementable here - it's incomplete, and assumes we don't already have a
// calculation tree. So we have a per-node method instead.
if (auto reified = m_calculation->reify(realm))
return *reified;
// Some math functions are not reifiable yet. If we contain one, we have to fall back to CSSStyleValue.
// https://github.com/w3c/css-houdini-drafts/issues/1090
return StyleValue::reify(realm, associated_property);
}
struct NumericChildAndIndex {
NonnullRefPtr<NumericCalculationNode const> child;
size_t index;
};
static Optional<NumericChildAndIndex> find_numeric_child_with_same_unit(Vector<NonnullRefPtr<CalculationNode const>> children, NumericCalculationNode const& target)
{
for (auto i = 0u; i < children.size(); ++i) {
auto& child = children[i];
if (child->type() != CalculationNode::Type::Numeric)
continue;
auto const& child_numeric = as<NumericCalculationNode>(*child);
if (child_numeric.value().index() != target.value().index())
continue;
auto matches = child_numeric.value().visit(
[&](Percentage const&) {
return target.value().has<Percentage>();
},
[&](Number const&) {
return target.value().has<Number>();
},
[&]<typename T>(T const& value) {
if (auto const* other = target.value().get_pointer<T>(); other && other->unit() == value.unit()) {
return true;
}
return false;
});
if (matches)
return NumericChildAndIndex { child_numeric, i };
}
return {};
}
static RefPtr<NumericCalculationNode const> make_calculation_node(CalculatedStyleValue::CalculationResult const& calculation_result, CalculationContext const& context)
{
auto const& accumulated_type = calculation_result.type().value();
if (accumulated_type.matches_number(context.percentages_resolve_as))
return NumericCalculationNode::create(Number { Number::Type::Number, calculation_result.value() }, context);
if (accumulated_type.matches_percentage())
return NumericCalculationNode::create(Percentage { calculation_result.value() }, context);
if (accumulated_type.matches_angle(context.percentages_resolve_as))
return NumericCalculationNode::create(Angle::make_degrees(calculation_result.value()), context);
if (accumulated_type.matches_flex(context.percentages_resolve_as))
return NumericCalculationNode::create(Flex::make_fr(calculation_result.value()), context);
if (accumulated_type.matches_frequency(context.percentages_resolve_as))
return NumericCalculationNode::create(Frequency::make_hertz(calculation_result.value()), context);
if (accumulated_type.matches_length(context.percentages_resolve_as))
return NumericCalculationNode::create(Length::make_px(calculation_result.value()), context);
if (accumulated_type.matches_resolution(context.percentages_resolve_as))
return NumericCalculationNode::create(Resolution::make_dots_per_pixel(calculation_result.value()), context);
if (accumulated_type.matches_time(context.percentages_resolve_as))
return NumericCalculationNode::create(Time::make_seconds(calculation_result.value()), context);
return nullptr;
}
// https://drafts.csswg.org/css-values-4/#calc-simplification
NonnullRefPtr<CalculationNode const> simplify_a_calculation_tree(CalculationNode const& original_root, CalculationContext const& context, CalculationResolutionContext const& resolution_context)
{
// To simplify a calculation tree root:
// FIXME: If needed, we could detect that nothing has changed and then return the original `root`, in more places.
NonnullRefPtr<CalculationNode const> root = original_root;
// 1. If root is a numeric value:
if (root->type() == CalculationNode::Type::Numeric) {
auto const& root_numeric = as<NumericCalculationNode>(*root);
// 1. If root is a percentage that will be resolved against another value, and there is enough information
// available to resolve it, do so, and express the resulting numeric value in the appropriate canonical unit.
// Return the value.
if (auto const* percentage = root_numeric.value().get_pointer<Percentage>(); percentage && context.percentages_resolve_as.has_value()) {
// NOTE: We use nullptr here to signify "use the original".
