ladybird/Userland/Libraries/LibJS/Bytecode/Interpreter.h

116 lines
3.9 KiB
C
Raw Normal View History

/*
* Copyright (c) 2021, Andreas Kling <andreas@ladybird.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <LibJS/Bytecode/Executable.h>
#include <LibJS/Bytecode/Label.h>
#include <LibJS/Bytecode/Register.h>
#include <LibJS/Forward.h>
#include <LibJS/Heap/Cell.h>
#include <LibJS/Runtime/FunctionKind.h>
2022-02-11 22:38:21 +03:30
#include <LibJS/Runtime/VM.h>
#include <LibJS/Runtime/Value.h>
namespace JS::Bytecode {
class InstructionStreamIterator;
class Interpreter {
public:
explicit Interpreter(VM&);
~Interpreter();
[[nodiscard]] Realm& realm() { return *m_realm; }
[[nodiscard]] Object& global_object() { return *m_global_object; }
[[nodiscard]] DeclarativeEnvironment& global_declarative_environment() { return *m_global_declarative_environment; }
VM& vm() { return m_vm; }
VM const& vm() const { return m_vm; }
ThrowCompletionOr<Value> run(Script&);
ThrowCompletionOr<Value> run(SourceTextModule&);
ThrowCompletionOr<Value> run(Bytecode::Executable& executable, Optional<size_t> entry_point = {}, Value initial_accumulator_value = {})
{
auto result_and_return_register = run_executable(executable, entry_point, initial_accumulator_value);
return move(result_and_return_register.value);
}
struct ResultAndReturnRegister {
ThrowCompletionOr<Value> value;
Value return_register_value;
};
ResultAndReturnRegister run_executable(Bytecode::Executable&, Optional<size_t> entry_point, Value initial_accumulator_value = {});
ALWAYS_INLINE Value& accumulator() { return reg(Register::accumulator()); }
ALWAYS_INLINE Value& saved_return_value() { return reg(Register::saved_return_value()); }
Value& reg(Register const& r)
{
return m_registers_and_constants_and_locals.data()[r.index()];
}
Value reg(Register const& r) const
{
return m_registers_and_constants_and_locals.data()[r.index()];
}
[[nodiscard]] Value get(Operand) const;
void set(Operand, Value);
Value do_yield(Value value, Optional<Label> continuation);
void do_return(Value value)
{
reg(Register::return_value()) = value;
reg(Register::exception()) = {};
}
void enter_unwind_context();
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
void leave_unwind_context();
LibJS/Bytecode: Move to a new bytecode format This patch moves us away from the accumulator-based bytecode format to one with explicit source and destination registers. The new format has multiple benefits: - ~25% faster on the Kraken and Octane benchmarks :^) - Fewer instructions to accomplish the same thing - Much easier for humans to read(!) Because this change requires a fundamental shift in how bytecode is generated, it is quite comprehensive. Main implementation mechanism: generate_bytecode() virtual function now takes an optional "preferred dst" operand, which allows callers to communicate when they have an operand that would be optimal for the result to go into. It also returns an optional "actual dst" operand, which is where the completion value (if any) of the AST node is stored after the node has "executed". One thing of note that's new: because instructions can now take locals as operands, this means we got rid of the GetLocal instruction. A side-effect of that is we have to think about the temporal deadzone (TDZ) a bit differently for locals (GetLocal would previously check for empty values and interpret that as a TDZ access and throw). We now insert special ThrowIfTDZ instructions in places where a local access may be in the TDZ, to maintain the correct behavior. There are a number of progressions and regressions from this test: A number of async generator tests have been accidentally fixed while converting the implementation to the new bytecode format. It didn't seem useful to preserve bugs in the original code when converting it. Some "does eval() return the correct completion value" tests have regressed, in particular ones related to propagating the appropriate completion after control flow statements like continue and break. These are all fairly obscure issues, and I believe we can continue working on them separately. The net test262 result is a progression though. :^)
2024-02-04 08:00:54 +01:00
void catch_exception(Operand dst);
void restore_scheduled_jump();
void leave_finally();
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 15:04:38 +02:00
void enter_object_environment(Object&);
Executable& current_executable() { return *m_current_executable; }
Executable const& current_executable() const { return *m_current_executable; }
Optional<size_t> program_counter() const { return m_program_counter; }
Span<Value> allocate_argument_values(size_t argument_count)
{
m_argument_values_buffer.resize_and_keep_capacity(argument_count);
return m_argument_values_buffer.span();
}
ExecutionContext& running_execution_context() { return *m_running_execution_context; }
private:
void run_bytecode(size_t entry_point);
enum class HandleExceptionResponse {
ExitFromExecutable,
ContinueInThisExecutable,
};
[[nodiscard]] HandleExceptionResponse handle_exception(size_t& program_counter, Value exception);
VM& m_vm;
Optional<size_t> m_scheduled_jump;
2024-04-05 13:47:41 -07:00
GCPtr<Executable> m_current_executable { nullptr };
GCPtr<Realm> m_realm { nullptr };
GCPtr<Object> m_global_object { nullptr };
GCPtr<DeclarativeEnvironment> m_global_declarative_environment { nullptr };
Optional<size_t&> m_program_counter;
Span<Value> m_arguments;
Span<Value> m_registers_and_constants_and_locals;
Vector<Value> m_argument_values_buffer;
ExecutionContext* m_running_execution_context { nullptr };
};
extern bool g_dump_bytecode;
ThrowCompletionOr<NonnullGCPtr<Bytecode::Executable>> compile(VM&, ASTNode const&, JS::FunctionKind kind, DeprecatedFlyString const& name);
ThrowCompletionOr<NonnullGCPtr<Bytecode::Executable>> compile(VM&, ECMAScriptFunctionObject const&);
}