RefPtr<NumericCalculationNode const> resolved = resolution_context.percentage_basis.visit(
[](Empty const&) -> RefPtr<NumericCalculationNode const> { return nullptr; },
[&](Angle const& angle) -> RefPtr<NumericCalculationNode const> {
VERIFY(context.percentages_resolve_as == ValueType::Angle);
if (angle.unit() == AngleUnit::Deg)
return NumericCalculationNode::create(angle.percentage_of(*percentage), context);
return NumericCalculationNode::create(Angle::make_degrees(angle.to_degrees()).percentage_of(*percentage), context);
},
[&](Frequency const& frequency) -> RefPtr<NumericCalculationNode const> {
VERIFY(context.percentages_resolve_as == ValueType::Frequency);
if (frequency.unit() == FrequencyUnit::Hz)
return NumericCalculationNode::create(frequency.percentage_of(*percentage), context);
return NumericCalculationNode::create(Frequency::make_hertz(frequency.to_hertz()).percentage_of(*percentage), context);
},
[&](Length const& length) -> RefPtr<NumericCalculationNode const> {
VERIFY(context.percentages_resolve_as == ValueType::Length);
if (length.unit() == LengthUnit::Px)
return NumericCalculationNode::create(length.percentage_of(*percentage), context);
if (length.is_absolute())
return NumericCalculationNode::create(Length::make_px(length.absolute_length_to_px()).percentage_of(*percentage), context);
if (resolution_context.length_resolution_context.has_value())
return NumericCalculationNode::create(Length::make_px(length.to_px(resolution_context.length_resolution_context.value())).percentage_of(*percentage), context);
return nullptr;
},
[&](Time const& time) -> RefPtr<NumericCalculationNode const> {
VERIFY(context.percentages_resolve_as == ValueType::Time);
if (time.unit() == TimeUnit::S)
return NumericCalculationNode::create(time.percentage_of(*percentage), context);
return NumericCalculationNode::create(Time::make_seconds(time.to_seconds()).percentage_of(*percentage), context);
});
if (resolved)
return resolved.release_nonnull();
}
// 2. If root is a dimension that is not expressed in its canonical unit, and there is enough information available
// to convert it to the canonical unit, do so, and return the value.
else {
// NOTE: We use nullptr here to signify "use the original".
RefPtr<CalculationNode const> resolved = root_numeric.value().visit(
[&](Angle const& angle) -> RefPtr<CalculationNode const> {
if (angle.unit() == AngleUnit::Deg)
return nullptr;
return NumericCalculationNode::create(Angle::make_degrees(angle.to_degrees()), context);
},
[&](Flex const& flex) -> RefPtr<CalculationNode const> {
if (flex.unit() == FlexUnit::Fr)
return nullptr;
return NumericCalculationNode::create(Flex::make_fr(flex.to_fr()), context);
},
[&](Frequency const& frequency) -> RefPtr<CalculationNode const> {
if (frequency.unit() == FrequencyUnit::Hz)
return nullptr;
return NumericCalculationNode::create(Frequency::make_hertz(frequency.to_hertz()), context);
},
[&](Length const& length) -> RefPtr<CalculationNode const> {
if (length.unit() == LengthUnit::Px)
return nullptr;
if (length.is_absolute())
return NumericCalculationNode::create(Length::make_px(length.absolute_length_to_px()), context);
if (resolution_context.length_resolution_context.has_value())
return NumericCalculationNode::create(Length::make_px(length.to_px(resolution_context.length_resolution_context.value())), context);
return nullptr;
},
[&](Number const&) -> RefPtr<CalculationNode const> {
return nullptr;
},
[&](Percentage const&) -> RefPtr<CalculationNode const> {
return nullptr;
},
[&](Resolution const& resolution) -> RefPtr<CalculationNode const> {
if (resolution.unit() == ResolutionUnit::Dppx)
return nullptr;
return NumericCalculationNode::create(Resolution::make_dots_per_pixel(resolution.to_dots_per_pixel()), context);
},
[&](Time const& time) -> RefPtr<CalculationNode const> {
if (time.unit() == TimeUnit::S)
return nullptr;
return NumericCalculationNode::create(Time::make_seconds(time.to_seconds()), context);
});
if (resolved)
return resolved.release_nonnull();
}
// 3. If root is a <calc-keyword> that can be resolved, return what it resolves to, simplified.
// NOTE: We already resolve our `<calc-keyword>`s at parse-time.
// FIXME: Revisit this once we support any keywords that need resolving later.
// 4. Otherwise, return root.
return root;
}
// 2. If root is any other leaf node (not an operator node):
// FIXME: We don't yet allow any of these inside a calculation tree. Revisit once we do.
// 3. At this point, root is an operator node. Simplify all the calculation children of root.
root = root->with_simplified_children(context, resolution_context);
// 4. If root is an operator node thats not one of the calc-operator nodes, and all of its calculation children
// are numeric values with enough information to compute the operation root represents, return the result of
// running roots operation using its children, expressed in the results canonical unit.
if (root->is_math_function_node()) {
if (auto maybe_simplified = root->run_operation_if_possible(context, resolution_context); maybe_simplified.has_value()) {
if (auto node = make_calculation_node(maybe_simplified.release_value(), context))
return node.release_nonnull();
return root;
}
}
// 5. If root is a Min or Max node, attempt to partially simplify it:
if (root->type() == CalculationNode::Type::Min || root->type() == CalculationNode::Type::Max) {
bool const is_min = root->type() == CalculationNode::Type::Min;
auto const& children = is_min ? as<MinCalculationNode>(*root).children() : as<MaxCalculationNode>(*root).children();
// 1. For each node child of roots children:
// If child is a numeric value with enough information to compare magnitudes with another child of the same
// unit (see note in previous step), and there are other children of root that are numeric values with the
// same unit, combine all such children with the appropriate operator per root, and replace child with the
// result, removing all other child nodes involved.
Vector<NonnullRefPtr<CalculationNode const>> simplified_children;
simplified_children.ensure_capacity(children.size());
for (auto const& child : children) {
if (child->type() != CalculationNode::Type::Numeric || simplified_children.is_empty()) {
simplified_children.append(child);
continue;
}
auto const& child_numeric = as<NumericCalculationNode>(*child);
if (context.percentages_resolve_as.has_value() && child_numeric.value().has<Percentage>()) {
// NOTE: We can't compare this percentage yet.
simplified_children.append(child);
continue;
}
auto existing_child_and_index = find_numeric_child_with_same_unit(simplified_children, child_numeric);
if (existing_child_and_index.has_value()) {
bool const should_replace_existing_value = existing_child_and_index->child->value().visit(
[&](Percentage const& percentage) {
if (is_min)
return child_numeric.value().get_pointer<Percentage>()->value() < percentage.value();
return child_numeric.value().get_pointer<Percentage>()->value() > percentage.value();
},
[&](Number const& number) {
if (is_min)
return child_numeric.value().get_pointer<Number>()->value() < number.value();
return child_numeric.value().get_pointer<Number>()->value() > number.value();
},
[&]<typename T>(T const& value) {
if (is_min)
return child_numeric.value().get_pointer<T>()->raw_value() < value.raw_value();
return child_numeric.value().get_pointer<T>()->raw_value() > value.raw_value();
});
if (should_replace_existing_value)
simplified_children[existing_child_and_index->index] = child_numeric;
} else {
simplified_children.append(child);
}
}
// 2. If root has only one child, return the child.
// Otherwise, return root.
if (simplified_children.size() == 1)
return simplified_children.first();
// NOTE: Because our root is immutable, we have to return a new node with the modified children.
if (is_min)
return MinCalculationNode::create(move(simplified_children));
return MaxCalculationNode::create(move(simplified_children));
}
// 6. If root is a Negate node:
if (root->type() == CalculationNode::Type::Negate) {
auto const& root_negate = as<NegateCalculationNode>(*root);
auto const& child = root_negate.child();
// 1. If roots child is a numeric value, return an equivalent numeric value, but with the value negated (0 - value).
if (child.type() == CalculationNode::Type::Numeric)
return as<NumericCalculationNode>(child).negated(context);
// 2. If roots child is a Negate node, return the childs child.
if (child.type() == CalculationNode::Type::Negate)
return as<NegateCalculationNode>(child).child();
// 3. Return root.
// NOTE: Because our root is immutable, we have to return a new node if the child was modified.
if (&child == &root_negate.child())
return root;
return NegateCalculationNode::create(move(child));
}
// 7. If root is an Invert node:
if (root->type() == CalculationNode::Type::Invert) {
auto const& root_invert = as<InvertCalculationNode>(*root);
auto const& child = root_invert.child();
// 1. If roots child is a number (not a percentage or dimension) return the reciprocal of the childs value.
if (child.type() == CalculationNode::Type::Numeric) {
if (auto const* number = as<NumericCalculationNode>(child).value().get_pointer<Number>()) {
// TODO: Ensure we're doing the right thing for weird divisions.
return NumericCalculationNode::create(Number(Number::Type::Number, 1.0 / number->value()), context);
}
}
// 2. If roots child is an Invert node, return the childs child.
if (child.type() == CalculationNode::Type::Invert)
return as<InvertCalculationNode>(child).child();
// 3. Return root.
// NOTE: Because our root is immutable, we have to return a new node if the child was modified.
if (&child == &root_invert.child())
return root;
return InvertCalculationNode::create(move(child));
}
// 8. If root is a Sum node:
if (root->type() == CalculationNode::Type::Sum) {
auto const& root_sum = as<SumCalculationNode>(*root);
Vector<NonnullRefPtr<CalculationNode const>> flattened_children;
flattened_children.ensure_capacity(root_sum.children().size());
// 1. For each of roots children that are Sum nodes, replace them with their children.
for (auto const& child : root_sum.children()) {
if (child->type() == CalculationNode::Type::Sum) {
flattened_children.extend(as<SumCalculationNode>(*child).children());
} else {
flattened_children.append(child);
}
}
// 2. For each set of roots children that are numeric values with identical units, remove those children and
// replace them with a single numeric value containing the sum of the removed nodes, and with the same unit.
// (E.g. combine numbers, combine percentages, combine px values, etc.)
// NOTE: For each child, scan this summed_children list for the first one that has the same type, then replace that with the new summed value.
Vector<NonnullRefPtr<CalculationNode const>> summed_children;
for (auto const& child : flattened_children) {
if (child->type() != CalculationNode::Type::Numeric) {
summed_children.append(child);
continue;
}
auto const& child_numeric = as<NumericCalculationNode>(*child);
auto existing_child_and_index = find_numeric_child_with_same_unit(summed_children, child_numeric);
if (existing_child_and_index.has_value()) {
auto new_value = existing_child_and_index->child->value().visit(
[&](Percentage const& percentage) {
return NumericCalculationNode::create(Percentage(percentage.value() + child_numeric.value().get<Percentage>().value()), context);
},
[&](Number const& number) {
return NumericCalculationNode::create(Number(Number::Type::Number, number.value() + child_numeric.value().get<Number>().value()), context);
},
[&]<typename T>(T const& value) {
return NumericCalculationNode::create(T(value.raw_value() + child_numeric.value().get<T>().raw_value(), value.unit()), context);
});
summed_children[existing_child_and_index->index] = move(new_value);
} else {
summed_children.append(child);
}
}
// 3. If root has only a single child at this point, return the child. Otherwise, return root.
if (summed_children.size() == 1)
return summed_children.first();
// NOTE: Because our root is immutable, we have to return a new node with the modified children.
return SumCalculationNode::create(move(summed_children));
}
// 9. If root is a Product node:
if (root->type() == CalculationNode::Type::Product) {
auto const& root_product = as<ProductCalculationNode>(*root);
Vector<NonnullRefPtr<CalculationNode const>> children;
children.ensure_capacity(root_product.children().size());
// 1. For each of roots children that are Product nodes, replace them with their children.
for (auto const& child : root_product.children()) {
if (child->type() == CalculationNode::Type::Product) {
children.extend(as<ProductCalculationNode>(*child).children());
} else {
children.append(child);
}
}
// 2. If root has multiple children that are numbers (not percentages or dimensions),
// remove them and replace them with a single number containing the product of the removed nodes.
Optional<size_t> number_index;
for (auto i = 0u; i < children.size(); ++i) {
if (children[i]->type() == CalculationNode::Type::Numeric) {
if (auto const* number = as<NumericCalculationNode>(*children[i]).value().get_pointer<Number>()) {
if (!number_index.has_value()) {
number_index = i;
continue;
}
children[*number_index] = NumericCalculationNode::create(as<NumericCalculationNode>(*children[*number_index]).value().get<Number>() * *number, context);
children.remove(i);
--i; // Look at this same index again next loop.
}
}
}
// 3. If root contains only two children, one of which is a number(not a percentage or dimension) and the other
// of which is a Sum whose children are all numeric values, multiply all of the Sum s children by the number,
// then return the Sum.
if (children.size() == 2) {
auto const& child_1 = children[0];
auto const& child_2 = children[1];
Optional<Number> multiplier;
RefPtr<SumCalculationNode const> sum;
if (child_1->type() == CalculationNode::Type::Numeric && child_2->type() == CalculationNode::Type::Sum) {
if (auto const* maybe_multiplier = as<NumericCalculationNode>(*child_1).value().get_pointer<Number>()) {
multiplier = *maybe_multiplier;
sum = as<SumCalculationNode>(*child_2);
}
}
if (child_1->type() == CalculationNode::Type::Sum && child_2->type() == CalculationNode::Type::Numeric) {
if (auto const* maybe_multiplier = as<NumericCalculationNode>(*child_2).value().get_pointer<Number>()) {
multiplier = *maybe_multiplier;
sum = as<SumCalculationNode>(*child_1);
}
}
if (multiplier.has_value() && sum) {
Vector<NonnullRefPtr<CalculationNode const>> multiplied_children;
multiplied_children.ensure_capacity(sum->children().size());
bool all_numeric = true;
for (auto const& sum_child : sum->children()) {
if (sum_child->type() != CalculationNode::Type::Numeric) {
all_numeric = false;
break;
}
auto& child_value = as<NumericCalculationNode>(*sum_child).value();
multiplied_children.append(child_value.visit(
[&](Percentage const& percentage) {
return NumericCalculationNode::create(Percentage(percentage.value() * multiplier->value()), context);
},
[&](Number const& number) {
return NumericCalculationNode::create(Number(Number::Type::Number, number.value() * multiplier->value()), context);
},
[&]<typename T>(T const& value) {
return NumericCalculationNode::create(T(value.raw_value() * multiplier->value(), value.unit()), context);
}));
}
if (all_numeric)
return SumCalculationNode::create(move(multiplied_children));
}
}
// 4. If root contains only numeric values and/or Invert nodes containing numeric values, and multiplying the
// types of all the children (noting that the type of an Invert node is the inverse of its childs type)
// results in a type that matches any of the types that a math function can resolve to, return the result of
// multiplying all the values of the children (noting that the value of an Invert node is the reciprocal of
// its childs value), expressed in the results canonical unit.
Optional<CalculatedStyleValue::CalculationResult> accumulated_result;
bool is_valid = true;
auto accumulate = [&accumulated_result, &resolution_context](NumericCalculationNode const& numeric_child, bool invert) {
auto child_type = numeric_child.numeric_type();
if (!child_type.has_value())
return false;
// FIXME: The spec doesn't cover how to handle values in non-canonical units
if (!numeric_child.is_in_canonical_unit())
return false;
// AD-HOC: The spec doesn't cover how to handle unresolved percentages, to handle this we force percentages
// back to the percent type (e.g. { hint: None, "percent" → 1 } rather than
// { hint: length, "length" → 1 }), this avoids a situation calling make_calculation_node below
// where we would treat the value as an absolute value expressed in canonical units rather than a
// percent. `make_calculation_node` will still calculate the correct numeric type for the
// simplified node. See spec issue: https://github.com/w3c/csswg-drafts/issues/11588
if (numeric_child.value().has<Percentage>())
child_type = NumericType { NumericType::BaseType::Percent, 1 };
auto child_value = CalculatedStyleValue::CalculationResult::from_value(numeric_child.value(), resolution_context, child_type);
if (invert)
child_value.invert();
if (accumulated_result.has_value())
accumulated_result->multiply_by(child_value);
else
accumulated_result = child_value;
if (!accumulated_result->type().has_value())
return false;
return true;
};
for (auto const& child : children) {
if (child->type() == CalculationNode::Type::Numeric) {
if (!accumulate(as<NumericCalculationNode>(*child), false)) {
is_valid = false;
break;
}
continue;
}
if (child->type() == CalculationNode::Type::Invert) {
auto const& invert_child = as<InvertCalculationNode>(*child);
if (invert_child.child().type() != CalculationNode::Type::Numeric || !accumulate(as<NumericCalculationNode>(invert_child.child()), true)) {
is_valid = false;
break;
}
continue;
}
is_valid = false;
break;
}
if (is_valid) {
if (auto node = make_calculation_node(*accumulated_result, context))
return node.release_nonnull();
}
// 5. Return root.
// NOTE: Because our root is immutable, we have to return a new node with the modified children.
return ProductCalculationNode::create(move(children));
}
// 10. Return root.
return root;
}
}